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The purpose of this handout is to explain some methods for producing
surfaces and also higher dimensional manifolds. You can safely skip the
material on manifolds if you want.

0.1 What is a Manifold?

Recall that a surface is a metric space, such that every point has a neigbor-
hood which is homeomorphic to R

2. Motivated by this, we have

Definition: An n-dimensional manifold is a metric space, such that every
point has a neighborhood which is homeomorphic to R

n.

So, you can see that a manifold is really a straightforward generalization
of surfaces to higher dimensions. Our definition allows for the possibility
that the empty set is an n-dimensional manifold. You can either accept this
triviality or reject it as you see fit.

Technical Comment: This definition of a manifold is slightly nonstan-
dard. The usual definition replaces metric space with Hausdorff topological

space. However, in most cases the metric space definition coincides with the
topological space definition−i.e. singles out the same objects as manifolds.
The reason I’m using the metric space definition is that it’s more concrete.
If you want to know about topological spaces, Hausdorff or otherwise, ask
me in office hours.
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1 Coordinate Patches

One simple way to get a surface is to take the graph of a continuous function
f : U → R. Here U ⊂ R

2 is an open set. You can form the subset of R
3

Γ(U, f) = {(x, y, f(x, y))| (x, y) ∈ U}.

This is just the graph of f over U . The set Γ(U, f) inherits a metric from R
3.

Exercise 1: Prove that Γ(U, f) is a surface.

Of course you could do the same thing in higher dimensions, to produce
examples of higher dimensional manifolds.

2 Hypersurfaces

2.1 The Basic Theorem

Now let f : R
3 → R be a continuous function. Assume also that the partial

derivatives of f exist and are continuous functions. This means that the
gradient

∇f = (∂xf, ∂yf, ∂zf)

exists and is continuous. Say that 0 is a regular value for f if it never happens
that both f(x, y, z) = 0 and ∇f(x, y, z) = (0, 0, 0) (at the same point.)

Theorem 2.1 If 0 is a regular value for f then f−1(0) is a surface provided

that it is nonempty.

For instance, 0 is a regular value for the function f(x, y, z) = x2+y2+z2−1
and the set f−1(0) is the sphere. This is probably the hardest way to prove
that the sphere is a surface!

A similar theorem holds if you replace R
3 by R

n. A nice higher dimen-
sional example is obtained as follows. You can think of the set of 2× 2 (real
valued) matrices as a copy of R

4. There is a nice map from this space into
R, namely the determinant (minus 1):

f(
[

a b
c d

]

) = ad − bc − 1.
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Exercise 2: Show that 0 is a regular value for f .

Technical Comments: The set f−1(0) is usually denoted by SL2(R). Thus
SL2(R) is the set of unit determinant real 2 × 2 matrices. Combining Ex-
ercise 2 with the theorem above, we see that SL2(R) is a (3-dimensional)
manifold. If you know about groups then you probably know that SL2(R)
forms a group under matrix composition. Thus SL2(R) is both a manifold
and a group−and it turns out that the two structures are “compatible” in
a way that I can explain in office hours. Objects with these two structures
(coexisting in a compatible way) are called Lie groups , and SL2(R) is one
of the most important examples. A similar game works for SLn(R), the
“group/manifold” of determinant 1 real n × n matrices.

OK, back to earth. Theorem 2.1 is really a special case of the Implicit
Function Theorem. However, you don’t need to know the I.F.T. in order to
understand the self-contained proof I’ll give below. I’m only going to give
the proof for surfaces, but if you understand this case you should see how
the proof generalizes.

2.2 Proof of Theorem 2.1

Let S = f−1(0). Let p = (x, y, z) ∈ S. We want to show that p has a
neighborhood U ⊂ S which is homeomorphic to R

2. We know that ∇f(p)
is nonzero, so there is a unique plane P such that p ∈ P and ∇f(p) is
perpendicular to P . Without loss of generality we can rotate and translate
space, and replace f by a scalar multiple Cf to arrange that

• p = (0, 0, 0).

• ∇(p) = (0, 0, 1).

In this case P is the xy plane.
Let Qǫ denote the open cube of diameter ǫ centered at 0. If ǫ is sufficiently

small then

‖∇f(q) − (0, 0, 1)‖ <
1

1000000
,

for all q ∈ Qǫ. In other words, the gradient almost points straight up through-
out Qǫ. (This is really overkill; we don’t need 1/1000000, but it makes things
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more obvious to take a really tiny constant like this.) Let’s take such a choice
of ǫ and write Q = Qǫ.

Let U = Q ∩ S. Then U is an open neighborhood of p in S. We just
have to show that U is homeomorphic to R

2. It suffices to show that U is
homeomorphic to an open square, since an open square is homeomorphic to
R

2. As it happens, Q ∩ P is an open square, and the map

h(x, y, z) = (x, y, 0).

Is a map from U to Q∩P . We just have to show that h is a homeomorphism.
Here are the main points:

• h is a distance decreasing map so (using the ǫ − δ definition of conti-
nuity) h is continuous.

• To show that h is one-to-one, suppose that h(q1) = h(q2) for some
points q1, q2 ∈ U . But then q1 and q2 lie on the same vertical line.
Here comes the key point. Say that q1 lies below q2. But then the
upward vertical path from q1 to q2 at all locations nearly points in the
same direction as ∇f . In other words, ∂zf > 0 along the vertical path
joining q1 to q2. But then f(q2) > f(q1). This contradicts the fact that
f(q2) = f(q1) = 0. This contradiction shows that h is one to one.

• Exercise 3A: Show that h is onto. Hint: Show that f is negative on
the bottom face of Q and positive on the top face. Then f has to be
zero on each vertical line segment which connects the top and bottom
faces.

• Exercise 3B: Show that h−1 is continuous. Hint: Suppose that (x1, y1)
and (x2, y2) ∈ Q ∩ P are very close together. Consider (x1, y1, z1) =
h−1(x1, y1) and (x2, y2, z2) = h−1(x2, y2). Suppose that z1 and z2 are far
apart and derive a contradiction by looking at the directional derivative
along the near vertical line segment joining (x1, y1, z1) to (x2, y2, z2).

These items show that h is a homeomorphism from U to the open square
Q ∩ P . Since p was an arbitrary point, we’ve shown that every point on S
has a neighborhood which is homeomorphic to R

2.
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2.3 A Generalization

There is a generalization of the above theorem, which works when you have
a map f : R

n → R
k, with k < n. In this case we require that the differential

map df is everywhere defined and continuous. The map df is just the matrix
of partial derivatives. At each point it is a linear map from R

n to R
k. (When

k = 1 the map df is just the gradient.)
The point p ∈ R

n is said to be a regular point for f if the map df(p) is
onto. This is to say that the matrix of partials has full rank. We say that 0 is
a regular value for f if f is regular at every point of f−1(0). In this case, the
result is that f−1(0) is an (n− k) dimensional manifold. This result again is
an application of the I.F.T., though one can give a self-contained proof along
the lines of what I did in the special case that k = 1.

3 Gluing Spaces Together

Now I’m going to describe a general construction which is usually done for
topological spaces. However, it can be done for metric spaces as long as
we’re a bit careful. The advantage to using topological spaces is that the
construction always works. The disadvantage to using topological spaces is
that it takes a long time to figure out what the construction actually means.
For metric spaces, things don’t always work out, but whatever happens is
more understandable. Also, for our purposes, things always work out.

3.1 A Word about the Reals

Before we start we need to recall the notion of the inf from real analysis. Let
S ⊂ R be a set consisting entirely of non-negative numbers. Then x = inf S
denotes the smallest member of the closure of S. Such a number always
exists and is unique. The existence (and uniqueness) of the inf is known as
the completeness axiom for the reals.

3.2 Trianglizations

Let X be a set and let δ : X × X → R be a map which just satisfies
δ(x, y) = δ(y, x) ≥ 0. Note that δ need not satisfy the triangle inequality.
The purpose of this section is to show how to replace δ by a new function
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which sometimes remembers some of the structure of δ and yet satisfies the
triangle inequality.

Let x, y ∈ X be two points. Say that a chain from x to y is a finite
sequence of points x = x0, x1, ..., xn = y. Let’s call this chain C. Let’s define

δ(C) = δ(x0, x1) + δ(x1, x2) + ... + δ(xn−1, xn).

Certainly δ(C) ≥ 0 as long as x 6= y. Now lets define

d(x, y) = inf
C

δ(C).

The inf is taken over the set of all possible values δ(C) where C is a chain
from x to y.

This probably looks like an insane definition, but let’s try to make it
intuitive. Think of δ(x, y) as the cost of flying from city x to city y−let’s
say from Providence to Tahiti. Now, you’re really desperate to get to Tahiti,
and have tons of free time but little money. So, you look on the internet and
try to find all possible flights. You are willing to take any conceivable chain
of connecting flights, as long as you start in Providence and end in Tahiti.
After searching through all the possiblities you select the most economical
flight. This is d(x, y). The difference between this scenario and the idealized
one we’re talking about is that X could be an infinite metric space. So, there
could be infinitely many chains, and you need to take the inf rather than
just a minimum (which may not exist.) We call d the trianglization of δ be-
cause we construct d in such a way to force it to satisfy the triangle inequality.
(This is my own term. I don’t know what this thing is called by other people.)

Exercise 4: Show that d satisfies the following axioms:

• d(x, y) ≥ 0.

• d(x, y) = d(y, x).

• d(x, y) ≤ d(x, z) + d(z, y).

So it looks like d is a metric. However, note the that we’re leaving off the
part that would say d(x, y) = 0 iff x = y. In fact give an example of a δ on
X = R

2, which satisfies the first two axioms for a metric, whose trianglization
is the zero map.
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3.3 The Quotient Construction

Let X be a set. An equivalence relation on X is a relation of the form ∼,
which satisfies three properties:

• x ∼ x for all x.

• x ∼ y iff y ∼ x.

• x ∼ y and y ∼ z imply x ∼ z.

An equivalence class is a subset

S = {y ∈ X| y ∼ x}.

So, S is the set of all elements which are equivalent to x. Note that every
two equivalence classes are either disjoint or identical. Thus, it makes sense
to talk about the set of equivalence classes. This set is denoted X/∼.

Now let’s see how ∼ interacts with a metric. Let d′ be a metric on X.
As above, let X/∼ denote the set of equivalence classes of X. Let’s define,
for S1, S2 ∈ [X], the function

δ(S1, S2) = inf d′(s1, s2).

The inf is taken over all possibilities where s1 ∈ S1 and s2 ∈ S2. In other
words the “distance” from S1 to S2 is the “minimum” distance between a
member of S1 and a member of S2. The “minimum” doesn’t always make
sense in this context and so we use the inf.

Let d be the trianglization of δ. We call X/∼ a good quotient if d is a
metric on X/∼.

Exercise 5: Let X = R and write x = y iff x − y is rational. Show
that R/∼ is not a good quotient.

Exercise 6: (The Asteroids Exercise) This is a very important exercise for
this class: On R

2 define (x1, y1) ∼ (x2, y2) iff x1 − x2 and y1 − y2 are both
integers. Prove that X/ ∼ is a good quotient, and the resulting metric space
is a surface homeomorphic to the surface of a donut!
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3.4 Examples

Let’s give some examples of the abstract constructions considered above. Let
X = X1 ∪ X2 where X1 and X2 are each copies of the unit disk, equipped
with the standard metric, and d(p1, p2) = 1 if p1 ∈ X1 and p2 ∈ X2. You
should picture two disks hovering, one on top of the other. Define p1 ∼ p2 if
and only if either p1 = p2 or else p1 and p2 are corresponding points in the
boundaries of X1 and X2.

Exercise 7: Prove that the space X/∼ is a good quotient, and is homeo-
morphic to the 2-sphere.

Exercise 8: Let X = S1 × [0, 1] be a cylinder. Define an equivalence
relation by the rule that (x, 0) ∼ (x, 1) and also (x, y) ∼ (x, y). Prove that
X/ ∼ is a good quotient, and also a surface, and also homeomorphic to the
space in the Asteroids problem.

Exercise 9: Let X be a metric space of the form T × {1, 2, 3, 4, 5, 6, 7, 8}.
So, X is the disjoint union of 8 triangles. Define an equivalence relation on
X so that the resulting space is a surface and homeomorphic to a sphere.

The operation we have been doing is sometimes called gluing . The idea is
that we take distinct points on the space and then call them equivalent . The
process of taking the quotient is sort of like gluing the spaces together along
these points because it declares two equivalent points the same, so that they
really are glued together. Moreover, if x ∼ y and x′ is near x and y′ is near
y, then the trianglization process forces x′ to be near y′. So, when we glue
two equivalent points together, we sort of drag the rest of the space with us.
This is what you would actually experience if you tried, say, to glue together
parts of a rubber sheet.

You can probably see from the previous two exercises that it is possible
to build up more complicated surfaces from gluing together simpler pieces.

Exercise 10: (Challenge) Can you glue a finite number of triangles together
(as in Exercise 9) to produce a surface which is neither homeomorphic to a
sphere or to a torus? (Hint: first draw some candidate surfaces and then see
how to break them apart into triangles.)
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