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The purpose of this handout is to introduce the quaternions and discuss
some of their basic properties.

1 Basic Definitions

To define the quaternions, we first introduce the symbols i, 7, k. These sym-
bols satisfy the following properties:

2 =2 =k =1, ij=Fk  jk=1i; ki=j (1)
Also, for any real number x, we have
ir=uwxi;  jr=uzj; kr=uzk. (2)

You can work out other rules from these properties. For example, suppose
you want to compute the mystery symbol 7" = ji. Note that

Ti=jii=j(-1)=(=1)j = —j = —ki.
Cancelling the i gives T' = —k. In short, ji = —k. The other rules are
ji = —k; kj = —i; ik =—j. (3)

A quaternion is an object of the form a + bi + ¢j + dk, where a, b, ¢, d are
real numbers.

Quaternions are added componentwise and multiplied using the “foil
method”. For addition

(a1 + bl'i +Clj —|—d1k‘) + (CL2 + bgi + ng + dgk‘) =
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(CLl + ag) + (bl + bg)l + (Cl + Cg)j + (dl + dg)k‘ (4)
To do the multiplication, you expand out the product

(0,1 + bll + Clj + dlk‘) X (ag + bgl + ng + dgk‘)

as you would for a polynomial and then simplify all the terms involving 27,
1k, etc., using the rules above. For instance

(3i+7) x (75 +2k) =
21ij + 6ik + 7jj + 25k =
21k —6j — 7T+ 2i = =742 — 65 + 21k.

Problem 1: Show that (¢1¢2)g3 = ¢1(goq3) for any three quaternions ¢, go, g3-
That is, the multiplication is associative.

2 Conjugates and Norms

Given a quaternion ¢ = a + bt + c¢j + dk, we have the conjugate
g=a—bi—cj—dk. (5)

Problem 2: Show that

@G =709 =a’>+ b+ +d. (6)

The norm of q is defined to be

lal = Vaa. (7)

q is called a wunit quaternion if |q| = 1. In case ¢ is a unit quaternion, note
that g has the property that ¢qg = g¢ = 1. In other words, § = 1/¢q. In
general, we have the division formula

a1 Q19
= === 8
q2 |C_I2|2 ( )



This works as long as |ga2| # 0.

problem 3: Show that

q=4qXxDp,
for any two quaternions p and q.
Given the calculation from problem 3, we have
pal* =pgxpg=pxqxqxp=pxlq’ xp=ppx|qf
Taking square roots of both sides, we get

Ipq| = Ipllql.

This holds for any two quaternions.

3 The Three Dimensional Sphere

Let S? denote the set of all unit quaternions. The equation for S3 is given

by
A+ +E+d =g =1,

(11)

This is the equation for the unit sphere in four dimensional space.
Now let’s verify that S? is a group, with the multiplication law. We need

to check the 4 basic axioms.

1. If p,q € S3, then so is pq. This is a special case of Equation 10.

[\)

. (pq)r = (p(gr). This is Problem 1 above.

3. 11is a unit quaternion and satisfies 1¢ = ¢1 for all ¢ € S°.

4

. Let 7' =7q. Then q¢~! = q7 = |q|* = 1. Likewise ¢ 'q = 1.

This verifies all the group laws.



4 Representing Rotations by Quaternions

This section is somewhat more advanced than previous sections.

A quaternion of the form 0+ bi+ cj + dk is called pure. Let V' denote the
set of pure quaternions. If you know about linear algebra, you will recognize
that V is a 3 dimensional real vector space, that we are identifying with R?.
If you don’t know what this means, you can just think informally that V' is
a copy of R®.

Exercise 4: Suppose that ¢ is a unit quaternion and p is a pure quater-
nion. Prove that gpg~! is another pure quaternion.

Given a unit quaternion ¢, define

Ty(p) = apa™". (12)
Exercise 4 shows that T}, is a map from V to V. Note that

IT,(p)| = lg| % [p| X |[¢7' ] =1x% |p| x 1= p|. (13)

This comes from Equation 10.

Exercise 5: Let r € R and let py, ps be real quaternions. Prove that

Ty(rpy + p2) = rTy(p1) + Ty(p2)- (14)

Exercise 5 shows that 7} is a linear map. Equation 13 shows that T}, is
an isometry. This means that det(7,) = £1. When ¢ = 1, the map T}, is the
identity map, and has determinant 1. Also, the determinant is a continuous
function of ¢q. Hence

det(7,) =1 (15)
for all unit quaternions g. All this information together shows that T} acts
as a rotation of 3-dimensional space.

Exercise 6: Show that every rotation of R? (which fixes (0,0,0)) has the
form 7 for some unit quaternion ¢q. Also, show that 7, = T, if and only if
q= *r.

The group of all rotations of R* is denoted by SO(3). We have just
exhibited a map S® — SO(3). This map is (by Exercise 6) 2 — 1 and onto.
It is known as the spin cover.



