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The purpose of this handout is to introduce the quaternions and discuss
some of their basic properties.

1 Basic Definitions

To define the quaternions, we first introduce the symbols i, j, k. These sym-
bols satisfy the following properties:

i2 = j2 = k2 = −1; ij = k; jk = i; ki = j. (1)

Also, for any real number x, we have

ix = xi; jx = xj; kx = xk. (2)

You can work out other rules from these properties. For example, suppose
you want to compute the mystery symbol T = ji. Note that

T i = jii = j(−1) = (−1)j = −j = −ki.

Cancelling the i gives T = −k. In short, ji = −k. The other rules are

ji = −k; kj = −i; ik = −j. (3)

A quaternion is an object of the form a + bi + cj + dk, where a, b, c, d are
real numbers.

Quaternions are added componentwise and multiplied using the “foil
method”. For addition

(a1 + b1i + c1j + d1k) + (a2 + b2i + c2j + d2k) =
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(a1 + a2) + (b1 + b2)i + (c1 + c2)j + (d1 + d2)k. (4)

To do the multiplication, you expand out the product

(a1 + b1i + c1j + d1k) × (a2 + b2i + c2j + d2k)

as you would for a polynomial and then simplify all the terms involving ij,
ik, etc., using the rules above. For instance

(3i + j) × (7j + 2k) =

21ij + 6ik + 7jj + 2jk =

21k − 6j − 7 + 2i = −7 + 2i − 6j + 21k.

Problem 1: Show that (q1q2)q3 = q1(q2q3) for any three quaternions q1, q2, q3.
That is, the multiplication is associative.

2 Conjugates and Norms

Given a quaternion q = a + bi + cj + dk, we have the conjugate

q = a − bi − cj − dk. (5)

Problem 2: Show that

qq = qq = a2 + b2 + c2 + d2. (6)

The norm of q is defined to be

|q| =
√

qq. (7)

q is called a unit quaternion if |q| = 1. In case q is a unit quaternion, note
that q has the property that qq = qq = 1. In other words, q = 1/q. In
general, we have the division formula

q1

q2

=
q1q2

|q2|2
. (8)
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This works as long as |q2| 6= 0.

problem 3: Show that
pq = q × p, (9)

for any two quaternions p and q.

Given the calculation from problem 3, we have

|pq|2 = pq × pq = p × q × q × p = p × |q|2 × p = pp × |q|2 = |p|2|q|2.

Taking square roots of both sides, we get

|pq| = |p||q|. (10)

This holds for any two quaternions.

3 The Three Dimensional Sphere

Let S3 denote the set of all unit quaternions. The equation for S3 is given
by

a2 + b2 + c2 + d2 = |q|2 = 1. (11)

This is the equation for the unit sphere in four dimensional space.
Now let’s verify that S3 is a group, with the multiplication law. We need

to check the 4 basic axioms.

1. If p, q ∈ S3, then so is pq. This is a special case of Equation 10.

2. (pq)r = (p(qr). This is Problem 1 above.

3. 1 is a unit quaternion and satisfies 1q = q1 for all q ∈ S3.

4. Let q−1 = q. Then qq−1 = qq = |q|2 = 1. Likewise q−1q = 1.

This verifies all the group laws.
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4 Representing Rotations by Quaternions

This section is somewhat more advanced than previous sections.
A quaternion of the form 0+ bi+ cj +dk is called pure. Let V denote the

set of pure quaternions. If you know about linear algebra, you will recognize
that V is a 3 dimensional real vector space, that we are identifying with R

3.
If you don’t know what this means, you can just think informally that V is
a copy of R

3.

Exercise 4: Suppose that q is a unit quaternion and p is a pure quater-
nion. Prove that qpq−1 is another pure quaternion.

Given a unit quaternion q, define

Tq(p) = qpq−1. (12)

Exercise 4 shows that Tq is a map from V to V . Note that

|Tq(p)| = |q| × |p| × |q−1| = 1 × |p| × 1 = |p|. (13)

This comes from Equation 10.

Exercise 5: Let r ∈ R and let p1, p2 be real quaternions. Prove that

Tq(rp1 + p2) = rTq(p1) + Tq(p2). (14)

Exercise 5 shows that Tq is a linear map. Equation 13 shows that Tq is
an isometry. This means that det(Tq) = ±1. When q = 1, the map Tq is the
identity map, and has determinant 1. Also, the determinant is a continuous
function of q. Hence

det(Tq) = 1 (15)

for all unit quaternions q. All this information together shows that Tq acts
as a rotation of 3-dimensional space.

Exercise 6: Show that every rotation of R
3 (which fixes (0, 0, 0)) has the

form Tq for some unit quaternion q. Also, show that Tq = Tr if and only if
q = ±r.

The group of all rotations of R
3 is denoted by SO(3). We have just

exhibited a map S3 → SO(3). This map is (by Exercise 6) 2 − 1 and onto.
It is known as the spin cover .

4


