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The purpose of these notes is to give more details about the result I
mentioned in class about quotients being Hausdorff. These notes are more
loquacious than the previous version.

1 Local Compactness

Recall that a topological space X is Hausdorff if for all distinct p, q ∈ X
there are open sets Up and Uq such that p ∈ Up and q ∈ Uq and Up ∩Uq = ∅.
The way this is commonly said is that we can separate points by open sets
in a Hausdorff space.

Assume that X is Hausdorff. The space X is locally compact if for each
p ∈ X there are sets Up and Kp such that p ∈ Up ⊂ Kp, and Up is open and
Kp is compact. Any compact Hausdorff space is, of course, locally compact.
But, there are lots of non-compact examples as well. For instance, Euclidean
space Rn is locally compact. More generally, any closed subset of Rn is
locally compact.

Here is an example of a space that is not locally compact. First consider
Z (the integers) with the discrete topology. Then let X be the cone on Z.
You can picture X as a “prong”, with an infinite number of edges sticking
out of a common point. There are plenty of compact sets containing the
prong point, but you can’t arrange for one of them to also contain an open
set. That is, X is not locally compact. Note that any other point of X does
satisfy the criterion, because any other point of X has a neighborhood which
is homeomorphic to R.

As another example, equip Q (the rationals) with the subspace topology.
Q is not locally compact.
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2 Proper Discontinuity

Suppose that X is a compact Hausdorff space. Let G be group action on X.
Technically this means that there is a continuous map F : G×X → X such
that

F (g, F (h, x)) = F (gh, x).

This way of writing things is annoying. The more usual way is to introduce
the notation

g(x) = F (g, z).

In this way, we think of g acting on X as a homeomorphism for each g ∈ X.
The compatibility condition is then

g(h(x)) = (gh)(x).

The group action is properly discontinuous if, for each compact K ⊂ X,
the set

{g ∈ G| g(K) ∩K 6= ∅}

is finite.
Here are some examples:

• The usual action of Z on R is properly continuous. Here n(x) = x+n.

• More generally, the usual action of Zn on Rn is properly discontinuous.

• Let

T =
[

2 0
0 1/2

]

Let G = Z and let X = R2 − {(0, 0)}. The action is given by

n(v) = T n(v).

This action is not properly discontinuous: If K is the unit circle cen-
tered at the origin, then T n(K) intersects K for all n.

• The action of SL2(Z) on the upper half plane discussed in class is prop-
erly discontinuous. Here SL2(Z), the group of integer 2 × 2 matrices
of determinant 1, acts by linear fractional transformations.
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3 The Main Result

Here is the main result.

Theorem 3.1 Suppose that X is Hausdorff and locally compact, and G acts

properly discontinuously on X. Then X/G is Hausdorff.

4 Characterizing Open Sets

The rest of the notes are devoted to the proof.
Let π : X → X/G denote the quotient map. Say that a G-invariant

open set is an open set U such that g(U) = U for all g ∈ G. If V ⊂ X/G
is an open set, then π−1(V ) is G-invariant. Conversely, if U ⊂ X is open
and G-invariant, then π(U) is open. The point of this last claim is that
U = π−1(π(U)) when U is G-invariant. So, in short, G-invariant open sets
in X correspond to open sets in X/G.

To prove that X/G is Hausdorff, we have to be able to separate any two
distinct points [x], [y] ∈ X/G by open sets. Let x, y ∈ X be any points in
the equivalence classes of [x] and [y] respectively. Separating [x] and [y] by
open sets in X/G is the same as separating x and y by G-invariant open sets
in X. The next result shows that we can get away with a little less.

Lemma 4.1 Suppose we can find an open set V and a G-invariant open set

W such that V ∩ W = ∅, and x ∈ V and y ∈ W . Then [x] and [y] are
separated by open sets in X/G.

Proof: Since V is disjoint from W and each g ∈ G gives a homeomorphism
of X preserving W , we see that g(V ) is disjoint from g(W ) = W . But then
V ′ = G(V ) is disjoint from W . But then V ′ and W are disjoint G-invariant
open sets containing x and y respectively. ♠

The lemma tells us that it suffices to put any open set around x and
then find a disjoint G-invariant open set around y. The local compactness
lets us find “small” open sets around x and y. The proper discontinuity lets
us arrange that the small open set around x is disjoint from all but finitely
many images in the G-orbit of the small open set around Y . Then, using the
Hausdorff property of X, we can shrink our small open sets so as to fix up
the finitely many overlaps left over from the initial construction. The next
section carries out the details.
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5 The Details

Since X is locally compact, there are sets Ux, Kx and Uy, Ky where

• x ∈ Ux ⊂ Kx

• y ∈ Uy ⊂ Ky

• Ux, Uy are open

• Kx, Ky are compact.

From the proper discontinuity property there are only finitely many g ∈ G
such that

Kx ∩ g(Ky) 6= ∅.

(You get this by applying the basic definition to K = Kx ∪Ky.) Call these
exceptional elements g1, ..., gn.

As this point we just have finitely many overlaps to worry about. Now
we explain the final shrinking argument.

Lemma 5.1 For each j = 1, ..., n we can find open sets Vj and Wj such that

x ∈ Vj ⊂ Ux and y ∈ Wj ⊂ Uy and Vj ∩ gj(Wj) = ∅.

Proof: Fix j. Since X is Hausdorff, we can find open sets V ′

j and W ′

j so
that x ∈ V ′

j and gj(y) ∈ W ′

j and V ′

j ∩W ′

j = ∅. We set Vj = V ′

j ∩ Ux and

Wj = g−1

j (W ′

j) ∩ Uy.

These sets do the trick. ♠

Finally, define

V =
n
⋂

j=1

Vj, W =
n
⋂

j=1

Wj.

Note that x ∈ V and y ∈ W . By construction Vj is disjoint from gj(W ) for
j = 1, ..., n. Moreover, for any other g ∈ G we have

V ∩ g(W ) ⊂ Kx ∩ g(Ky) = ∅.

Therefore V is disjoint from the G-invariant set G(W ). This completes the
proof of the theorem.

4


