Brooks's Theorem

Rich Schwartz

February 13, 2020

These notes prove the following theorem.
Theorem 0.1 (Brooks) Let G be a graph having maximum degree n. Suppose also that G is not an odd cycle or the complete graph K_{n}. Then G can be properly colored using at most n colors.

Note that an odd cycle has max degree 2 but requires 3 colors, and K_{n+1}, which has max degree n, requires $n+1$ colors. So, the conditions in the theorem are necessary.

The proof here has a strategy similar to what is in $\S 5.1$ of West's book, but my argument avoids bringing in block decompositions. I think that this argument is easier.

0.1 The Non-Regular Case

Suppose G has a vertex v with degree less than n. Let N be the number of vertices of G. We set $v_{N}=v$. Let T be any spanning tree for G. We can order the vertices so that their indices increase along any path of T that leads to v_{N}. This means that for each vertex $v_{i} \neq v_{N}$ there is some other vertex v_{j} incident to v_{i} and having $j>i$.

Assuming that we have chosen colors C_{1}, \ldots, C_{i} for vertices v_{1}, \ldots, v_{i}, and $i<N$, we note that we have not colored at least one vertex incident to v_{i}, namely our vertex v_{j} mentioned above. That is, v_{i} is incident to at most $n-1$ already-colored vertices. So, we may choose a color for v_{i} which does not conflict with any previous choices. This works all the way until we get to v_{N}. But v_{N} is, by definition, incident to at most $n-1$ vertices. So, we can color v_{n} in such a way that there are no conflicts.

0.2 Nice Graph Case

We call G a nice graph if G has 3 vertices v_{1}, v_{2}, v_{N} such that

- v_{1} and v_{2} are both incident to v_{N} but not incident to each other.
- $G-v_{1}-v_{2}$ is connected.

Now we show that Brook's Theorem holds for nice graphs. We let T be a spanning tree for $G-v_{1}-v_{2}$ and we use T to order the points of G as $v_{1}, v_{2}, v_{3}, \ldots, v_{N}$ where each vertex v_{i} for $i \geq 3$ is incident to at least one vertex v_{j} with $j>i$.

We start by coloring v_{1} and v_{2} both blue - this does not introduce a conflict because these vertices are not incident to each other. We now proceed as above. We can use our n-colors to color v_{3}, \ldots, v_{N-1} with no conflicts. Finally, consider v_{N}. Since v_{N} has degree n and is incident to two vertices having the same color, there is still a color left over for v_{N}. So, we can complete the n-coloring.

0.3 The Cut Vertex Case

From now on we can assume that G is regular and has degree $n \geq 3$. Suppose that G has a cut vertex - i.e. a vertex v such that $G-v$ is disconnected. Let G_{1}, \ldots, G_{m} be the components of $G-v$. Let \widehat{G}_{k} denote the graph obtained by starting with G_{k} and adding back v and all the edges of v which connect to vertices of G_{k}. The graph \widehat{G}_{k} has max degree n and is not regular. So, by the non-regular case, we can n-color the vertices of \widehat{G}_{k}. Permuting the colors, we can assume that v is blue in \widehat{G}_{k} for all k. But each \widehat{G}_{k} is a subgraph of G, and the only edges between \widehat{G}_{i} and \widehat{G}_{j} for $i \neq j$ involve v. So, the individual colorings piece together to give an n-coloring of G.

0.4 The Remaining Case

Suppose that G is n-regular for $n \geq 3$, and not nice. Since G is not the complete graph, there are a pair of vertices v, w, not incident to each other but both incident to some third vertex. Since G is not nice, $G-v-w$ is disconnected. Let G_{1}, \ldots, G_{m} be the components of $G-v-w$. Since G has no cut vertex, v and w are both incident to vertices in G_{k} for each k.

Let \widehat{G}_{k} be the graph obtained by adding v and w back to G_{k}, then adding back all edges between v, w and G_{k}. Let e be some extra edge joining v to
w. Note that the graph $\widehat{G}_{k} \cup e$ has max degree n and fewer vertices than G. Note also that $\widehat{G}_{k} \cup e$ is not a cycle because some vertex of $\widehat{G}_{k} \cup e$ has degree $n>2$. There are 2 cases to consider.

Case 1: Suppose that no $\widehat{G}_{k} \cup e$ is a complete graph. Then by induction on the number of vertices, we can n-color each of these graphs. The vertices v and w get distinct colorings because they are adjecent in $\widehat{G}_{k} \cup e$. Thus we can n-color \widehat{G}_{k} in such a way that v and w get distinct colors. We can permute the colors so that the two common vertices v, w get the same two colors in all cases. We then piece the colorings together just as in the cut vertex case.

Case 2: Suppose that (after renumbering) $\widehat{G}_{1} \cup e$ is the complete graph. The degree of v in $\widehat{G}_{k} \cup e$ is n. Hence v is incident to $n-1$ edges in G_{1}. But v is also incident to at least one edge in each of G_{2}, \ldots, G_{m}. Since the degree of v is n, we see that in fact $m=2$ and only one edge connects v to a vertex v^{\prime} of G_{2}. Likewise w is incident to just one vertex w^{\prime} of G_{2}. It could happen that $v^{\prime}=w^{\prime}$. This doesn't matter.

- The graph \widehat{G}_{1} is the complete graph K_{n} minus a single edge, and hence non-regular. So, we can n-color \widehat{G}_{1}. Both v and w must get the same color, because we cannot n-color $\widehat{G}_{1} \cup e$. We permute the colors so that v and w are colored blue.
- Since v^{\prime} has degree less than n, we see that G_{2} is not regular. We can therefore n-color G_{2}. We can permute the colors of G_{2} so that v^{\prime}, w^{\prime} are not blue. But then we can extend our coloring to \widehat{G}_{2} so that both v and w are blue.
\widehat{G}_{1} and \widehat{G}_{2} are n-colored in such a way that in both graphs v and w are blue. Now we piece together the colorings just as above.

