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1 The Result

Let M be a smooth manifold. This means that
e M is a metric space.
e M is a countable union of compact subsets.

e M is locally homeomorphic to R". These local homeomorphisms are
the coordinate charts.

e M has a maximal covering by coordinate charts, such that all overlap
functions are smooth.

Let {©,} be an open cover of M. The goal of these notes is to prove that
M has a partition of unity subordinate to {©,}. This means that there is a
countable collection {f;} of smooth functions on M such that:

e fi(p) €10,1] for all p € M.
e The support of f; is a compact subset of some O, from the cover.

e For any compact subset K C M, we have f; = 0 on K except for
finitely many indices 4.

e > filp)=1forallpe M.

The support of f; is the closure of the set p € M such that f;(p) > 0.

These notes will assume that you already know how to construct bump
functions in R". Note: I deliberately picked a weird letter for the cover, so
that it doesn’t interfere with the rest of the construction.



2 The Compact Case

As a warm-up, let’s consider the case when M is compact. For every p € M
there is some open set V,, such that

e pcV,.
o V, C ©, for some ©, from our cover.

e V), is contained in a coordinate chart.

Using the fact that we are entirely inside a coordinate chart, we can construct
a bump function f : M — [0, 1] such that f(p) > 0 and the support of f is
contained in a compact subset of V,,. Let W, C V,, denote the set of points
where f > 0. Then W, is an open set which contains p. Call W, a nice open
set.

The set {W,| p € M} is an open covering of M. Since M is compact, we
can find a finite number Wy, ..., W,, of nice open sets such that M = U W,.
Let ¢4, ..., g be the functions associated to these open sets. By construction,
g; > 0 on W;. This means that the sum > g; is positive on M. Define

9i
fi= - 1
> 9i @
Then fy, ..., f,, make the desired partition of unity.
The rest of the notes deal with the case when M is not compact.

3 Fattening Compact Sets

We need two technical lemmas.

Lemma 3.1 Let p € M be any point. For all sufficiently small €, the ball of
radius € has compact closure in M.

Proof: There is some neighborhood U of p which is homeomorphic to R".
Let ¢ : U — R" be a homeomorphism. Choose some closed ball B C R"
which contains ¢(p). Consider ¢~*(B). This is a compact subset of M, and
it contains the open set U’ = ¢! (interior(B)). Any sufficiently small open €
ball A about p will be contained in U’ and hence will have closure contained
in the compact set ¢~'(B). A closed subset of a compact set is compact.
Hence, the closure of A is compact. This is what we wanted to prove. #



Lemma 3.2 If X C M 1is compact, then there exists some compact subset
Y such that X is contained in the interior of Y.

Proof: For each p € X, there is some € ball A, whose closure in M is com-
pact. The union of such balls covers X. Since X is compact, we can take a
finite subcover. That is, X C A;U...UA,,. Let Y be the union of the closures
of these balls. Since Y is a finite union of compact sets, Y is compact. The
interior of Y contains the union of these open balls, and hence contains X. #

4 Cleaning up the Compact Sets

Lemma 4.1 There exists a countable collection {K;} of compact sets such
that K; is contained in the interior of K;y1 for all i, and M = | K;.

Proof: We know already that M = | K;, where K; is compact and the
union is countable. Replacing K,, by K; U ... U K,,, it suffices to consider
the case when K| C Ky C K;....

Suppose we know already that K; is contained in the interior of K
for © = 0,...,m. By the preceding lemma, we can replace K,,. by a larger
compact set L,,.o which contains K,, ;o in its interior. Now we redefine
Kpis = Lo UK s3 and Ky = Lo U K3 U K1y, ete. The new col-
lection of compact sets has K; C K,y for all i =0,...,m + 1. By induction,
we can get this property for all i. &

Lemma 4.2 We can write M = \J L;, where L; is compact for all i, and
LinL;=01ifj<i—1.

Proof: We know that M = | K;, where each K; is compact, and K; is
contained in the interior of K, for all 7. Define

Li = Kz — interior(Ki_l). (2)

Note that L; is disjoint from K for j < ¢ — 1. Hence L; is disjoint from L;
for j < i — 1. By construction L; is a compact set minus an open set. In
other words, L; is the intersection of a compact set and a closed set. Hence
L; is compact. Also, M =JL;. &



5 The Main Construction

We keep the notation from the previous section. Consider L;. Each p € L;
has an open metric ball U such that

e U is disjoint from L; for all j < ¢ — 1. This uses the fact that there is
a minimum positive distance between U; and U; for all j <7 — 1.

e [U is contained in some O, from our cover.
e [ is contained in a coordinate chart.

As in the compact case, we can construct a bump function f such that
f(p) > 0 and the support of f is contained in a compact subset of U. Let
W C U denote the set where f > 0. Call W a nice set. Since L; is compact,
we can cover L; by finitely many nice sets, say Wiy, ..., Win,. (The number
depends on i.)

Now we consider the covering

Wi, oo, Wiy, War, o, Wa,,

We rename these sets Xi, X5, X3, ... and let g1, g2, g3 be the associated func-
tions. These functions have the following properties.

e For every p € M, there is some g; such that g; > 0. This comes from
the fact that p € L, for some j, and then p is contained in some nice
set on our list.

e Any compact set only intersects finitely many X;. The point is that
any compact set is contained in the union of finitely many L;.

e The support of each g; is contained in some O, from the original cover.
This comes from the fact that the support of g; is the closure of a nice
set.

Now we define f; = ¢;/ > g;, as in the compact case. The sum is locally
finite at each point. This gives us the partition of unity.



