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These notes prove the following theorem.

Theorem 0.1 (Brooks) Let G be a graph having maximum degree n. Sup-
pose also that G is not an odd cycle or the complete graph Kn. Then G can
be properly colored using at most n colors.

Note that an odd cycle has max degree 2 but requires 3 colors, and Kn+1,
which has max degree n, requires n + 1 colors. So, the conditions in the
theorem are necessary.

The proof here has a strategy similar to what is in §5.1 of West’s book,
but my argument avoids bringing in block decompositions. I think that this
argument is easier.

0.1 The Non-Regular Case

Suppose G has a vertex v with degree less than n. Let N be the number
of vertices of G. We set vN = v. Let T be any spanning tree for G. We
can order the vertices so that their indices increase along any path of T that
leads to vN . This means that for each vertex vi 6= vN there is some other
vertex vj incident to vi and having j > i.

Assuming that we have chosen colors C1, ..., Ci for vertices v1, ..., vi, and
i < N , we note that we have not colored at least one vertex incident to vi,
namely our vertex vj mentioned above. That is, vi is incident to at most
n − 1 already-colored vertices. So, we may choose a color for vi which does
not conflict with any previous choices. This works all the way until we get
to vN . But vN is, by definition, incident to at most n − 1 vertices. So, we
can color vn in such a way that there are no conflicts.
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0.2 Nice Graph Case

We call G a nice graph if G has 3 vertices v1, v2, vN such that

• v1 and v2 are both incident to vN but not incident to each other.

• G− v1 − v2 is connected.

Now we show that Brook’s Theorem holds for nice graphs. We let T be
a spanning tree for G − v1 − v2 and we use T to order the points of G as
v1, v2, v3, ..., vN where each vertex vi for i ≥ 3 is incident to at least one vertex
vj with j > i.

We start by coloring v1 and v2 both blue – this does not introduce a
conflict because these vertices are not incident to each other. We now proceed
as above. We can use our n-colors to color v3, ..., vN−1 with no conflicts.
Finally, consider vN . Since vN has degree n and is incident to two vertices
having the same color, there is still a color left over for vN . So, we can
complete the n-coloring.

0.3 The Cut Vertex Case

From now on we can assume that G is regular and has degree n ≥ 3. Suppose
that G has a cut vertex – i.e. a vertex v such that G−v is disconnected. Let
G1, ..., Gm be the components of G − v. Let Ĝk denote the graph obtained
by starting with Gk and adding back v and all the edges of v which connect
to vertices of Gk. The graph Ĝk has max degree n and is not regular. So, by
the non-regular case, we can n-color the vertices of Ĝk. Permuting the colors,
we can assume that v is blue in Ĝk for all k. But each Ĝk is a subgraph of G,
and the only edges between Ĝi and Ĝj for i 6= j involve v. So, the individual
colorings piece together to give an n-coloring of G.

0.4 The Remaining Case

Suppose that G is n-regular for n ≥ 3, and not nice. Since G is not the
complete graph, there are a pair of vertices v, w, not incident to each other
but both incident to some third vertex. Since G is not nice, G − v − w is
disconnected. Let G1, ..., Gm be the components of G− v − w. Since G has
no cut vertex, v and w are both incident to vertices in Gk for each k.

Let Ĝk be the graph obtained by adding v and w back to Gk, then adding
back all edges between v, w and Gk. Let e be some extra edge joining v to
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w. Note that the graph Ĝk ∪ e has max degree n and fewer vertices than G.
Note also that Ĝk ∪ e is not a cycle because some vertex of Ĝk ∪ e has degree
n > 2. There are 2 cases to consider.

Case 1: Suppose that no Ĝk ∪ e is a complete graph. Then by induc-
tion on the number of vertices, we can n-color each of these graphs. The
vertices v and w get distinct colorings because they are adjecent in Ĝk ∪ e.
Thus we can n-color Ĝk in such a way that v and w get distinct colors. We
can permute the colors so that the two common vertices v, w get the same
two colors in all cases. We then piece the colorings together just as in the
cut vertex case.

Case 2: Suppose that (after renumbering) Ĝ1 ∪ e is the complete graph.
The degree of v in Ĝk ∪ e is n. Hence v is incident to n− 1 edges in G1. But
v is also incident to at least one edge in each of G2, ..., Gm. Since the degree
of v is n, we see that in fact m = 2 and only one edge connects v to a vertex
v′ of G2. Likewise w is incident to just one vertex w′ of G2. It could happen
that v′ = w′. This doesn’t matter.

• The graph Ĝ1 is the complete graph Kn minus a single edge, and hence
non-regular. So, we can n-color Ĝ1. Both v and w must get the same
color, because we cannot n-color Ĝ1∪e. We permute the colors so that
v and w are colored blue.

• Since v′ has degree less than n, we see that G2 is not regular. We can
therefore n-color G2. We can permute the colors of G2 so that v′, w′

are not blue. But then we can extend our coloring to Ĝ2 so that both
v and w are blue.

Ĝ1 and Ĝ2 are n-colored in such a way that in both graphs v and w are blue.
Now we piece together the colorings just as above.
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