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0.1 The Main Result

Let G be a connected graph with vertex set V . Given a function f : V → R
we define the Laplacian ∆f : V → R by the formula

∆f(v) = kf(v)−
k∑

i=1

f(wi). (1)

Here w1, ..., wk are the vertex neighbors of v. The Laplacian is a discrete
analogue of the similarly named operator from calculus. The Laplacian of a
function measures how far a function is from being equal at each vertex to
the average of its neighbors.

If we label the vertices of G from 1 to n then we can identify Rn with
vector space of all functions f : V → R. We have the Laplace operator
∆ : Rn → Rn, which is just the Laplacian defined relative to the standard
basis.

The representation of ∆ in the standard basis is the matrix M such that
all entries are 0 except:

• Mij = −1 if and only if an edge of G joins i to j.

• Mii is the degree of vertex i.

The matrix M is symmetric and every row and column sums to 0.
Let M11 denote the minor of M obtained by crossing off the first row and

column. Here is the famous Matrix-Tree Theorem:

Theorem 0.1 The number of spanning trees of G is | det(M11)|.
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At the end, I’ll prove two reformulations of this result.

1. The number of spanning trees of G is | det(Mij)| where Mij is the minor
of M obtained by crossing off the ith row and jth column from M . In
other words, all these minors have the same determinant up to sign.

2. All the nonzero eigenvalues of M are real, and the number of spanning
trees of G is

1

n
λ2...λn,

where λ2, ..., λn are the nonzero eigenvalues of M .

0.2 The Cauchy-Binet Theorem

We start with a result from linear algebra. Let A be an n × N matrix and
let B be an N × n matrix. Here n ≥ N . The matrix AB is an n× n matrix.
Given any subset S ⊂ {1, ..., N} having n-elements, form the two n × n
matrices AS and BS, obtained by just using the rows (or columns) indexed
by the set S. Define

f(A,B) = det(AB), g(A,B) =
∑
S

det(AS) det(BS). (2)

The sum ranges over all choices of S.

Theorem 0.2 (Cauchy-Binet) f(A,B) = g(A,B).

Proof: Think of A and B each as n-tuples of vectors in RN . We get these
vectors by listing out the rows of A and the columns of B. So, we can write

f(A,B) = f(A1, ..., An, B1, ..., Bn), (3)

and likewise for g. The values of f and g change in the same way when the
following operations are performed:

• Replace Ai by λAi.

• Replace Ai to Ai + Aj.

• Swap Ai and Aj.
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The same goes when B is used in place of A. So, we can do elementary row
and column operations on A andB the rows of A are (1, 0, ..., 0), (0, 1, 0, ..., 0),
etc. and similarly for the columns of B. But in this case the result is quite
easy. ♠

The proof of the Cauchy-Binet Theorem is done, but here’s a bit more
discussion. One can think about it in a slightly more geometric way. Let
Mn,N denote the set of n×N matrices. Let (N, n) denote N choose n. There
is a nice map from Mn,N into R(N,n) called the Plucker embedding . Given
the matrix A, you just enumerate the subsets S above, as S1, ..., S(N,n) and
then you define

φ(A) = (det(AS1), det(AS2), ...)

To make the notation nicer, we define φ(B) = φ(Bt) when B is an N × n
matrix. The Cauchy-Binet Theorem says that

det(AB) = φ(A) · φ(B).

In other words, you take the Plucker embedding of the two matrices and then
take the dot product of the result, and this computes the determinant of the
product.

0.3 Proof of the Matrix Tree Theorem

We already have said that G has n vertices. Suppose that G has N edges.
Let us call the edges e1, ..., eN . We know that N ≥ n−1. Let A be the n×N
matrix (n rows and N columns) with the following description: Suppose vi
and vj are the two vertices incident to ek and i < j. Then Aik = 1 and
Ajk = −1. All other entries are 0. Figure 1 shows an example graph.
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Figure 1: An example graph.
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Here is the matrix:

vertices:

edges:
+1 +1 0 0 +1 0
0 −1 0 +1 0 +1
0 0 0 0 0 −1
−1 0 +1 0 0 0
0 0 −1 −1 −1 0

 .

Lemma 0.3 M = AAt, Where At is the transpose of A.

Proof: To see this note that:

(AAt)ij = Ai1Aj1 + Ai2Aj2 + ...+ AiNAjN .

When i = j, this is exactly the number of edges incident to vi. When i 6= j
this expression is only nonzero if there is some k such that aik = ±1 and
ajk = ∓1. In this case, the expression is −1. Since M has the same descrip-
tion, we see that M = AAt. ♠

Remark: The calculus analogue of this statement is that ∆f = Div(∇f),
the divergence of the gradient of f . A fancier way to write this is that
∆ = ∗d∗d where d is exterior differentiation and ∗ is the Hodge star operator.

Letting A1 be the matrix obtained from A by deleting the first row (cor-
responding to vertex 1) we get

M11 = A1A
t
1. (4)

Given an n−1 element subset S ⊂ {1, ..., N}, consider the square matrix
A1,S consisting of the columns of A1 corresponding to S. At the same time,
let GS denote the subgraph of G whose edges are in S. Taking A = A1 and
B = At

1 in the Cauchy-Binet Theorem, we have

| det(M11)| =
∑
S

( det(A1,S))2 (5)

The following two facts finish the proof:

1. If GS is not a spanning tree for G then det(A1,S) = 0.
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2. If GS is a spanning tree for G then then det(A1,S) = ±1.

Proof of Fact 1: Suppose that GS is not a spanning tree. Since GS has
n − 1 edges, we see that GS must contain a cycle. Orient the edges in the
cycle so that they point from the smaller vertex to the larger vertex. Assign
−1 to the edge if it is going clockwise around the cycle and +1 if it is going
counterclockwise. Then the sum of the columns of A1,S, with these signs, is
0. Since some column-sum is 0, the matrix A1,S has determinant 0. Figure
2 shows an example of how this works for the set S = {1, 2, 4, 5}. The cycle
in this case involves edges 2, 4, 5 and the identity is Col2 + Col4−Col5 = 0.
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Figure 2: A cycle

We have highlighted the corresponding columns of A1,S.

A1 =


0 −1 0 +1 0 +1
0 0 0 0 0 −1
−1 0 +1 0 0 0
0 0 −1 −1 −1 0

 .
Proof of Fact 2: Before we start, we note that Row j − 1 of A1 is Row j
of A. That is, Row j − 1 of A1 corresponds to vj.

Suppose that GS is a spanning tree. We can consider Column k of A1,S

which corresponds to a pair (vj, ek) where ek is an edge of GS and vj is a leaf
of GS incident to ek. We can choose j > 1 because every tree has at least
2 leaves. In Row j − 1 of A1,S there is one nonzero entry corresponding to
(vj, ek) and all other entries are 0 because vj is incident to no other edges
indexed by elements of S. But then

det(A1,S) = ± det(A′
1,S),
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where A′
1,S is the matrix obtained by deleting the Row j − 1 and Column k

from A1,S. But A′
1,S corresponds to a spanning tree for G− vj using edges of

G− ek. So, by induction, det(A′
1,S) = ±1. Hence det(A1,S) = ±1.

Figure 3 shows an example involving S = {1, 2, 5, 6}. Here we take (edge)
e1 and (vertex) v4. So, j − 1 = 3 and k = 1.
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Figure 3: Deleting a leaf

We have highlighted Row 3 of A1,S and you can see how there is just the
one nonzero entry.

A1,S =


0 −1 ∗ ∗ 0 +1
0 0 ∗ ∗ 0 −1
−1 0 ∗ ∗ 0 0
0 0 ∗ ∗ −1 0

 , A′
1,S =


∗ −1 ∗ ∗ 0 +1
∗ 0 ∗ ∗ 0 −1
∗ ∗ ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ −1 0

 ,

0.4 The Reformulations

The next lemma implies the first reformulation:

Lemma 0.4 | det(Mij)| = | det(M11)| for all i, j.

Proof: I’ll prove this for M11 and M12. The general case is similar. Let M1

denote the matrix obtained by crossing off the first row of M . Then

detM1j = δ(Vj, V3, ..., Vn),

where δ is the determinant function and Vj is the jth column of M . The
function δ is linear in each position and anti-symmetric. Since V1 = −(V2 +
...Vn), we have

detM11 = −δ(V2, V3, ..., Vm)− δ(V3, V3, ..., Vn)− δ(V4, V3, V4, ..., Vn) · · ·
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All the terms vanish except the first one, which is − detM12. ♠

The following equation implies the second reformulation.

det(M11) = λ2...λn/n. (6)

The proof of this equation follows the great argument given in

http://maths.qmul.ac.uk/∼pjc/odds/zero.pdf

but I’ll also fill in some elementary details to make it more self-contained.

Lemma 0.5 M has all real eigenvalues.

Proof: Let v denote the coordinatewide complex conjuatage of v. Since M
is symmetric, we have Mv · w = v ·Mw for all vectors v, w ∈ Cn. Suppose
(λ, v) is an eigenvalue-eigenvector pair for M . That is, Mv = λv. All we
know in advance is that λ ∈ C and v ∈ Cn. Note that Mv = Mv = λv. But
then we have

λv · v = Mv · v = v ·Mv = v · λv = λv · v.

But then λ = λ. Hence λ ∈ R. ♠

Lemma 0.6 Real eigenvectors of M – i.e., those which are vectors in Rn –
corresponding to distinct eigenvalues are orthogonal.

Proof: Suppose that (λ, v) and (µ,w) are two eigenvalue-eigenvector pairs
and λ 6= µ. Then λ(v ·w) = Mv ·w = v ·Mw = µ(v ·w). Hence v ·w = 0. ♠

Lemma 0.7 Rn has an orthogonal basis of eigenvectors of M .

Proof: Since M has all real eigenvalues, Rn has a basis of eigenvectors of
M . Within each eigenspace we can choose this basis to be orthogonal (by
Graham-Schmidt). The previous result shows that the different eigenspaces
are orthogonal. Hence Rn has an orthogonal basis of eigenvectors for M . ♠
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Since the rows and columns of M sum to 0, the vector (1, ..., 1) is an
eigenvector for M and 0 is the corresponding eigenvector. The remaining
eigenvectors lie in the subspace of Rn

0 consisting of vectors whose coordinates
sum to 0. Why? Because Rn

0 is the orthogonal complement to (1, ..., 1).
Now for the magic trick. Consider the matrix J whose every entry is 1.

This time (1, ..., 1) is an eigenvector of J corresponding to the eigenvalue n.
Every vector in Rn

0 is an eigenvector of J corresponding to eigenvalue 0. So,
the same orthogonal basis for M works equally for J . But this means that
the eigenvalues of M + J are n, λ2, ..., λn. Hence

det(M + J) = nλ2...λn.

On the other hand, consider the following column/row operations:

1. Add Rows 2,...,n to Row 1. This makes Row 1 equal to (n, ..., n).

2. Add Cols 2,...,n to Col 1. This make Col 1 equal to (n2, n..., n)t.

3. Divide Col 1 by n. This makes Col 1 equal to (n, 1, ..., 1)t.

4. Subtract Col 1 from Col2,...,Coln. This makes Row 1 equal to (n, 0, ...., 0)
and the (1, 1) minor equal to M11.

Operation 3 divides the determinant by n and the remaining operations do
not change the determinant. Hence

det(M + J) = n2 × detM11.

Combining the two equations gives Equation 6.
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