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0.1 The Ramsey Theorem

Let KN denote the complete graph on N vertices. Suppose that the edges of
KN have been colored red and blue. We say that a red Km is a collection of m
vertices such that every edge between these vertices is colored red. Likewise
define a blue Kn. Here is the Ramsey Theorem.

Theorem 0.1 Let m,n ≥ 2 be integers. There exists some integer R(m,n)
such that if N ≥ R(m,n) and RN has any red-blue edge coloring, then there
exists a red Km or a blue Kn.

Proof: The proof goes by induction on m+ n. The base case is m = n = 2.
In this case we have R(2, 2) = 2 because this single edge must be colored
either red or blue. Suppose by induction that the result is true for R(m−1, n)
and R(m,n − 1). Define M = max R(m − 1, n), R(m,n − 1). Consider any
red-blue edge coloring of K2M . Call this graph G.

We pick some vertex v of K2M , This vertex has degree 2M − 1. Hence,
there must be at least M edges incident to v which have the same color. Let
us say that this color is red. (The blue case has the same treatment, except
that we work with the pair (m,n− 1) rather than the pair (m− 1, n).)

We let G′ be the subgraph induced by all the vertices of G connected to
v by red edges. The graph G′ has a red-blue edge-coloring, and G′ has at
least M ≥ K(m− 1, n) vertices. Therefore, by induction, G′ either has a red
Km−1 or a blue Kn. If G′ has a blue Kn we are done. If G′ has a red Km−1,
then G′ ∪ v is colored in such a way as to have a red Km because every edge
connecting v to a vertex of G′ is red.

This completes the induction step. ♠
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0.2 The Ramsey Hypergraph Theorem

A k-hypergraph is a collection V of vertices together with a subset of k-
element subsets of V . A 2-hypergraph is just a graph. One can think of a
3-hypergraph as a collection of triangles whose vertices are in K. The k-
hypergraphs for larger values of k have similar geometric interpretations in
terms of higher dimensional tetrahedra – i.e., simplices.

The complete k-hypergraph Kk
N is the k-hypergraph whose vertex set is

VN = {1, ..., N} and whose “edges” are the set of all possible k-element
subsets of V . A red-blue coloring Kk

N is an assignment of one of the two
colors, red or blue, to each of the k-element subsets of VN . Just as for
graphs, a red Kk

n is a subset V ′n of n vertices of VN such that every k-element
subset of V ′n is colored red. We define a blue Kk

n in the same way.
Here is the general Ramsey Hypergraph Theorem.

Theorem 0.2 Given m,n, k there is some number R(m,n; k) with the fol-
lowing property. If N ≥ R(m,n; k), then every red-blue coloring of Kk

N either
has a red Kk

m or a blue Kk
n.

Proof: The proof is a double induction argument. We have already proved
the result for k = 2. Suppose then that we have the smallest value of k
for which we do not know the result. We need at least k vertices to have a
nontrivial k-hypergraph. We can see that R(k, n; k) = n for n ≥ k because
every edge coloring of Kk

n is either entirely blue or has at least one red “edge”.
With k fixed, proof now goes by induction on m + n. Choose

N = 1 + R(M,M, k − 1), M = maxR(m− 1, n, k), R(m,n− 1, k).

Consider Gk
N . Choose some vertex v of Gk

N . We can form the auxiliary
complete (k − 1) hypergraph on the vertices of Gk

N − v. An edge of this
auxiliary hypergraph is some collection {w1, ..., wk−1} of vertices of Gk

N which
do not contain v. We color this collection red or blue according as the
collection {w1, ..., wk−1, v} is colored red or blue.

By induction, there is either a red Kk−1
M or a blue Kk−1

M in this auxiliary
graph. Assume w.l.o.g. the red option occurs. We can throw out some ver-
tices of our original k-hypergraph and get a new one, Gk

M , which is colored
so that that every k-element subset containing v is red. By induction this
thing either contains a red Gk

m−1 or a blue Gk
n. In the latter case, we are

done. in the former case, we get our red Gk
m in the graph Gk

m−1 ∪ v. ♠
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0.3 Application to Convex Geometry

A subset S of the plane is convex if it has the following property: if any
two points lie in S then so does the line segment connecting them. The
intersection of any number of convex sets is either empty or convex. Given
any bounded subset S in the plane, let H(S) denote the intersection of all c
convex sets which contain S. This intersection is called the convex hull of S.
It is the smallest convex set containing S.

Say that a finite set S of points in the plane is point convex if every point
in S lies on the boundary of H(S). For instance, the set of vertices of a
square is point convex. In general, a set of points is point convex if and only
if it is the set of vertices of a convex polygon. Say that a collection of points
in the plane is int general position if no three of them lie on the same line.
Here is an application of Ramsey’s 4-hypergraph theorem.

Theorem 0.3 Given any positive integer n there is some N such that any
collection of N general position points contains a point convex subset with n
elements.

Proof: We first note that any 5-element subset of points contains a 4-element
subset which is vertex convex. (Draw a few pictures and you will become
convinced.) We choose n ≥ 5 and N = R(n, n, 4). We color each 4-element
subset of our points blue if it is vertex convex and red if not. By the Ramsey
theorem, we have either a red K4

n or a blue K4
n. But we have just gotten

through saying that we cannot have a red K4
n. Hence we have a blue K4

n.
That is, we have n points such that every 4-element subset is vertex convex.

We claim that such a set S is vertex convex. If not, then there is vertex
v ∈ S which lies in the interior of the convex hull H(S). But then there are
3 other vertices w1, w2, w3 ∈ S such that v lies in the triangle ∆(w1, w2, w3).
But then v, w1, w2, w3 is not a vertex-convex 4-element subset. This is a con-
tradiction. Hence S is vertex convex. ♠

There is a second proof in which we can deduce the same result from
the Ramsey 3-hypergraph theorem. Label the points with numbers 1, ..., N .
Color each 3 element subset (i, j, k) red if three points vi, vj, vk are clockwise
oriented. Otherwise color them blue. Here we take N = R(n, n, 3). By the
Ramsey Hypergraph Theorem, there is either a red K3

n or a blue K3
n. w.l.o.g.

assume that there is a red K3
n. Then we have n labeled points such that

every triple is labeled clockwise. Call this set S.
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We claim that this forces S to be vertex convex and labeled so that they
go in order around the convex hull. The proof goes by induction on n. It is
certianly true for n = 3, and an easy case by case analysis shows that it is
also true for n = 4. But then every 4-element subset of S is vertex convex.
Hence, as in the proof above, S itself is vertex convex.

The same theorem generalizes to higher dimensions, though the proof is
harder. I think that actually the second proof, using orientation, is easier.

0.4 The Erdos Szekeres Theorem

Let us give another application of Ramsey theory.

Lemma 0.4 Given any n there is some N such that any length N sequence
of distinct integers has a monotone (either increasing or decreasing) length
n subsequence.

Proof: Call the sequence d1, ..., dN . Color each pair (i, j) red or blue ac-
cording as (i− j)(di − dj) is positive or negative. By the Ramsey Theorem,
there is either a red Kn or a blue Kn. The former corresponds to a decreasing
length n subsequence and the latter corresponds to an increasing length n
subsequence. ♠

This is a nice application but the Erdos-Szekeres Theorem says that one
can take N = (n − 1)2 + 1 in the above result. This is much better than
what you would get from using the Ramsey numbers. Here is one proof. (I
learned this proof on wikipedia.) We’ll suppose this result false and derive
a contradiction. For each i let ai denote the length of the longest monotone
increasing subsequence that ends with the number di. Likewise define bi for
decreasing. Call (ai, bi) a tag . If i < j then (ai, bi) 6= (aj, bj) because of the
following:

• if dj > di then aj ≥ ai + 1. The point here is that the maximal
increasing subsequence ending at di can be extended to dj.

• if dj < di then bj ≥ bi + 1. Similar reason.

In short, all the tags are distinct. If ai ∈ {1, ..., n− 1} and bi ∈ {1, ..., n− 1}
for all i then there are only (n−1)2 possible tags. But there is one additional
tag and so the assumption we just made is impossible.
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