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The purpose of this handout is to give a proof of the basic existence and
uniqueness result for ordinary differential equations. This result includes
the statement that the solutions depend smoothly on the initial conditions
if the data for the differential equation is smooth. (See below for a precise
formulation.) There are plenty of accounts of this theorem in the literature.
However, I found the various written accounts somehow complicated and
opaque. I hope to give a streamlined and clear proof here. For ease of
exposition, I will give the proof in R

2. This case shares all the features of
the general case of R

n. Mainly, I’m doing R
2 instead of R

n so that I can
write (x, y) in place of (x1, ...., xn).

1 The Result

We will always coordinatize R
3 as (x, y, t). We think of t as “time”. A

map φ : R
3 → R is smooth if all orders of partial derivatices of φ exist

and are continuous. (Just the existence of all orders of derivatives forces
their continuity.) I’ll denote partial derivatives by dt, dx, dy. For instance
dtφ = ∂φ/∂t.

Suppose that V : U → R
2 is a smooth function defined in a neighborhood

U of (0, 0). We can write V = (V1, V2). Given a map F : U → R
2 we will

write F = (F1, F2). Here F1 and F2 are both maps from R
2 → R. The basic

ordinary differential equation is given by

dtF = V ◦ F.

Geometrically, V defines a vector field in a neighborhood of the origin and
the curve γ(t) = F (x, y, t) (for x and y held fixed) is always tangent to V .

To write out the above equation in detail, we have
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• dtF1(x, y) = V1(F1(x, y), F1(x, y)).

• dtF2(x, y) = V2(F2(x, y), F2(x, y)).

Assuming that F exists, we define

f(x, y) = F (x, y, 0).

We say that the function F is a V -extension of f in this case. In particular,
F should be defined both for small positive values of t and small negative
values.

Here is the basic result:

Theorem 1.1 Suppose that U is a small neighborhood of the origin in R
2

on which V is defined and smooth. Suppose that f : U → R
2 is a smooth

function. Then f has a smooth V -extension F , defined in perhaps a smaller

neighborhood about the origin.

2 Existence and Uniqueness

Here we will hold the point (x, y) fixed. We show the existence and uniqueness
of a smooth map φ(t) = F (x, y, t) which satisfies the basic equation, at
least in some interval (−ǫ, ǫ). The interval (−ǫ, ǫ) only depends on some
properties of V which are the same for all choices (x, y). Thus, when we run
our argument at each point (x, y) in a neighborhood of (0, 0), we can use the
same value of ǫ for all points. This gives us our V -extension F of f . All
we know about F from this construction is that the partial derivatives d

(n)
t F

exist for all n. We don’t know about the other partial derivatives. Dealing
with these other partial derivatives, which we do in later sections, is the most
painful part of the argument.

So, suppose now that the closed interval I = [−ǫ, ǫ] is fixed. We will
specify the choice of ǫ later on. We let X denote the set of all continuous
functions ψ from I to R

2 such that ψ(0) = F (0, 0, 0). Our desired solution
φ is going to be an element of X. There is a natural metric on X, namely

d(g1, g2) = sup
t∈I

‖g1(t) − g2(t)‖.

Here ‖ · ‖ is just the Euclidean norm on R
2. It is not hard to show that X is

a complete metric space. That is, any Cauchy sequence in X converges to a
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unique point in X. This result is sometimes stated in terms of equicontinuous

families of functions in a basic analysis course.
A map T : X → X is called a contraction if there is some c ∈ (0, 1) such

that
d(T (g1), T (g2)) ≤ cd(g1, g2)

If T is a contraction, then T has a unique fixed point. The uniqueness is
immediate. For existence, you just look at the sequence {T n(x)}, where
x ∈ X is any starting point, and note that this is a Cauchy sequence.

Now for our proof. Consider the following map T : X → X. Given any
function ψ : [−ǫ, ǫ] → R we define

Tψ(s) = ψ(0) +
∫ s

0
V (ψ(t)) dt.

Lemma 2.1 If ǫ is small enough then T is a contraction.

Proof: Since V is smooth in a neighborhood of the origin, we have a bound
K on all the first order directional derivatives of V in a possibly smaller
neighborhood of the origin. This gives us a bound

‖V (p1) − V (p2)‖ ≤ K‖p1 − p2‖,

for any two points p1 and p2 sufficiently close to the origin. (In the literature,
this condition is summarized by saying the V is Lipschitz near the origin.)

Taking ǫ = K/2 we have

‖Tψ1(s) − Tψ2(s)‖ ≤
∫ s

0
K‖ψ1(t) − ψ2(t)‖dt ≤ K |s| d(ψ1, ψ2)

≤ Kǫd(ψ1, ψ2) ≤ d(ψ1, ψ2)/2.

Since this inequality holds for all s ∈ I, we have

d(Tψ1, Tψ2) ≤ d(ψ1, ψ2)/2.

Hence T is a contraction. ♠

So, we can start with any function, say the constant function ψ. Then
the limit φ = limT nψ exists and is the unique fixed point of T . Hence

φ(s) = Tφ(s) = φ(0) +
∫ s

0
V (φ(t)) dt. (1)
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Now for the fun: We know that φ is continuous because it is a member of X.
Hence V ◦ φ is continuous. Hence φ is the integral of a continuous function.
Hence φ is differentiable. Hence V ◦ φ is differentiable. But now φ is the
integral of a differentiable function. Hence φ is twice differentiable. And so
on. This shows inductively that φ is smooth. When we differentiate both
sides of the last equation and apply the Fundamental Theorem of Calculus,
we arrive at

dtφ = V ◦ φ.

This proves the existence and uniqueness of solutions to the basic differential
equation.

2.1 A General Estimate

In the last section we used the Lipschitz condition on V . That is

‖V (p1) − V (p2)‖ ≤ K‖p1 − p2‖,

for any two points p1 and p2 sufficiently close to the origin. Here we will prove
a general estimate about two different solutions to two different equations.
Suppose that V̂ is some other smooth and K-Lipschitz function defined in a
neighborhood of the origin.

We want to consider solutions to the two equations

dtF = V ◦ F ; dtF̂ = V̂ ◦ F̂ ,

where F is a V -extension of f and F̂ is a V̂ -extension of another smooth
function f̂ . Intuitively, we want to prove the result that the extensions F
and F̂ are close provided that f and f̂ are close and V and V̂ are close.

Lemma 2.2 Suppose that t ∈ [−t0, t0] where exp((K + 1)t0) = 2. If

• ‖(x̂, ŷ) − (x, y)‖ < ǫ,

• ‖f̂(x̂, ŷ) − f(x, y)‖ < ǫ,

• ‖V̂ (p) − V (p)‖ < ǫ for all points p in a neighborhood of the origin.

then ‖F̂ (x̂, ŷ, s) − F (x, y, s)‖ ≤ 2ǫ.
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Proof: Using the integral form for the basic equation (Equation 1), and the
chain rule, we have

‖F̂ (x̂, ŷ, ŝ) − F (x, y, s)‖

≤ ‖f(x, y)− f̂(x̂, ŷ)‖ +
∫ s

0
‖V (F (x, y, t))− V̂ (F̂ (x̂, ŷ, t))‖dt

≤ ‖f(x, y)− f̂(x̂, ŷ)‖ +
∫ s

0
‖V (F (x, y, t))− V̂ (F (x, y, t))‖dt

+
∫ s

0
‖V̂ (F (x, y, t))− V̂ (F (x̂, ŷ, t))‖dt

≤ ǫ+ ǫs +
∫ s

0
K‖F (x, y, t) − F̂ (x, y, t)‖dt.

The last line just comes from putting in all the hypotheses of the lemma.
It is convenient to write

A(t) = ‖F (x, y, t) − F̂ (x̂, ŷ, t)‖.

The calculation above shows that

A(s) ≤ ǫ+ ǫs+
∫ s

0
KA(t)dt.

Differentiating both sides and remembering the initial conditions, we see that

A(0) ≤ ǫ; dtA ≤ ǫ+KA.

Suppose, for the sake of contradiction that there is some t ∈ [−t0, t0] such
that A(t) > 2ǫ. Without loss of generality assume t > 0. There is some
maximal interval [t1, t2] ∈ [0, t0] such that t ∈ [t1, t2] and A ≥ ǫ on all of
[t1, t2]. For this interval we have the bound

A(t1) = ǫ; dtA ≤ (K + 1)A.

But then
A(t) ≤ exp((K + 1)(t− t0)) × ǫ ≤ 2ǫ,

which is a contradiction. ♠

As an immediate application of our result we can take V̂ = V and F̂ = F .
The above result shows that

‖F (x, y, t) − F (x̂, ŷ, t)‖ ≤ 2‖f(x, y) − f(x̂, ŷ)‖.

as long as t is sufficiently small and (x̂, ŷ) is sufficiently close to (x, y). This
shows that the function F (x, y, t) is continuous in all variables, sufficiently
close to the origin.
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3 Smoothness

We fix some small value of h and consider the new function

F̂h(x, y, t) =
F (x+ h, y, t) − F (x, y, t)

h
.

Of course, we might need to work in a smaller neighborhood so that every-
thing in this last equation is defined. We also define f̂h(x, y) = F̂h(x, y, t).

Our goal is to show that

lim
h→0

F̂h(x, y, t)

exists in a neighborhood of the origin in R
3. Below we will prove

Lemma 3.1 There is a smooth function V̂h(x, y) such that F̂h satisfies the

differential equation

∂tF̂h = V̂h ◦ F̂h.

Furthermore, V̂h is K-Lipschitz in a neighborhood of the origin, where K and

the neighborhood are independent of h. Finally, the limit

W = lim
h→0

V̂(x, y, t)

exists at all points in a neighborhood of the origin in R
3.

Given Lemma 3.1 we compute the proof as follows. For any ǫ > 0 of
interest to us, we choose h small enough such that

• ‖f̂h(x, y) − dxf(x, y)‖ < ǫ

• ‖V̂h(p) −W (p)‖ < ǫ for all p in a neighborhood U of the origin.

From the basic existence theorem we know that dxf has a continuous W -
extension G. From the estimate in the previous section we know that

‖F̂h(x, y, t) −G(x, y, t)‖ ≤ 2ǫ

throughout our neighborhood. We have ǫ → 0 as h → 0. Hence F̂h → G.
Hence dxF exists in a neighborhood of the origin. The same argument shows
that dyF exists in a neighborhood of the origin.
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Before we prove Lemma 3.1 we deal with the higher derivatives of F .
The argument above works for a sufficiently small neighborhood of the ori-
gin. However, we can simply relabel the origin and re-run the argument
based at some other point in order to show that dxF and dyF exist in a
small neighborhood of any point where F itself exists and satisfies the basic
differential equation. This shows that dxF and dyF exist on exactly the same
neighborhood that F exists on. Now we can repeat the argument. Lemma
3.1 says that dxF is a W -extension of dxf , where f and W are both smooth.
Hence dxF is continuous, and both dxxF exist and dyxF exist. Likewise dxyF
and dyy exist. And so on. This shows that F is smooth in the neighborhood
on which it exists and satisfies the differential equation.

4 Proof of Lemma 3.1

This is a painful exercise in the chain rule. Using Equation 1 we have

F̂h(x, y, s) =
F (x+ h, y, s) − F (x, y, s)

h
=

F (x+ h, y, 0)− F (x, y, 0)

h
+

∫ s

0

V (F (x+ h, y, t)) − V (F (x, y, t))

h
dt =

∫ s

0
R1(s)ds. (2)

Now let’s do something different.
Holding s fixed, let

Ψ(u) = V (u(F (x, y, s)) + (1 − u)F (x+ h, y, s)).

From the Fundamental Theorem of Calculus, we have

Ψ(1) − Ψ(0) =
∫ 1

0
du(Ψ)du =

∫ 1

0
dxV (F (x+ uh, y, s))hF̂h,1(x, y, s)+

∫ 1

0
dyV (F (x+ uh, y, s))hF̂h,2(x, y, s). (3)

This last line comes from the chain rule. we have set F̂h = (F̂h,1, F̂h,2).
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Note that Ψ(1) = V (F (x, y, t)) and Ψ(0) = V (F ((x + h, y, t)). Plugging
this into the last equation and dividing by h we have

R(s) =

∫ 1

0
dxV (F (x+ uh, y, s))F̂h,1(x, y, s)du+

∫ 1

0
dyV (F (x+ uh, y, s))F̂h,2(x, y, s)du.

Now we define

A11(F (x, y), s) =
∫ 1

0
dxV (F (x+ uh, y, s))du,

and

A12(F (x, y), s) =
∫ 1

0
dyV (F (x+ uh, y, s))du.

With these definitions, we have

R1(s) = A11(F (x, y), s) × F̂h,1(x, y, s) + A12(F (x, y), s) × F̂h,1(x, y, s). (4)

Combining Equations 2 and 4 we see that

F̂h,1(x, y, s) = F̂h,1(x, y, 0)+

∫ s

0
A11(F (x, y), t) × F̂h,1(x, y, t) + A12(F (x, y), t) × F̂h,1(x, y, t)dt.

We have done all this with respect to the x-coordinate. Re-doing everything
with respect to the y-coordinate, we have

F̂h,2(x, y, s) = F̂h,1(x, y, 0)+
∫ s

0
A21(F (x, y), t) × F̂h,1(x, y, t) + A22(F (x, y), t) × F̂h,1(x, y, t)dt.

Combining these last two equations into a matrix equation, we have

F̂h(x, y, s) = F̂h(x, y, 0) +
∫ s

0
A(F (x, y), t)F̂h(x, y, t)dt.

This last equation is a matrix valued equation. This is an integral form of
the basic differential equation, a special case of Equation 1. This completes
the proof of Lemma 3.1.
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