Brooks's Theorem

Rich Schwartz

February 13, 2020

These notes prove the following theorem.

Theorem 0.1 (Brooks) Let G be a graph having maximum degree n. Suppose also that G is not an odd cycle or the complete graph K_n . Then G can be properly colored using at most n colors.

Note that an odd cycle has max degree 2 but requires 3 colors, and K_{n+1} , which has max degree n, requires n + 1 colors. So, the conditions in the theorem are necessary.

The proof here has a strategy similar to what is in §5.1 of West's book, but my argument avoids bringing in block decompositions. I think that this argument is easier.

0.1 The Non-Regular Case

Suppose G has a vertex v with degree less than n. Let N be the number of vertices of G. We set $v_N = v$. Let T be any spanning tree for G. We can order the vertices so that their indices increase along any path of T that leads to v_N . This means that for each vertex $v_i \neq v_N$ there is some other vertex v_j incident to v_i and having j > i.

Assuming that we have chosen colors $C_1, ..., C_i$ for vertices $v_1, ..., v_i$, and i < N, we note that we have <u>not</u> colored at least one vertex incident to v_i , namely our vertex v_j mentioned above. That is, v_i is incident to at most n-1 already-colored vertices. So, we may choose a color for v_i which does not conflict with any previous choices. This works all the way until we get to v_N . But v_N is, by definition, incident to at most n-1 vertices. So, we can color v_n in such a way that there are no conflicts.

0.2 Nice Graph Case

We call G a nice graph if G has 3 vertices v_1, v_2, v_N such that

- v_1 and v_2 are both incident to v_N but not incident to each other.
- $G v_1 v_2$ is connected.

Now we show that Brook's Theorem holds for nice graphs. We let T be a spanning tree for $G - v_1 - v_2$ and we use T to order the points of G as $v_1, v_2, v_3, ..., v_N$ where each vertex v_i for $i \ge 3$ is incident to at least one vertex v_j with j > i.

We start by coloring v_1 and v_2 both blue – this does not introduce a conflict because these vertices are not incident to each other. We now proceed as above. We can use our *n*-colors to color $v_3, ..., v_{N-1}$ with no conflicts. Finally, consider v_N . Since v_N has degree *n* and is incident to two vertices having the same color, there is still a color left over for v_N . So, we can complete the *n*-coloring.

0.3 The Cut Vertex Case

From now on we can assume that G is regular and has degree $n \geq 3$. Suppose that G has a cut vertex – i.e. a vertex v such that G - v is disconnected. Let $G_1, ..., G_m$ be the components of G - v. Let \hat{G}_k denote the graph obtained by starting with G_k and adding back v and all the edges of v which connect to vertices of G_k . The graph \hat{G}_k has max degree n and is not regular. So, by the non-regular case, we can n-color the vertices of \hat{G}_k . Permuting the colors, we can assume that v is blue in \hat{G}_k for all k. But each \hat{G}_k is a subgraph of G, and the only edges between \hat{G}_i and \hat{G}_j for $i \neq j$ involve v. So, the individual colorings piece together to give an n-coloring of G.

0.4 The Remaining Case

Suppose that G is n-regular for $n \geq 3$, and not nice. Since G is not the complete graph, there are a pair of vertices v, w, not incident to each other but both incident to some third vertex. Since G is not nice, G - v - w is disconnected. Let $G_1, ..., G_m$ be the components of G - v - w. Since G has no cut vertex, v and w are both incident to vertices in G_k for each k.

Let G_k be the graph obtained by adding v and w back to G_k , then adding back all edges between v, w and G_k . Let e be some extra edge joining v to

w. Note that the graph $\hat{G}_k \cup e$ has max degree n and fewer vertices than G. Note also that $\hat{G}_k \cup e$ is not a cycle because some vertex of $\hat{G}_k \cup e$ has degree n > 2. There are 2 cases to consider.

Case 1: Suppose that no $\widehat{G}_k \cup e$ is a complete graph. Then by induction on the number of vertices, we can *n*-color each of these graphs. The vertices v and w get distinct colorings because they are adjecent in $\widehat{G}_k \cup e$. Thus we can *n*-color \widehat{G}_k in such a way that v and w get distinct colors. We can permute the colors so that the two common vertices v, w get the same two colors in all cases. We then piece the colorings together just as in the cut vertex case.

Case 2: Suppose that (after renumbering) $\hat{G}_1 \cup e$ is the complete graph. The degree of v in $\hat{G}_k \cup e$ is n. Hence v is incident to n-1 edges in G_1 . But v is also incident to at least one edge in each of $G_2, ..., G_m$. Since the degree of v is n, we see that in fact m = 2 and only one edge connects v to a vertex v' of G_2 . Likewise w is incident to just one vertex w' of G_2 . It could happen that v' = w'. This doesn't matter.

- The graph \hat{G}_1 is the complete graph K_n minus a single edge, and hence non-regular. So, we can *n*-color \hat{G}_1 . Both *v* and *w* must get the same color, because we cannot *n*-color $\hat{G}_1 \cup e$. We permute the colors so that *v* and *w* are colored blue.
- Since v' has degree less than n, we see that G_2 is not regular. We can therefore *n*-color G_2 . We can permute the colors of G_2 so that v', w' are not blue. But then we can extend our coloring to \hat{G}_2 so that both v and w are blue.

 \widehat{G}_1 and \widehat{G}_2 are *n*-colored in such a way that in both graphs v and w are blue. Now we piece together the colorings just as above.