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1 Modules

Basic Definition: Let R be a commutative ring with 1. A (unital) R-module

is an abelian group M together with a operation R ×M → M , usually just
written as rv when r ∈ R and v ∈ M . This operation is called scaling . The
scaling operation satisfies the following conditions.

1. 1v = v for all v ∈M .

2. (rs)v = r(sv) for all r, s ∈ R and all v ∈M .

3. (r + s)v = rv + sv for all r, s ∈ R and all v ∈M .

4. r(v + w) = rv + rw for all r ∈ R and v, w ∈M .

Technically, an R-module just satisfies properties 2, 3, 4. However, without
the first property, the module is pretty pathological. So, we’ll always work
with unital modules and just call them modules. When R is understood,
we’ll just say module when we mean unital R-module.

Submodules and Quotient Modules: A submodule N ⊂M is an abelian
group which is closed under the scaling operation. So, rv ∈ N provided
that v ∈ N . A submodule of a module is very much like an ideal of a ring.
One defines M/N to be the set of (additive) cosets of N in M , and one has
the scaling operation r(v + N) = (rv) + N . This makes M/N into another
R-module.

Examples: Here are some examples of R-modules.
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• When R is a field, an R-module is just a vector space over R.

• The direct product M1 ×M2 is a module. The addition operation is
done coordinate-wise, and the scaling operation is given by

r(v1, v2) = (rv1, rv2).

More generally, M1 × ... ×Mn is another R-module when M1, ...,Mn

are.

• IfM is a module, so is the set of finite formal linear combinations L(M)
of elements of M . A typical element of L(M) is

r1(v1) + ...+ r1(vn), r1, ..., rn ∈ R, v1, ..., vn ∈M.

This definition is subtle. The operations in M allow you to simplify
these expressions, but in L(M) you are not allowed to simplify. Thus,
for instance, r(v) and 1(rv) are considered distinct elements if r 6= 1.

• If S ⊂ M is some subset, then R(S) is the set of all finite linear
combinations of elements of S, where simplification is allowed. With
this definition, R(S) is a submodule ofM . In fact, R(S) is the smallest
submodule that contains S. Any other submodule containing S also
contains R(S). As with vector spaces, R(S) is called the span of S.

2 The Tensor Product

The tensor product of two R-modules is built out of the examples given
above. Let M and N be two R-modules. Here is the formula for M ⊗N :

M ⊗N = Y/Y (S), Y = L(M ×N), (1)

and S is the set of all formal sums of the following type:

1. (rv, w)− r(v, w).

2. (w, rv)− r(v, w).

3. (v1 + v2, w)− (v1, w)− (v2, w).

4. (v, w1 + w2)− (v, w1)− (v, w2).
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Our convention is that (v, w) stands for 1(v, w), which really is an element
of L(M ×N). Being the quotient of an R-module by a submodule, M ⊗N
is another R-module. It is called the tensor product of M and N .

There is a map B :M ×N →M ⊗N given by the formula

B(m,n) = [(m,n)] = (m,n) + Y (S), (2)

namely, the Y (S)-coset of (m,n). The traditional notation is to write

m⊗ n = B(m,n). (3)

The operation m⊗ n is called the tensor product of elements .
Given the nature of the set S in the definition of the tensor product, we

have the following rules:

1. (rv)⊗ w = r(v ⊗ w).

2. r ⊗ (rw) = r(v ⊗ w).

3. (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w.

4. v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

These equations make sense because M ⊗N is another R-module. They can
be summarised by saying that the map B is bilinear . We will elaborate below.

An Example: Sometimes it is possible to figure out M ⊗ N just from
using the rules above. Here is a classic example. Let R = Z, the inte-
gers. Any finite abelian group is a module over Z. The scaling rule is just
mg = g + ... + g (m times). In particular, this is true for Z/n. Let’s show
that Z/2⊗Z/3 is the trivial module.

Consider the element 1⊗ 1. We have

2(1⊗ 1) = 2⊗ 1 = 0⊗ 1 = 0(1⊗ 1) = 0.

At the same time

2(1⊗ 1) = 1⊗ 3 = 1⊗ 0 = 0(1⊗ 1) = 0.

But then
1(1⊗ 1) = (3− 2)(1⊗ 1) = 0− 0 = 0.

Hence 1⊗ 1 is trivial. From here it is easy to see that a⊗ b is trivial for all
a ∈ Z/2 and b ∈ Z/3. There really aren’t many choices. But Z/2⊗Z/3 is
the span of the image of M ×N under the tensor map. Hence Z/2⊗Z/3 is
trivial.
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3 The Universal Property

Linear and Bilinear Maps: LetM and N be R-modules. A map φ :M →
N is R-linear (or just linear for short) provided that

1. φ(rv) = rφ(v).

2. φ(v1 + v2) = φ(v1) + φ(v2).

A map φ :M ×N → P is R-bilinear if

1. For any m ∈M , the map n→ φ(m,n) is a linear map from N to P .

2. For any n ∈ N , the map m→ φ(m,n) is a linear map from M to P .

Existence of the Universal Property: The tensor product has what is
called a universal property . the name comes from the fact that the construc-
tion to follow works for all maps of the given type.

Lemma 3.1 Suppose that φ :M ×N → P is a bilinear map. Then there is

a linear map φ̂ : M ⊗ N → P such that φ(m,n) = φ̂(m ⊗ n). Equivalently,

φ = φ̂ ◦B, where B :M ×N →M ⊗N is as above.

Proof: First of all, there is a linear map ψ : Y (M × N) → P . The map is
given by

ψ(r1(v1, w1) + ...+ rn(vn, wn)) = r1ψ(v1, w1) + ...+ rnψ(vn, wn). (4)

That is, we do the obvious map, and then simplify the sum in P . Since φ is
bilinear, we see that ψ(s) = 0 for all s ∈ S. Therefore, ψ = 0 on Y (S). But
then ψ gives rise to a map from M ⊗ N = Y/Y (S) into P , just using the
formula

φ̂(a+ Y (S)) = ψ(a). (5)

Since ψ vanishes on Y (S), this definition is the same no matter what coset
representative is chosen. By construction φ̂ is linear and satisfies φ̂(m⊗n) =
φ(m,n). ♠

Uniqueness of the Universal Property: Not only does (B,M ⊗N) have
the universal property, but any other pair (B′, (M ⊗ N)′) with the same
property is essentially identical to (B,M ⊗ N). The next result says this
precisely.
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Lemma 3.2 Suppose that (B′, (M ⊗ N)′) is a pair satisfying the following

axioms:

• (M ⊗N)′ is an R-module.

• B′ :M ×N → (M ⊗N)′ is a bilinear map.

• (M ⊗N)′ is spanned by the image B′(M ×N).

• For any bilinear map T : M × N → P there is a linear map L :
(M ⊗N)′ → P such that T = L ◦B′.

Then there is an isomorphism I :M ⊗N → (M ⊗N)′ and B′ = I ◦B.

Proof: Since (B,M ⊗ N) has the universal property, and we know that
B′ : M × N → (M ⊗ N)′ is a bilinear map, there is a linear map I :
M ⊗N → (M ⊗N)′ such that

B′ = I ◦B.

We just have to show that I is an isomorphism. Reversing the roles of the
two pairs, we also have a linear map J : (M ⊗N)′ →M ⊗N such that

B = J ◦B′.

Combining these equations, we see that

B = J ◦ I ◦B.

But then J ◦ I is the identity on the set B(M × N). But this set spans
M ⊗ N . Hence J ◦ I is the identity on M ⊗ N . The same argument shows
that I ◦ J is the identity on (M ⊗N)′. But this situation is only possible if
both I and J are isomorphisms. ♠

4 Vector Spaces

The tensor product of two vectors spaces is much more concrete. We will
change notation so that F is a field and V,W are vector spaces over F .
Just to make the exposition clean, we will assume that V and W are finite
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dimensional vector spaces. Let v1, ..., vm be a basis for V and let w1, ..., wn be
a basis for W . We define V ⊗W to be the set of formal linear combinations
of the mn symbols vi ⊗ wj. That is, a typical element of V ⊗W is

∑

i,j

cij(vi ⊗ wj). (6)

The space V ⊗W is clearly a finite dimensional vector space of dimension
mn. it is important to note that we are not giving a circular definition. This
time vi ⊗ wj is just a formal symbol.

However, now we would like to define the bilinear map

B : V ×W → V ⊗W.

Here is the formula

B
(∑

aivi,
∑

bjwj

)
=

∑

i,j

aibj(vi ⊗ wj). (7)

This gives a complete definition because every element of V is a unique
linear combination of the {vi} and every element of W is a unique linear
combination of the {wj}. A routine check shows that B is a bilinear map.

Finally, if T : V ×W → P is some bilinear map, we define L : V ⊗W → P
using the formula

L
(∑

i,j

cij(vi ⊗ wj)
)
=

∑

i,j

cijT (vi, wj). (8)

It is an easy matter to check that L is linear and that T = L ◦B.
Since our definition here of B and V ⊗W satisfies the universal property,

it must coincide with the more abstract definition given above.

5 Properties of the Tensor Product

Going back to the general case, here I’ll work out some properties of the
tensor product. As usual, all modules are unital R-modules over the ring R.

Lemma 5.1 M ⊗N is isomorphic to N ⊗M .
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Proof: This is obvious from the construction. The map (v, w) → (w, v)
extends to give an isomorphism from YM,N = L(M × N) to YN,M = L(N ×
N), and this isomorphism maps the set SM,N ⊂ YM,N of bilinear relations
set SN,M ⊂ YN,M and therefore gives an isomorphism between the ideals
YM,NSM,N and YN,MSN,M . So, the obvious map induces an isomorphism on
the quotients. ♠

Lemma 5.2 R⊗M is isomorphic to M .

Proof: The module axioms give us a surjective bilinear map T : R×M →M
given by T (r,m) = rm. By the universal property, there is a linear map
L : R ⊗ M → M such that T = L ◦ B. Since T is surjective, L is also
surjective. At the same time, we have a map L∗ :M → R⊗M given by the
formula

L∗(v) = B(1, v) = 1⊗ v. (9)

The map L∗ is linear because B is bilinear. We compute

L∗ ◦ L(r ⊗ v) = L∗(rv) = 1⊗ rv = r ⊗ v. (10)

So L∗ ◦ L is the identity on the image B(R × M). But this image spans
R⊗M . Hence L∗ ◦L is the identity. But this is only possible if L is injective.
Hence L is an isomorphism. ♠

Lemma 5.3 M ⊗ (N1 ×N2) is isomorphic to (M ⊗N1)× (N ⊗N2).

Proof: LetN = N1×N2. There is an obvious isomorphism φ from Y = YM,N

to Y1 × Y2, where Yj = YM,Nj
, and φ(S) = S1 × S2. Here Sj = SM,Nj

. There-
fore, φ induces an isomorphism from Y/Y S to (Y1/Y1S1)× (Y2/Y2S2). ♠

Finally, we can prove something (slghtly) nontrivial.

Lemma 5.4 M ⊗Rn is isomorphic to Mn.

Proof: By repeated applications of the previous result, M ⊗ Rn is isomor-
phic to (M ⊗R)n, which is in turn isomorphic to Mn. ♠

As a special case,
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Corollary 5.5 Rm ⊗Rn is isomorphic to Rmn.

This is a reassurance that we got things right for vector spaces.
For our next result we need a technical lemma.

Lemma 5.6 Suppose that Y is a module and Y ′ ⊂ Y and I ⊂ Y are both

submodules. Let I ′ = I ∩ Y ′. Then there is an injective linear map from

Y ′/I ′ into Y/I.

Proof: We have a linear map φ : Y ′ → Y/I induced by the inclusion from Y ′

into Y . Suppose that φ(a) = 0. Then a ∈ I. But, at the same time a ∈ Y ′.
Hence a ∈ I ′. Conversely, if a ∈ I ′ then φ(a) = 0. In short, the kernel of
φ is I ′. But then the usual isomorphism theorem shows that φ induces an
injective linear map from Y ′/I ′ into Y/I. ♠

Now we deduce the corollary we care about.

Lemma 5.7 Suppose that M ′ ⊂ M and N ′ ⊂ N are submodules. Then

there is an injective linear map from M ′ ⊗N ′ into M ⊗N . This map is the

identity on elements of the form a⊗ b, where a ∈M ′ and b ∈ N ′.

Proof: We apply the previous result to the module Y = YM,N and the sub-
modules I = SM,N and M ′ = YM ′,N ′ . ♠

In view of the previous result, we can think of M ′ ⊗ N ′ as a submodule
of M ⊗N when M ′ ⊂ N and N ′ ⊂ N are submodules.

This last result says something about vector spaces. Let’s take an example
where the field is Q and the vector spaces are R and R/Q. These two vector
spaces are infinite dimensional. It follows from Zorn’s lemma that they both
have bases. However, You might want to see that R⊗R/Q is nontrivial even
without using a basis for both. If we take any finite dimensional subspaces
V ⊂ R and W ⊂ R/Q, then we know V ⊗W is a submodule of R⊗R/Q.
Hence R ⊗ R/Q is nontrivial. In particular, we can use this to show that
the element 1⊗ [α] is nontrivial when α is irrational.
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