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The purpose of this handout is to prove two results:

• Any path connected hyperbolic surface has a universal cover.

• The universal cover of a complete hyperbolic surface is isometric to the
hyperbolic plane.

Combining these two results we see that every complete hyperbolic surface is
universally covered by the hyperbolic plane. Both of these results hold true
in much greater generality, and I will prove the first one in a somewhat more
general setting.

1 Nearby Paths

Let X be a path connected metric space which is also a manifold. (So, every
point of X has a neighborhood which is homeomorphic to Euclidean space.).
Given two paths f0, f1 : [0, 1] → X we define

D(f0, f1) = sup
t∈[0,1]

d(f0(t), f1(t)).

Say that the path f0 is good if there is some ǫ > 0 with the following property:
Suppose that D(f0, f1) < ǫ and f0(0) = f1(0). Then there is a homotopy F
from f0 to f1 such that Ft(0) = f0(0) for all t. In other words, the two paths
can be homotoped to each other without moving the initial point. Say that
X is good if every path in X is good. (The value of ǫ might depend on the
path.)

I’ll prove that any good manifold has a universal cover. It turns out that
any Riemannian manifold is good.
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Lemma 1.1 A hyperbolic surface is good.

Proof: Let f0 be a path. For every t ∈ [0, 1] we can find a supremal ǫ(t) such
that the ball of radius ǫ(t) about f0(t) is isometric to a disk in the hyperbolic
plane. There is some ǫ > 0 such that ǫ(t) > ǫ for all t. Otherwise we could
find a sequence {tn} such that ǫ(tn) → 0. But then there would be some limit
point t∗ with ǫ(t∗) = 0 and this is a contradiction. So, now we know that
there is some ǫ > 0 such that every point f0(t) has an ǫ ball neighborhood
which is isometric to an ǫ ball in the hyperbolic plane. If D(f0, f1) < ǫ/2
then we can join f0(t) to f1(t) by a geodesic γt which remains within the ǫ/2
ball about f0(t). As t varies the endpoints of γt vary continuously. Also, for
t small, everything takes place in a set which is isometric to a ball in the
hyperbolic plane. Hence, γt varies continuously as well.

We set things up so that γt(0) = f0(t) and γt(1) = f1(t) and γt is constant
speed. Then the map

F (s, t) = γt(s)

is the desired homotopy from f0 to f1. Basically, we are just doing the most
obvious thing, pushing points of f0 towards points of f1 along geodesics. ♠

Exercise 1: Draw a careful picture of the construction from the lemma.

Exercise 2: Give an example of a metric space which has no non-trivial
good paths. (Hint: swiss cheese.)

2 Proof of the First Result

2.1 Definition of the Universal Cover

Let X be a good space. Let x ∈ X be a basepoint. We define ˜X to be the
set of pairs (y, [f ]) where y ∈ X is a point and f is a path which joins x to
y. Here [f ] denotes the path homotopy equivalence class of f .

So far ˜X is just a set. We define

D([f0], [f1]) = inf D(f0, f1).

The inf is taken over all paths f0 which represent [f0] and all paths f1 which
represent [f1]. Finally, we define

˜d((y0, [f0]), (y1, [f1])) = d(y0, y1) + D([f0], [f1]).
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Exercise 3: Prove that ˜d is a metric on ˜X. Hint: The only hard part of
this exercise is showing that ˜d(p, q) = 0 implies p = q. Here p, q ∈ ˜X. This
amounts to showing that D([f0], [f1]) = 0 implies that [f0] = [f1]. Deduce
this from the goodness of X.

There is an obvious map E : ˜X → X, given by E(y, [f ]) = y. This map
is distance non-increasing, and hence continuous. Note also that E is onto
because X is path connected.

2.2 Evenly Covered Neighborhoods

Let y ∈ X be a point and let U be a neighborhood of y which is homeomorphic
to R

n. Each point z ∈ U can be joined to y by a canonical path γ(z, y) ⊂ U :
The image of γ(z, y) under the homeomorphism to R

n is a straight line
segment. In the hyperbolic surface case we can just say simply that U is a
small ǫ ball about y and γ(z, y) is the geodesic connecting the two points.

We want to show that E−1(U) is a disjoint union of open sets, and the
restriction of E to each one of them is a homeomorphism. Let H denote the
set of path homotopy classes of curves joining x to y. We are going to first
produce a homeomorphism Ψ from E−1(U) to U × H . This is a formal way
of saying that E−1(U) is a disjoint union of copies of U .

2.2.1 Well Definedness

Let (z, [f ]) ∈ E−1(U) be a point. Let f be any representative of f and let
g = f ∗γ(z, y). We are just extending f so that it connects x to y. We define

Ψ((z, [f ])) = (z, [f ∗ γ(z, y)]).

If f0 and f1 are both representatives of [f ] then a path homotopy from f0 to
f1 extends to a path homotopy from f0 ∗ γ to f1 ∗ γ. Hence [f0 ∗ γ] = [f1 ∗ γ].
Hence, our map Ψ is well defined.

2.2.2 Continuity

To show that Ψ is continuous, suppose that (z0, [f0]) and (z1, [f1]) are very
close. Then f0 ∗ γ(z0, y) and f1 ∗ γ(z1, y) are very close. Since X is good,
we have [f0 ∗ γ(z0, y)] = [f1 ∗ γ(z1, y)] once these paths are sufficiently close.
Also z0 and z1 are very close. So, the second coordinates of Ψ(z0, [f0]) and
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Ψ(z1, [f1]) agree and the first coordinates are very close. This shows (a bit
sketchily) that Ψ is continuous.

2.2.3 Surjectivity

Given any pair (z, [g]) ∈ U × H we can consider the path f = g ∗ γ(z, y)−1.
In other words, we first take our path g from x to y and then take the inverse
of γ(z, y) from y to z. This gives us a path from x to z. The two paths g

f ∗ γ(z, y) = g ∗ γ(z, y)−1 ∗ γ(z, y)

are clearly homotopic. Hence Ψ(z, f) = (z, g). This shows that Ψ is onto.

Exercise 4: Draw a careful picture of this construction, and define a homo-
topy from f ∗ γ to g.

2.2.4 Injectivity

Suppose that Ψ(z0, [f0]) = (z1, [f1]). Then, first of all, z0 = z1. So, we can
write z = z0 = z1. Second of all, we know that [f0 ∗ γ(z, y)] = [f1 ∗ γ(z, y)].
Writing γ = γ(z, y) we have [f0 ∗ γ] = [f1 ∗ γ] but then

[f0 ∗ γ ∗ γ−1] = [f1 ∗ γ ∗ γ−1].

(We can just use our homotopy from f0 ∗ γ to f1 ∗ γ and extend it trivially
to γ−1.) Finally, we have [f0 ∗ γ ∗ γ−1] = [f0], as in Exercise 4. Likewise
[f1 ∗ γ ∗ γ−1] = [f1]. Hence [f0] = [f1], as desired. This shows that Ψ is
injective.

2.2.5 Continuity of the Inverse

Using the notation from the surjectivity proof, we have

Ψ−1(z, [g]) = (z, [f ]),

where f = g ◦ γ−1. To show that Ψ−1 is continuous, we argue as follows: If
(z0, [g0]) and (z1, [g1]) are sufficiently close−i.e. less than 1 unit apart−then
[g0] = [g1]. The idea here is that points in different components of U × H
are declared to be 1 away from each other. Since then [g0] = [g1], we can use
the same path g to represent both [g0] and [g1]. But then f0 = g ∗ γ(z0, y)−1

and f1 = g ∗ γ(z1, y)−1 are also close. This shows that Ψ−1 is continuous.
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2.3 The Covering Property

Now we know that Ψ is a homeomorhism from E−1(U) to U × H . Let
π : U × H → U be projection onto U . Then the restriction of π to each
component of U ×H is clearly a homeomorphism. These components are of
the form U × {h} where h ∈ H .

Finally, note that
E = π ◦ Ψ.

For each component ˜U of E−1(U) there is some h ∈ H so that Ψ( ˜U) = U×{h}
and Ψ is a homeomorphism from ˜U to U × {h}. But then the restriction to
˜U of E = π ◦ Ψ is the composition of two homeomorphisms, and hence a
homeomorphism. This completes the proof that E is a covering map. It
remains to show that X is simply connected and path connected.

2.4 Simple Connectivity

We still need to show that ˜X is simply connected. Warning: This proof is
pretty tough. I couldn’t find a way to boil it down to something simpler.
You might want to skip this part on the first reading.

We take the basepoint x̃ ∈ ˜X to be the pair (x, ∗) where ∗ is the trivial
loop connecting x to x. So, suppose that

f : [0, 1] → ˜X

is a loop. This means that f(0) = f(1) = x̃ and

f(t) = (xt, [γt]),

where xt ∈ X and γt is a path connecting x to xt. We need to show that f
is homotopic to the trivial loop.

Define β by the formula β(s) = xs. So, β is a path which traces out “the
first coordinate” of f . Now define the path βt by the formula

βt(s) = β(st).

Note that βt is a path which joins x to βt(1) = β(t) = xt. So, βt and γt are
both paths which join x to xt.

Lemma 2.1 [βt] = [γt]. In other words, βt is a representative for [γt].
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Proof: Since γ0 represents the trivial element in π1(X, x) and β0 is the trivial
element in π1(X, x) we have [β0] = [γ0]. Let J be the set of parameter values
for which [βt] = [γt]. We have just seen that 0 ∈ J . To show that J ∈ [0, 1]
it suffices to prove that J is both open and closed.

Openness: If t ∈ J then [βt] = [γt]. For s close to t we have D([γs], [γt])
small. This means that we can take γt and γs so that D(γs, γt) is small.
Consider the path δs = γt ∗ β[s, t]. In other words, we take γt from x to
xt and then use β to get from xt to xs. By continuity β[s, t] is short for s
close to t. Hence D(δs, γt) is small. Hence D(δs, γs) is small. Since X is
good we have [δs] = [γs] for s sufficiently near t. Since [γt] = [βt] we have
[δs] = [βt ∗ β(s, t)] = [βs]. Hence [γs] = [βs].

Closedness: Suppose that [βt] = [γt] for a sequence of t values converging
to s. For t very close to s we can again define [δs] as above. The same
argument as above shows that [δs] = [γs] if t is sufficiently close to s. But
again [δs] = [βs]. Hence [γs] = [βs].

Being nonempty, open, and closed, J = [0, 1]. ♠

Now we know that we can take f(t) = (xt, [β
t]). Since f is a loop, we

know that [β] is the trivial element in π1(X, x). Let B be a homotopy from β
to the trivial loop. Let Bu be the uth level of the homotopy, so that B1 = β
and B0 is the trivial loop. Define

Bt
u(s) = Bu(st).

Finally define
Fu(t) = (Bt

u(1), Bt
u).

Here Bt
u is a path connecting x to Bt

u(1). Everything in this crazy definition
varies continuously and F0 is the trivial loop in ˜X.

2.5 Path Connectedness

Now let’s show that ˜X is path connected. Let (x, [f ]) be a point in ˜X. Then
x = f(1). So, we can write (x, [f ]) = (f(1), [f ]). Let f t be the path defined
by the equation f t(s) = f(st). Then t → (f(t), [f t]) is a path in ˜X from x̃
to (x, [f ]).
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3 Proof of the Second Result

3.1 Replacing the Metric

So far we have defined a fairly wierd metric on ˜X. However, when X is
a hyperbolic surface, we can define a much better metric on ˜X. Given a
path γ ⊂ ˜X we define L(γ) to be the hyperbolic length of E(γ), using the
hyperbolic metric on X. We define the distance between p̃, q̃ ∈ ˜X to be the
infimal length of curves joining these two points.

Lemma 3.1 When ˜X is equipped with the new metric, the map E is still

distance non-increasing and also a universal covering map.

Proof: If d(p̃, q̃) = D then there is a path γ̃ joining p̃ to q̃ which has length
D + ǫ for any ǫ > 0. But then γ = E(γ̃) has length D + ǫ and joins p to
q. Hence the distance on X between p and q is at most D + ǫ. Since ǫ is
arbitrary, the distance on X from p to q is at most D.

Let U be a neighborhood on X as in §2. In fact, we take U to be iso-
metric to a ball in the hyperbolic plane. Then the map E : π−1(U) → U
is actually an isometry on each component. To show this, let p̃, q̃ be two
points in the same component ˜U of E−1(U). Then the shortest path γ̃ join-
ing p̃ to q̃ is the one which projects to the geodesic from p to q in U . This
path always exists, because we can always lift the geodesic connecting p to
q. Being an isometry from ˜U to U , the map E is clearly a homeomorphism. ♠

3.2 Completeness

Recall that a metric space is complete if every Cauchy sequence converges.

Lemma 3.2 The universal cover of a complete metric space is complete.

Proof: Let {x̃n} be a Cauchy sequence in X. We have constructed things
in such a way that the map E : ˜X → X is distance non-increasing. Setting
xn = E(x̃n) we now know that {xn} is a Cauchy sequence in X. Since X
is complete, there is some limit point x∗. There is an evenly covered neigh-
borhood U of x∗ which contains xn for n large. But then all the points x̃n

lie in the same component of ˜E−1(U) for n large. But E : ˜U → U is a
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homeomorphism. In particular E maps convergent sequences to convergent
sequences and so does E−1. Since {xn} is a convergent sequence in U , the
sequence {x̃n} is a convergent sequence in ˜U . ♠

Combining the result from this section with the results from the last
section, we see that the universal cover of a complete hyperbolic surface is a
path connected, simply connected, complete hyperbolic surface.

3.3 Uniqueness

Now we show that any complete, connected, simply connected hyperbolic
surface H is isometric to the hyperbolic plane. Let H denote the hyperbolic
plane.

Let h ∈ H be a point and let h ∈ H be a point. Both points have
neighborhoods which are isometric to disks in the hyperbolic plane. Thus we
can find an isometry I between a neighborhood U of h and a neigborhood
U of h in H . Let x ∈ H be any point. We can find a path γ from h to x.

Lemma 3.3 I can be defined uniquely on γ so that I is a local isometry at

every point along γ.

Proof: We have γ : [0, 1] → H . Note that 0 ∈ J . Hence J is nonempty. If
I is defined on γ(t) for all t < s then we can define I(γ(s)) = lims→t I(γ(t)).
This works because H is complete. If I is defined for γ(t) for all t ≤ s then
we can use the fact that both spaces are locally isometric to the hyperbolic
plane to extend I uniquely to a neighborhood of γ(s). These two properties
show that we can extend I uniquely to γ(t) for all t ∈ [0, 1]. ♠

Recall that γ(1) = x. We define I(x) = I(γ(1)), using the extension from
the previous lemma. We need to see that our map is well defined. Here is
where simple connectivity comes in. Suppose that γ0 and γ1 are two paths
connecting h to x. We want to show that I(γ0(1)) = I(γ1(1)). That is, we
want to show that the extension based on γ0 is the same as the extension
based on γ1.

Let γt, for t ∈ [0, 1] be a path homotopy from γ0 to γ1. (We know that
such a path homotopy exists from handout 5.) The point xt = I(γt(1)) varies
continuously with t. On the other hand, note that the same extension in the
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above lemma works for both γs and γt as long as s and t are close together.
Hence xs = xt for s and t close. But this shows that xt does not move at all.

Now we know that our isometry I extends to a local isometry I : H →
H . But the existence of our extension just used completeness of H , path
connectivity of H and simple connectivity of H . Reversing the roles of H
and H we construct the inverse map I−1 using the same method. Hence
both I and I−1 are homeomorphisms and local isometries.

Since I is a local isometry and also a homeomorphism, and distances in
H are defined using lengths of paths, we see that I is a global isometry.
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