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The purpose of these notes is to give several applications of the Max
Flow Min Cut Theorem. Nothing in these notes is original to me. All the
applications are classic ones, and actually I found the proofs just by looking
around online.

0.1 The Main Theorem

We first recall the statement of this theorem. We have a directed graph
G = (E, V ) with a source vertex s and a sink vertex t. The edges are labeled
with non-negative capacities. Here are the two main definitions:

• A feasible flow on G is an assignment of non-negative numbers to each
edge such that each edge is assigned a number no larger than its ca-
pacity. Additionally, the amount of flow into each vertex v equals the
amount of flow out of v provided that v 6= s, t. The value of the flow
is the amount flowing out of s.

• A cut of G is a partition of the vertices of G into two disjoint sets S
and T such that s ∈ S and t ∈ T . The capacity of the cut is the sum
of all the capacities of edges pointing from S to T .

Here is the theorem.

Theorem 0.1 (Max Flow Min Cut) The maximum value of a feasible
flow on G equals the minimum capacity cut of G. Moreover, if the capacities
of G are integers, then there is a maximal flow with integer values.

Proof: (sketch) Start with a maximal feasible flow. (These exist even in the
irrational case, by “compactness”.) Starting with s let S be the set of all

1



vertices of G reachable by augmenting flow paths. Let T be the remaining
vertices. If t ∈ S then we can augment the flow and increase its value. Any
edge pointing from S to T must be used to capacity because otherwise we’d
be able to reach a vertex of T by an augmenting flowline. Likewise and edge
pointing from T to S is not used at all because otherwise we could again
reach the vertex in T by an augmenting path. Hence the capacity of the
S − T cut equals the value of the flow.

In the integer case, we produce the maximal flow by starting with the
0-flow and making a series of integral modifications coming from integral
augmenting paths. Hence, the final flow, which is maximal, has integer val-
ues. ♠

0.2 Sums of Unit Flows

Consider an integer feasible flow on a directed graph, as above. Say that a
unit flow is a flow which has flow 1 on some edges and 0 on other edges, and
such that the union of edges having flow 1 is either a cycle or a path. In the
path case, we insist that the path have p and q as endpoints.

Theorem 0.2 Every integer feasible flow can be written as a sum of unit
flows.

Proof: The proof goes by induction on the sum of all the numbers that
the flow assigns to the edges. For simplicity we assume that s and t are not
adjacent. If they are, we can just add extra vertices on the edges joining s
and t. Call two edges e1 and e2 compatible if these edges share a vertex and
one of the edges points into the vertex and the other one points out.

Suppose first that the flow has positive value. Start with an edge e1
incident to s that has positive flow. Then there is some edge e2 compatible
with e1 and having positive flow. We continue like this, producing edges
e1, e2, ... We keep going until either we reach t or we reach some previously
encountered vertex. In the first case, we can subtract off a unit flow path
from our flow. In the second case we can subtract off a unit flow loop.

Suppose now that the flow has value 0. Then we do the same thing,
except that we start at edges not incident to s or t. The process described
above produces a unit flow loop, which we subtract off.
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In either case, we can subtract off a unit flow path or a unit flow loop.
Subtracting this off leaves a feasible integer flow having smaller total. ♠

0.3 Hall’s Matching Theorem

We use Max Flow Min Cut to prove the Hall Matching Theorem. Suppose
that H = (A,B) is a bipartite graph satisfying Hall’s criterion. This is to
say that the set of neighbors in B of any subset S ⊂ A is at least as large as S.

Constructing the New Graph: Let G be the following directed graph.
We make all the edges of H point from A to B. We add a vertex s and join
it to every vertex in A. We make these new edges point into A. We add a
vertex t and join it to every vertex B. We make these new edges point to t.
To get a flow problem, we assign capacity 1 to all the edges involving s and
t. We assign capacity ∞ (or, if you prefer, some finite number larger than
the total number of edges of G.)

Properties of the Min Cut: The only edges in a minimal cut can be
those involving s or t. Otherwise the capacity of the cut is enormous. Sup-
pose that A has n vertices. Notice that the cut with S = {s} has n edges.
So, the min cut has capacity at most n. On the other hand, consider an
arbitrary cut of capacity at most n. Let A′ denote the set of vertices of A
involved in the cut and let B′ denote the set of vertices of B involved in the
cut. There are no edges from A−A′ to B−B′ because we have a cut. So, all
the neighbors of A−A′ lie in B′. Hence |B′| ≥ |A−A′|, by Hall’s Criterion.
But then the number of edges in the cut is

|A′|+ |B′| ≥ |A′|+ |A− A′| = |A| = n.

This proves that the min cut has capacity n.

Properties of the Max Flow: By Max Flow Min Cut, there is an in-
teger maximal flow from s to t having value n. Since there are n edges
leaving s, this flow must use each edge leaving s with to the max. In other
words, one unit of flow comes out of each edge from s into A. Hence 1 unit
of flow comes into each vertex of A. Since the flow is integral, exactly one
edge leaving a vertex of A has positive flow, and this flow must be 1. The
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point is that there is one unit of ingoing flow and hence one unit of outgoing
flow. Let M be the set of edges of H which have flow. Two such edges have
different endpoints in A for the reason just mentioned. For the same reason,
they have different endpoints in B. Hence M is a matching between A and
some subset of B. This completes the proof.

0.4 Menger’s Theorem: Edge Version

Let H be connected (undirected) graph. let s, t ∈ H be two vertices that are
not adjacent. An s − t-path is an embedded path joining s to t. Two such
paths are edge disjoint if they have no edges in connon. An edge cut is a
collection of C of edges in H such that every st-path uses at least one edge
in the set. Notice that the minumum size of an edge cut must be at least
as large as the maximum number of pairwise edge disjoint st-paths. This
situation is a lot like Max Flow Min Cut, except that H is not directed.

Theorem 0.3 (Menger) The maximum number of pairwise edge disjoint
st-edges equals the minumum size of an edge cut.

To prove this result, we introduce a modified (multi-)graph G that is di-
rected. We give G the same vertices as H, but we replace each edge ab of
G by the two directed edges a → b and b → a. We then give all edges of G
capacity 1.

Properties of the Min Cut: Consider a minimum capacity cut of G.
This is a partition of the vertices of G into two sets S and T such that s ∈ S
and t ∈ T . Since all edges of G have capacity 1, the capacity of this cut is
just the number of edges pointing from S to T . Such a cut corresponds to
an st-cut in the sense of Menger. Hence, the min cut of G has at least as
many edges as the min cut of H. Let us remember this as:

N = |min cut(G)| ≥ |min edge cut(H)|. (1)

Properties of a Max Flow: By Max Flow Min Cut there is a maximum
integer flow having value N . Each edge of G gets value 0 or 1. We can write
our flow as the sum of unit flow paths and unit flow cycles. Since the value
of the flow is N , and all edges have capacity 0 or 1, there must be N unit
flow paths joining s to t. The conservation property implies that two of these
paths cannot merge together and have a common edge. This would give us
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an incoming flow of 2 and an outgoing flow of 2 on a single edge. This is
above capacity, so it cannot happen. Hence our unit flow paths give us N
pairwise edge-disjoint st-paths. Let us record this as

number of edge disjoint st− paths ≥ N. (2)

But we have produced at least as many edge disjoint st-paths in H as the
minimum cut of H. This shows that the maximum number of pairwise edge-
disjoint st-paths is at least as large as the minimum edge-cut of H. Since we
automatically get the other inequality, we in fact must have equality. This
completes the proof of Menger’s Theorem.

0.5 Menger’s Theorem: Vertex Version

Let H be a (undirected) graph and let s, t be non-adjacent vertices in H.
We say that two st-paths in H are vertex disjoint if they have no vertices in
common except s and t. (Sometimes this is called being internally disjoint).

Say that a vertex cut of H is a collection of vertices such that every
st-path in H contains one of these vertices. Here is the vertex version of
Menger’s Theorem.

Theorem 0.4 (Menger) The maximum number of pairwise vertex disjoint
st-edges equals the minumum size of a vertex cut.

To prove this result, we again convert H into a directed graph G. This
time the conversion is really cool. We first make a white vertex for s and
a black vertex for t. We then make a black-white pair of vertices for each
other vertex of H. We join black to white vertices in G if and only if the
corresponding vertices are joined in H. We use blue edges for this. We also
join each black-white pair by a red edge. This gives us a bipartite graph. For
the sake of notation, we denote a black vertex with a (−) and a white vertex
with a (+). We direct the blue edges from white to black, and the red edges
from black to white. We give capacity 1 to all edges of G. Figure 1 gives an
example.
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Figure 1: Graph Replacement

Properties of a Min Cut: Let N be the capacity of a minimal (S, T )-cut
of G. By definition, N is the number of blue edges pointing from S to T
plus the number of red edges pointing from S to T . We are now going to
show how to produce another minimum cut which only uses red edges. The
strategy is to show that we can increase the number of red edges in case some
blue edge exists.

There are 3 kinds of blue edges we need to consider. Suppose that S
contains a blue edge pointing from a white vertex a+ ∈ S − {s} to some
b− ∈ T . Let S ′ = S − a+ and T ′ = T ∪ a+. We are just letting S ”donate”
a+ to T . Since a+ 6= s, the pair (S ′, T ′) is still a valid cut. Notice that the
blue edge a+ → b− is no longer counted when we compute the size of the
(S ′, T ′) cut. We may lose some other blue edges as well. Since there is only
one edge pointing to a+, the only edge we gain, potentially, is the red edge
a− → a+. If (S, T ) is really a minimum cut, then so is (S ′, T ′), and this cut
has one more red edge.

Suppose that S contains a blue edge connecting s to some a− ∈ T . Then
a− 6= t because s and t are not adjacent. This time we let S ′ = S ∪ a− and
T ′ = T − a−. In the (S ′, T ′) cut, we lose the blue edge connecting s to a−,
and the only edge we gain, potentially, is the red edge pointing from a− to
a+. So, (S ′, T ′) is a min cut with one more red edge than (S, T ).

Finally, suppose that S contais a blue edge connecting a+ ∈ S to t. Then
a+ 6= s. We let S ′ = S − {a+} and T ′ = T ∪ {a+}. The argument now
proceeds in the previous case.

Thus we can assume, without loss of generality, that the only (S, T ) edges
are red. These red edges canonically define a set of vertices in the original
graph H. These vertices in H must be a vertex-cut. Otherwise, we could
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take an st-path in their complement and look at the corresponding directed
path in G. This directed path would go from s+ to t− avoiding the red edge
associated to the (S, T ) cut. But then it would be contained entirely in S,
which is a contradiction.

We have proved the following:

N = min G cut ≥ min vertex H cut (3)

Properties of a Max Flow: By Max Flow Min Cut there is a maximal
integer flow of value N associated to G. As in the edge case, we can write
this flow as the sum of unit flow paths and unit flow cycles. There are at
least N unit flow paths because the flow has capacity N . But each such
path alternates red and blue as it makes its way from s+ to t−. Thus path
thereby defines an edge path in H which uses the corresponding vertices. The
capacity 1 condition precludes the possibility that two such flow paths in G
use the same red edge. Hence the corresponding st-paths in H are vertex
disjoint. The rest of the proof is just like in the edge case.
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