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These notes are a strict subset of the material contained in §8.2 of West’s
book. I thought that I would give a somewhat simpler treatment of the topic.
I will try to keep the notation consistent with West’s notation.

1 Basic Definition

Let E be a set. A hereditary structure on E is a classification of the subsets
of E into 2 types:

• dependent

• independent

in a way that has the following property: If I1 ⊂ I2 and I2 is independent,
then I1 is also independent. To avoid set-theoretic troubles let assume that
there is some finite N such that all independent sets have size at most N .

Given X ⊂ E, a maximal independent subset of X is an independent set
I ⊂ X which is not contained in any larger independent subset of X. Notice
that X might contain more than one maximal independent subset. E is
called a matroid if it has the following additional property: For any X ⊂ E,
the maximal subsets of X all have the same size.

It is going to turn out that a matroid has many equivalent definitions.
Later on, we will show that the definition given above is equivalent to 7 other
definitions.
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2 Examples of Matroids

2.1 Vectorial Matroids

The example will work for a vector space defined over any field, but let’s
keep it simple and just consider E = Rn. The independent subsets of E are
defined to be those which are linearly independent. In other words {Vi} is
an independent set if, whenever we have a finite sum

∑
aiVi = 0 we have

ai = 0 for all i. As is well known, the subset of a linearly independent set is
independent. Hence our definition gives E a heriditary structure.

Now we prove that E is a matroid with this hereditary structure. This
proof skimps on some familiar details from linear algebra. Given any subset
X ⊂ E, the span of X is defined to be the set of linear combinations of
elements of X. The set F = span(X) is a subspace of Rn. Let I be a
maximal independent subset of X. Then F ′ = span(I) is a subspace of F . If
F ′ 6= F then we can add some V ∈ X−F ′ to I and get a larger independent
set. This is a contradiction. Hence F ′ = F . But then, by familiar properies
of dimension, the number of elements of I is the dimension of F . Hence, all
the maximal independent sets have the same size.

2.2 Matrix Matroids

Consider a matrix M . We let E denote the set of rows of M . A subset of
E is defined to be independent if the rows are linearly independent. This is
practically the same example as the vectorial example, except that we restrict
our sets to be actual rows of M rather than all possible subsets of the vector
space that is the row-span of M . The fact uniformity property for matroids
really just says that a matrix – in this case the submatrix made from a given
subset X of rows – has a well defined rank.

I think that this example is probably the source of the name matroid . A
matroid is a matrix-like object.

2.3 Cyclic Matroids

Let G be a graph. For convenience, let’s take G to be connected. Let E
denote the set of edges of G. We call a subset I ⊂ E independent if E
contains no cycles. This definition is obviously a hereditary structure on E.
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Now we prove that E is a matroid with this hereditary structure. Let X
be a subset of E. Let H denote the graph whose vertices are the vertices
incident to edges of X and whose edges are just the edges of X. Let H1, ..., Hk

denote the connected components of H. A maximal independent subset I of
X is exactly a union T1 ∪ ... ∪ Tk, where Ti is a spanning tree for Hi. But
we know that all the spanning trees for a connected graph have the same
number of edges, namely the number of vertices minus 1. This gives us the
formula for the number of elements of I:

|I| =
k∑

i=1

(|V (Hi)| − 1),

where |V (Hi)| is the number of vertices of Hi. This formula is the same for
all maximal independent sets, so they all have the same size.

2.4 Transversal Matroids

Let A1, ..., Ak be (possibly) overlapping sets. Let E = A1 ∪ ... ∪ Ak. We
call the original sets bins of E. We define the independent subsets of E to
be subsets I having the property that each member of I can be placed in a
distinct bin of E. This is obviously a hereditary structure. One important
thing to note is that a given independent set can be sorted into bins in
perhaps more than one way. This doesn’t bother us.

Before we prove that E is a matroid, we re-interpret this notion of in-
dependence. We can form a bipartite graph G where the white nodes are
labeled 1, ..., k and the black nodes are the members of E. We join i to
e ∈ E if and only if e ∈ Ai. Here is how we get an independent subset of E.
We find a matching between some black and white vertices and we take the
union of the black endpoints of the matching. All independent subsets arise
this way. Note, however, that different matchings could give rise to the same
independent set.

Now we prove that E is a matroid. We first show that all the maximal
independent subsets of E have the same size and then we explain the trick
that lets us go this for any subset of E. Let I1 and I2 be maximal independent
subsets of E. These sets correspond to matchings M1 and M2 of G. Suppose
that |I1| < |I2|. Then |M1| < |M2|. We consider the symmetric difference
M1δM2. This is the union of edges in M1 ∪M2 which are not in M1 ∩M2.
This symmetric difference consists of alternating paths and alternating loops.
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Since |M1| < |M2| there must be at least one alternating path which has
edges in M2,M1, ...,M1,M2. This is an augmenting path for M1. We can
find a new matching M ′

1 by replacing all the M1-edges in this path by the
M2-edges in the path. It is important to note that the matching M ′

1 does not
extend the matching M1. However the black endpoints I ′1 of M ′

1 contain the
black endpoints I1 of M1. All we have done is add the black endpoint of our
path. But this contradicts the fact that I1 is a maximal independent set.

We have shown that all the maximal independent subsets of E have the
same size. Now for the trick. If X ⊂ E, we just restrict our bipartite graph
G to the subgraph G′ which involves edges incident to members of E. We
rerun the same argument with respect to G′ and we see that the maximal
independent subset of X all have the same size.

3 Bases for a Matroid

Let E be a set with a hereditary structure, not necessarily a matroid. A basis
of E is defined to be a maximal independent subset. The terminology comes
from the vectorial example. A basis for a vectorial matroid is just a basis in
the linear algebra sense. In the cycle example, the bases are the spanning
trees.

Consider the following two properties:

1. If B1 and B2 are bases and e ∈ B1−B2 then there is some f ∈ B2−B1

such that (B1 − e) ∪ f is a basis.

2. If B1 and B2 are bases and f ∈ B2−B1 then there is some e ∈ B1−B2

such that (B1 − e) ∪ f is a basis.

These properties both say we can replace an element of B1 with an element
of B2. The first property says that we can choose which element of B1 we
want to discard. The second property says that we can choose which element
we can import.

Lemma 3.1 If E has a hereditary structure, then either property implies
that bases have the same number of elements.

Proof: Consider this for Property 1. If B2 has more elements than B1, then
we can continue replacing elements of B1 by elements of B2 until we have
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a proper subset B′2 ⊂ B2 which is also a basis. This is a contradiction. A
similar argument works for Property 2. ♠

Lemma 3.2 If E has a hereditary structure, then the two properties are
equivalent.

Proof: Let us assume that E has property 1 and show that E has property
2. Given f ∈ B2, we use property 1 (with the roles of B1 and B2 reversed)
so as to swap out all elements of B2 except f . When we are done, we have a
basis consisting of f and elements from B1. This is the same as saying that
we can donate f to B1.

Now let us assume that E has property 2 and shoe that E has property
1. We can donate all elements of B1 to B2 except e. When we are done, we
have a new basis consisting of all elements of B1 and some element of B2,
which we call f . This establishes Property 1. ♠

Lemma 3.3 A matroid has both properties.

Proof: Since the two properties are equivalent we just have to show that
Property 1 holds. Suppose that B1 and B2 are both bases and e ∈ B1.
Consider the set

X = (B1 − e) ∪B2.

The set B2 is a maximal independent subset of X. The set B1 − e is an
independent subset of X. By the uniformity property, there is some maxi-
mal independent subset B′1 ⊂ X such that |B′1| = |B2| and B1 ⊂ B′1. But
B′1 = (B1 − e) ∪ f for some f ∈ B2. Moreover, since |B′1| = |B2| and B′1 is
also an independent subset of E, the uniformity property tells us that B′1 is
a basis. ♠

Now we work towards proving that either of the above properties charac-
terizes a matroid. That is, a hereditary set with either property above is a
matroid. We first need a preliminary lemma showing that Property 1 above
implies an even more powerful property.

Lemma 3.4 Suppose that E is a hereditary set with Property 1. If I1 and
I2 are independent sets with |I1| < |I2| then there is some f ∈ I2 such that
I1 ∪ f is independent.
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Proof: We can find bases B1 and B2 such that I1 ⊂ B1 and I2 ⊂ B2. If there
is any e ∈ B1−I1−B2 we can find f ∈ B2−B1 such that B′1 = B1−e∪f is a
basis containing I1. Repeating this finitely many times, we can arrange that
B1 − I1 ⊂ B2. Note that |B2 − I2| < |B1 − I1|. If B1 − I1 is disjoint from I2
then B1−I1 ⊂ B2−I2, and this contradicts the cardinality inequality. Hence
there is some f ∈ B1−I1 that belongs to I2. But then I1∪f is independent. ♠

The property in the preceding result is called the augmentation property .
The augmentation property is equivalent to Property 1 because we may apply
it to the independent sets B1 − e and B2. So, Property 1, Property 2, and
the augmentation property are all equivalent.

Lemma 3.5 Let E be a set with a hereditary structure. If E has any of the
properties above then E is a matroid.

Proof: Since all the properties above are equivalent, we can assume that E
has the augmentation property. Let X ⊂ E. Let I1, I2 be maximal indepen-
dent subsets of X. If |I1| < |I2| then we can find f ∈ I2 such that I1 ∪ f is
independent but I1 ∪ f ⊂ X. This contradicts the fact that I1 is a maximal
independent subset of X. ♠

4 The Dual Matroid

Let E be a matroid. We define the dual matroid E∗ to be the same underlying
set E but with a different hereditary structure. To make it clear when we are
talking about a subset in the new hereditary structure, we use E∗ in place
of E even though E∗ = E.

A basis in the dual hereditary structure is a set B∗ ⊂ E∗ such that
E∗ − E∗ is a basis of the original hereditary structure. A subset of E∗ is
(dual) hereditary if and only if it is a subset of a (dual) basis B∗ of E∗.

Lemma 4.1 E∗ is a matroid.

Proof: Suppose that B∗1 and B∗2 are bases for E∗. Choose e∗ ∈ B∗1 − B∗2
and consider the set B∗1 − e∗. We would like to show that there is some
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f ∗ ∈ B∗2−B∗1 such that B∗1−e∗∪f ∗ is again a (dual) basis. That is, we want
to establish Basis Property 1 for the dual structure.

Let Bj = E∗ −B∗j . By definition, B1 and B2 are bases of E. Let f = e∗.
Note that f ∈ B2 − B1. By the Basis Property 2 for the original structure,
there is some e ∈ B1−B2 such B1−e∪f is a basis for the original structure.
Let f ∗ = e. So, we have f ∗ = e and e∗ = f . But then

E − (B1 − e ∪ f) = B∗1 − e∗ ∪ f ∗

is a basis in the dual structure. By construction f ∗ = e ⊂ B∗2 − B∗1 . This
establishes Basis Property 1 for the dual structure. ♠

This abstract notion of the dual fits in perfectly with the notion of duality
for planar graphs. Let G be a planar graph and let G∗ be the dual planar
graph. We get G∗ by placing one vertex in each face of G and then joining
the vertices of G∗ by edges in such a way that each edge of G∗ crosses some
edge of G once, and each edge of G is crossed once.

Let E denote the set of edges of G and let E∗ denote the set of edges
of G∗. Note that there is a canonical bijection between E and E∗, defined
according to the crossings. So, in a sense, we can consider E and E∗ to be
the same set. (We could take this common set to be the set of intersection
points.)

Lemma 4.2 Suppose T is some subset of E and T ∗ is the complementary
set of E∗. Then T is a spanning tree for G if and only if T ∗ is a spanning
tree for G∗.

Proof: If T ∗ does not span G∗ then some cycle in G separates some faces
of G from other faces, and this gives rise to a cycle in T . So, T ∗ spans G∗

if and only if T has no cycles. But, since G∗∗ = G, we see that T spans G
if and only if T ∗ has no cycles. Combining these statements, we see that T
spans G and has no cycles if and only if T ∗ spans T ∗ and has no cycles. But
this is equivalent to the statement of the lemma. ♠

Let us think about what the previous lemma says: If we start with the
cycle matroid of G and takes its dual, it is the same as taking the cycle
matroid of the dual of G. So, one could say that the notion of a dual matroid
extends the notion of duality from planar graphs to a general matroid.
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Note that the cycle matroid makes sense for any graph, not just a planar
graph. So, even though a general graph may not have a well defined dual, we
can start with a graph, take the cycle matroid, and then consider the dual
cycle matroid. One could view this as a kind of duality for general graphs.

4.1 The Rank Function

Let E be a set with a hereditary structure. Assuming that the independent
sets of E are finite, we can define the rank function. Given any subset X, we
define r(X) to be the maximum size of an independent subsets of X. When
E is a matroid, all the independent sets of X has the same size. However,
the definition makes sense even when E is not a matroid. Note that the rank
function coincides with the ordinary notion of rank from the vector space
and matrix examples.

In a way that is similar to what we did for the basis properties, we men-
tion several properties of the rank function and then show that these are
equivalent to the uniformity property for matroids.

1. Given any sets X, Y ⊂ E we have r(X ∩Y )+ r(X ∪Y ) ≤ r(X)+ r(Y ).

2. If A,B ⊂ E and r(A) = r(A∪ b) for any b ∈ B, then r(A) = r(A∪B).

Lemma 4.3 If E is a matroid, then the rank function has Property 1.

Proof: Let I1 be a maximal independent subset of X ∩ Y . Since I1 is also
an independent subset of X ∪ Y , and since all maximal independent subsets
of X ∪ Y have the same size, there is some maximal independent subset I2
of X ∪ Y which contains I1. By definition

r(X ∩ Y ) + r(X ∪ Y ) = |I1|+ |I2|.

Note that I2∩X is independent in X and I2∩Y is independent in Y . Hence

r(X) + r(Y ) ≥ |I2 ∩X|+ |I2 ∩ Y | = |I2|+ |I1|.

The second equality comes from the fact that when we compute the sum
|I2 ∩X|+ |I2 ∩ Y | we are double counting the elements of I1. ♠
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Lemma 4.4 If E has a hereditary structure with Property 1 then E has
property 2.

Proof: For convenience we will give the proof when B is a finite set. The
same argument works when B is countably infinite. If you are really inter-
ested in the case when B is uncountable, you can use the Axiom of Choice
and transfinite induction. But let’s not go there.

When B is a single element there is nothing to prove. Suppose we know
the result for all cases when B has k elements and we want to prove the
result when B has k + 1 elements. Write B = B′ ∪ b where b is the (k + 1)st
element. Define

X = A ∪ b, Y = A ∪B′.
By induction r(X) = r(Y ) = r(A). Also, r(X ∪ Y ) = r(A). Since A ∪ B =
X ∪Y , Property 1 and the information above gives us r(A∪B) ≤ r(A). But
certainly r(A ∪B) ≥ r(A). Hence r(A ∪B) = r(A). ♠

As an immediate corollary, we see that the rank function of a matroid
satisfies both properties.

Lemma 4.5 If E has a hereditary structure with Property 2 then E is a
matroid.

Proof: Let X ⊂ E. Suppose that I1 and I2 are both maximal subsets of
E. We want to see that these sets have the same size. Since I1 is maxi-
mal independent set, we see that I1 ∪ x is dependent for any x ∈ X − I1.
But this means that r(I1 ∪ x) ≤ r(I1). Since r(I1 ∪ x) ≥ r(I1) as well, we
must have r(I1 ∪ x) = r(I1). Property 2 now shows that r(X) = r(I1). But
r(I1) = |I1|. Hence |I1| = r(X). But the same argument applies to I2 and
gives |I2| = r(X). Hence |I1| = |I2|. ♠

Now we know that the rank function of a matroid satisfies both properties
above, and that either property suffices to define a matroid.

4.2 Circuits

A circuit in a matroid is a minimal dependent set. In other words, a circuit is
a dependent set but any subset of a circuit is an independent set. Referring
to the cycle matroid, the circuits are exactly the cycles in the graph.
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Let us establish two more properties of matroids:

1. If C1 and C2 are two distinct circuits and x ∈ C1∩C2, then C1∪C2−x
contains another circuit.

2. If I is independent and e 6∈ I, then I ∪ e has at most one circuit.

Lemma 4.6 If E is a matroid, then E has the circuit property 1.

Proof: We suppose this is false and derive a contradiction. We use Property
1 of the rank function. By definition C1 − x and C2 − x are independent.
Hence r(Cj − x) = |Cj| − 1, for j = 1, 2. Hence

r(C1) + r(C2) = |C1|+ |C2| − 2.

Since C1 and C2 are distinct, C1 ∩ C2 is independent. Hence

r(C1 ∩ C2) = |C1 ∩ C2|.

If C1 ∪ C2 − x is independent then

r(C1 ∪ C2) = |C1 ∪ C2| − 1.

Note also that
|C1|+ |C1| = |C1 ∩ C2|+ |C1 ∪ C2|.

Putting everything together, we see that

r(C1 ∩ C1) + r(C1 ∪ C2) = |C1 ∩ C2|+ |C1 ∪ C2| − 1 =

|C1|+ |C2| − 1 > r(C1)− r(C2).

This contradicts the rank Property 1. ♠

Lemma 4.7 If E is has a hereditary structure with circuit property 1 then
E has circuit property 2.

Proof: Suppose this is false. Let C1 and C2 be two distinct circuits of I ∪ e.
Since I is independent, we must have e ∈ C1 ∩C2. But then C1 ∪C2− e has
a circuit, by property 1. However, C1 ∪ C2 − e ⊂ I, which is independent.
This is a contradiction. ♠
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Lemma 4.8 If E has a heriditary structure with circuit property 2 then E
is a matroid.

Proof: Let B1 and B2 be bases for E. We will establish basis property 2.
Let f ∈ B2 − B1. Note that f is not itself a circuit because f is a subset of
a basis. Since B1 ∪ f is dependent, B1 ∪ f has a circuit C1. Note that C1

must have some element e of B1 besides f because f is not itself a circuit.
If B1 − e ∪ f has some circuit C2, then C2 6= C1 because C1 contains e
and C2 does not. This would mean that B1 ∪ f contains 2 distinct circuits,
contradicting circuit property 2. Hence B1 − e ∪ f is independent.

Suppose that B1 − e ∪ f is not a basis. Then there is some new element
g such that B1− e∪ f ∪ g is independent. But B1 ∪ f contains the cycle C1,
which has f but not g, and B1 ∪ g contains a cycle which contains g but not
f . Hence C1 6= C2. Both these cycles belong to

(B1 − e ∪ f ∪ g) ∪ e,

and this contradicts the cycle property 2. Hence B − 1− e ∪ f is a basis. ♠

Now we see that a matroid has both cycle properties and either cycle
property suffices to define a matroid.

5 Summary

We have proved the following. A set E with a hereditary structure is a
matroid if any of the following properties holds:

1. For any X ⊂ E, the maximal independent subsets of X all have the
same size.

2. If B1 and B2 are bases and e ∈ B1−B2 then there is some f ∈ B2−B1

such that (B1 − e) ∪ f is a basis.

3. If B1 and B2 are bases and f ∈ B2−B1 then there is some e ∈ B1−B2

such that (B1 − e) ∪ f is a basis.

4. If I1 and I2 are independent sets and |I1| < |I2| then there is some
f ∈ I2 such that I1 ∪ f is independent.
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5. Given any sets X, Y ⊂ E we have r(X ∩Y )+ r(X ∪Y ) ≤ r(X)+ r(Y ).

6. If A,B ⊂ E and r(A) = r(A∪ b) for any b ∈ B, then r(A) = r(A∪B).

7. If C1 and C2 are two distinct circuits and x ∈ C1∩C2, then C1∪C2−x
contains another circuit.

8. If I is independent and e 6∈ I, then I ∪ e has at most one circuit.

The reason for having all these equivalent definitions is that in differ-
ent examples various of the definitions are closer to what we already know
about. For instance, bases and rank are very familiar from the linear algebra
examples and the circuit examples are very familiar from the graph examples.

In the book, West lists some additional definitions that are equivalent to
the ones above. But the list above seems pretty good.
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