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1 Modules

Basic Definition: Let R be a commutative ring with 1. A (unital) R-module
is an abelian group M together with a operation R x M — M, usually just
written as rv when r € R and v € M. This operation is called scaling. The
scaling operation satisfies the following conditions.

1. lv=vforalve M.

2. (rs)v=r(sv) for all ;s € R and all v € M.

3. (r+s)jv=rv+svforallr,s€ R andall v e M.
4. r(v+w) =rv+rwfor all r € R and v,w € M.

Technically, an R-module just satisfies properties 2, 3,4. However, without
the first property, the module is pretty pathological. So, we’ll always work
with unital modules and just call them modules. When R is understood,
we’'ll just say module when we mean unital R-module.

Submodules and Quotient Modules: A submodule N C M is an abelian
group which is closed under the scaling operation. So, rv € N provided
that v € N. A submodule of a module is very much like an ideal of a ring.
One defines M /N to be the set of (additive) cosets of N in M, and one has
the scaling operation r(v + N) = (rv) + N. This makes M /N into another
R-module.

Examples: Here are some examples of R-modules.
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When R is a field, an R-module is just a vector space over R.

The direct product M; x Ms is a module. The addition operation is
done coordinate-wise, and the scaling operation is given by

r(v1,vg) = (rvy, rv9).

More generally, M; x ... x M, is another R-module when M, ..., M,
are.

If M is a module, so is the set of finite formal linear combinations L(M)
of elements of M. A typical element of L(M) is

ri(v1) + .. + 11 (vy), TiyesTn € R, vy, ...,0, € M.

This definition is subtle. The operations in M allow you to simplify
these expressions, but in L(M) you are not allowed to simplify. Thus,
for instance, r(v) and 1(rv) are considered distinct elements if r # 1.

If S C M is some subset, then R(S) is the set of all finite linear
combinations of elements of S, where simplification is allowed. With
this definition, R(S) is a submodule of M. In fact, R(S) is the smallest
submodule that contains S. Any other submodule containing S also
contains R(S). As with vector spaces, R(S) is called the span of S.

The Tensor Product

The tensor product of two R-modules is built out of the examples given
above. Let M and N be two R-modules. Here is the formula for M ® N:

MeN=Y/Y(S), Y =L(MxN), (1)

and S is the set of all formal sums of the following type:

1.

Do

3.
4.

rv,w) — r(v,w).

v + ve,w) — (v, w) — (vg, w).

(
- (w,rv) — (v, w).
(
(

v, wy + wy) — (v,wy) — (v, we).



Our convention is that (v, w) stands for 1(v,w), which really is an element
of L(M x N). Being the quotient of an R-module by a submodule, M ® N
is another R-module. It is called the tensor product of M and N.

There is amap B: M x N — M ® N given by the formula

B(m,n) = [(m,n)] = (m,n) +Y(5), (2)
namely, the Y'(S)-coset of (m,n). The traditional notation is to write
m®n = B(m,n). (3)

The operation m ® n is called the tensor product of elements.
Given the nature of the set S in the definition of the tensor product, we
have the following rules:

L (rm)w=r(vew).
2. r® (rw) =r(ve@w).
3. (V14 v2) W =1 QW+ vy @ w.
4. v ® (wy + ws) = v @ wy + v wa.

These equations make sense because M ® N is another R-module. They can
be summarised by saying that the map B is bilinear. We will elaborate below.

An Example: Sometimes it is possible to figure out M ® N just from
using the rules above. Here is a classic example. Let R = Z, the inte-
gers. Any finite abelian group is a module over Z. The scaling rule is just
mg = g+ ...+ ¢ (m times). In particular, this is true for Z/n. Let’s show
that Z/2 ® Z/3 is the trivial module.

Consider the element 1 ® 1. We have

20®1)=2®1=01=0(1®1)=0.
At the same time
20®1)=1®3=1®0=01®1)=0.
But then
I(1l®l)=B3-2)(1®1)=0-0=0.
Hence 1 ® 1 is trivial. From here it is easy to see that a ® b is trivial for all
a € Z/2and b € Z/3. There really aren’t many choices. But Z/2® Z/3 is

the span of the image of M x N under the tensor map. Hence Z/2® Z /3 is
trivial.



3 The Universal Property

Linear and Bilinear Maps: Let M and N be R-modules. A map ¢ : M —
N is R-linear (or just linear for short) provided that

1. ¢(rv) =ro(v).
2. ¢(v1 + v2) = P(v1) + ¢(v2).
A map ¢: M x N — P is R-bilinear if
1. For any m € M, the map n — ¢(m,n) is a linear map from N to P.
2. For any n € N, the map m — ¢(m,n) is a linear map from M to P.

Existence of the Universal Property: The tensor product has what is
called a universal property. the name comes from the fact that the construc-
tion to follow works for all maps of the given type.

Lemma 3.1 Suppose that ¢ : M x N — P is a bilinear map. Then there is

a linear map ¢ : M @ N — P such that ¢(m,n) = ¢(m @ n). Equivalently,
¢p=¢oB, where B: M x N - M ® N is as above.

Proof: First of all, there is a linear map ¢ : Y(M x N) — P. The map is
given by

W(ri(v, wy) + oo + Tp(vp, wy)) = rb(v, wy) + oo+ TR0 (O, wy). (4)

That is, we do the obvious map, and then simplify the sum in P. Since ¢ is
bilinear, we see that ¢ (s) = 0 for all s € S. Therefore, ©) = 0 on Y (S). But
then ¢ gives rise to a map from M ® N = Y/Y(S) into P, just using the
formula

ola+Y () = v(a). ()
Since ¢ vanishes on Y(S), this definition is the same no matter what coset
representative is chosen. By construction ¢ is linear and satisfies ¢p(m®n) =

o(m,n). &

Uniqueness of the Universal Property: Not only does (B, M ® N) have
the universal property, but any other pair (B’, (M ® N)') with the same
property is essentially identical to (B, M ® N). The next result says this
precisely.



Lemma 3.2 Suppose that (B',(M ® N)') is a pair satisfying the following
arioms:

e (M ®N) is an R-module.
e B': M x N — (M®N)" is a bilinear map.
o (M ® N) is spanned by the image B'(M x N).

e For any bilinear map T : M x N — P there is a linear map L :
(M ®N) — P such that T = Lo B'.

Then there is an isomorphism [ : M @ N — (M ® N)' and B' =10 B.

Proof: Since (B, M ® N) has the universal property, and we know that
B'": M xN — (M ® N) is a bilinear map, there is a linear map I :
M ®N — (M ® N) such that

B =10B.

We just have to show that I is an isomorphism. Reversing the roles of the
two pairs, we also have a linear map J: (M ® N)) — M ® N such that

B=JoB.
Combining these equations, we see that
B=JoloB.

But then J o I is the identity on the set B(M x N). But this set spans
M ® N. Hence J o [ is the identity on M ® N. The same argument shows
that I o J is the identity on (M ® N)'. But this situation is only possible if
both I and J are isomorphisms. é#

4 Vector Spaces

The tensor product of two vectors spaces is much more concrete. We will
change notation so that F' is a field and V,W are vector spaces over F.
Just to make the exposition clean, we will assume that V and W are finite
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dimensional vector spaces. Let vy, ..., v, be a basis for V and let wy, ..., w, be
a basis for W. We define V' ® W to be the set of formal linear combinations
of the mn symbols v; ® w;. That is, a typical element of V @ W is

> cij(vi ® wy). (6)

The space V ® W is clearly a finite dimensional vector space of dimension
mn. it is important to note that we are not giving a circular definition. This
time v; ® w; is just a formal symbol.

However, now we would like to define the bilinear map

B:VxW=VgW

Here is the formula
B(Zaivi,ijwj) = Zaibj(vi ® ’U]j). (7)
i,J

This gives a complete definition because every element of V' is a unique
linear combination of the {v;} and every element of W is a unique linear
combination of the {w;}. A routine check shows that B is a bilinear map.

Finally, if T': V x W — P is some bilinear map, we define L : VoW — P
using the formula

L(;clj(vi ® wj)> = iz:cijT(vi,wj). (8)

It is an easy matter to check that L is linear and that T'= L o B.
Since our definition here of B and V ® W satisfies the universal property,
it must coincide with the more abstract definition given above.

5 Properties of the Tensor Product

Going back to the general case, here I'll work out some properties of the
tensor product. As usual, all modules are unital R-modules over the ring R.

Lemma 5.1 M ® N is isomorphic to N @ M.



Proof: This is obvious from the construction. The map (v,w) — (w,v)
extends to give an isomorphism from Yy, vy = L(M x N) to Yy = L(N x
N), and this isomorphism maps the set Sy n C Yan of bilinear relations
set Sy C Yy u and therefore gives an isomorphism between the ideals
YyunSu,n and Yy arSny - So, the obvious map induces an isomorphism on
the quotients. #

Lemma 5.2 R® M is isomorphic to M.

Proof: The module axioms give us a surjective bilinear map 7' : RxM — M
given by T'(r,m) = rm. By the universal property, there is a linear map
L: R® M — M such that T' = L o B. Since T is surjective, L is also
surjective. At the same time, we have a map L* : M — R® M given by the
formula

L*(v) = B(l,v) =1®w. (9)

The map L* is linear because B is bilinear. We compute
Lo Lir@v)=L(rv)=1@rv=rQw. (10)

So L* o L is the identity on the image B(R x M). But this image spans
R® M. Hence L*o L is the identity. But this is only possible if L is injective.
Hence L is an isomorphism. &

Lemma 5.3 M ® (N7 x N3) is isomorphic to (M & Ny) X (N ® Ns).
Proof: Let N = N;x N,. There is an obvious isomorphism ¢ from Y = Yy, x
to Y1 x Ys, where Y; = Yy n;, and ¢(S) = 51 x Sy. Here Sj = Sy, There-
fore, ¢ induces an isomorphism from Y/Y'S to (Y1/Y151) x (Y2/Y5S5:). &

Finally, we can prove something (slghtly) nontrivial.

Lemma 5.4 M ® R" is isomorphic to M™.

Proof: By repeated applications of the previous result, M ® R™ is isomor-
phic to (M ® R)", which is in turn isomorphic to M™. &

As a special case,



Corollary 5.5 R™ ® R" is isomorphic to R™".

This is a reassurance that we got things right for vector spaces.
For our next result we need a technical lemma.

Lemma 5.6 Suppose that Y is a module and Y CY and I C Y are both
submodules. Let I' = I NY'. Then there is an injective linear map from
Y'/I' into Y/I.

Proof: We have a linear map ¢ : Y’ — Y/I induced by the inclusion from Y’
into Y. Suppose that ¢(a) = 0. Then a € I. But, at the same time a € Y”.
Hence a € I'. Conversely, if a € I' then ¢(a) = 0. In short, the kernel of
¢ is I'. But then the usual isomorphism theorem shows that ¢ induces an
injective linear map from Y'/I" into Y/I. &

Now we deduce the corollary we care about.

Lemma 5.7 Suppose that M' C M and N' C N are submodules. Then
there is an injective linear map from M' @ N' into M ® N. This map is the
identity on elements of the form a ® b, where a € M’ and b € N'.

Proof: We apply the previous result to the module ¥ = Y}, x and the sub-
modules [ = Sy y and M' =Yy v W

In view of the previous result, we can think of M’ ® N’ as a submodule
of M ® N when M’ € N and N’ C N are submodules.

This last result says something about vector spaces. Let’s take an example
where the field is @ and the vector spaces are R and R/Q. These two vector
spaces are infinite dimensional. It follows from Zorn’s lemma that they both
have bases. However, You might want to see that R® R/Q is nontrivial even
without using a basis for both. If we take any finite dimensional subspaces
V CRand W C R/Q, then we know V ® W is a submodule of R® R/Q.
Hence R ® R/Q is nontrivial. In particular, we can use this to show that
the element 1 ® [a] is nontrivial when « is irrational.



