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The purpose of these notes is to give an account of some of the basic
properties of the Penrose tiles. None of the material here is new; all of it can
be found in a variety of sources.

1 Basic Definitions

There are two Penrose tiles, a kite and a dart . Both tiles can be constructed
from a regular pentagon, as shown in Figure 1.

kite dart

Figure 1

The edges of the kite and the dart are labelled so as to disallow certain
ways of putting together the tiles. The rule is simply that the tiles can only
be put together so that edges of the same length are matched and the black
dots match the black dots. Figure 2 shows some examples.
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2 Existence of Penrose Tilings

In this secton I’ll explain why one can tile the plane with Penrose tiles. Here
are three observations.

• One can replace a kite by a union of two darts and two kites. The
original kite is the union of two smaller kites and two “half-darts”.

• One can replace a dart by a union of one dart and two kites. The
original dart is the union of one kite and two “half-darts”.
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• If one performs the replacement process for a finite collection of Penrose
tiles arranged in a legal configuration, one gets a new collection of
Penrose tiles arranged in a legal configuration. The proof of this fact
just amounts to a short case-by-base check for pairs of tiles.

Figure 3

Figure 4

You can now obtain tilings of the plane by increasingly large (and fat)
regions of the plane by iterating the subdivision process. Figure 5 shows what
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happens when each of the tiles in Figure 4 is subdivided into the replacement
tiles.

Figure 5

Figure 6 shows what happens when each of the tiles in Figure 5 is subdi-
vided into the replacement tiles.

Figure 6

This process continues forever. Suppose that you always rescale the tiles
so that they have the same size. Let T1, T2, T3, ... be the sequence of partial
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tilings you get. So, T1 is the Penrose kite and T
n+1 is obtained from T

n
by

subdividing and then dilating the picture so that the tiles are the same size
as in T

n
.

We would like to take a kind of limit and produce a tiling T∞ that fills
the entire plane. Here is the idea. Let B denote any disk in the plane–let’s
say the disk of radius 100000. There are only finitely many possible patterns
for the intersection T

n
∩B. In other words, if we just look at the tiles inside

B, then we will only see finitely many different patterns as n varies.
So, we can choose some pattern for T

n
∩ B that we see infinitely often.

We throw out all the tilings that don’t give this pattern, and we still have
an infinite supply. Now we repeat the same procedure on the disk 2B that
is concentric with B and twice as large. From amongst our infinite supply of
partial tilings, we can find a (possibly) smaller infinite supply that makes the
same pattern on the bigger disk 2B. Now we throw away all the T

n
that don’t

make this pattern on 2B and we continue, using the disk 4B. Continuing
this way indefinitely, we produce a legal tiling of the whole plane, layer by
layer.

Now, if you have a Penrose tiling P , you can perform the subdivision
process to all the tiles of P at the same time. This gives you a new Penrose
tiling P ′. Let’s call P ′ the subdivision of P ′.

3 Undoing the Subdivision

Now suppose that P ′ is a Penrose tiling. You can group the tiles of P ′

together, in a unique way, according to Figures 3 and 4. To perform the
grouping, start with a kite K. There are two possibilities:

1. K is adjacent to two darts, D1 and D2, each of which shares a short
edge with K. The three tiles K and D1 and D2 are then grouped
together, as in Figure 3.

2. K is adjacent to another kite K ′ and one dart D along the short edges
of K. Then K ′ is adjacent to K and another dart D′ along the short
edges of K ′. The tiles K and K ′ and D and D′ are then grouped
together, as in Figure 4.

Now perform the above procedure for every kite of P ′. Once you finish this
grouping procedure, you will have grouped all the tiles of P ′ into groups of
3 and 4.
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Now observe that each group of tiles is the subdivision of a larger Penrose
tile. You can construct a new Penrose tiling P by replacing each group of
tiles in P ′ by the corresponding larger Penrose tile that has the given group
of tiles as its subdivision. In short, you can undo the subdivision process in
a unique way to find the Penrose tiling P such that P ′ is the subdivision of
P .

4 No Infinite Symmetries

We have already seen that one can tile the plane with Penrose tiles. The
result in this section shows that one cannot make a “repeating pattern” out
of the Penrose tiles.

Theorem 4.1 Let P be a Penrose tiling. Suppose that the group of symme-

tries of P is infinite.

Proof: The proof goes by contradiction. Suppose that the group of sym-
metries of P is infinite. In this case, there must be some translation T such
that T (P ) = P . We will show that this is impossible.

We know that P is the subdivision of a larger Penrose tiling P−1. Like-
wise, P−1 is the subdivision of a larger Penrose tiling P−2, etc. From
the nature of the construction described in the previous section, we have
T (P−n) = P−n for any choice of n. However, once n is large, the tiles of P−n

are larger than the translation distance of T . But then it is impossible for
T (P−n) = P−n. The problem is that T doesn’t move points far enough to
map the huge tiles of T−n to themselves. ♠

5 Five Fold Symmetry

One can start with 5 kites (or 5 darts) arranged in a symmetric pattern and
subdivide repeatedly. Taking the limit of this process, one can produce two
distinct Penrose tilings with 5 fold symmetry. Figures 7 and 8 show the
beginnings of these two tilings.
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Figure 7

Figure 8

Let P1 be the first of these tilings and let P2 be the second. By construc-
tion P1 is the subdivision of P2 and P2 is the subdivision of P1.

Theorem 5.1 Any Penrose tiling with 5-fold symmetry is either P1 or P2.

Proof: Let Q be a Penrose tiling with 5-fold symmetry. Let B be some huge
ball. We’ll show that Q ∩ B agrees with one of P1 ∩ B or P2 ∩ B. Since the
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size of B is arbitrary, this suffices to show that Q agrees with one of P1 or
P2 on the whole plane.

Given any Penrose tiling X, let X−n denote the Penrose tiling such that
X is the nth subdivision of X. This notation is exactly like what we had in
the previous section. For n large enough Q−n ∩ B is contained in at most
5 tiles. Moreover, Q−n ∩ B has 5-fold symmetry because Q does. But then
Q−n∩B is either 5 darts arranged in a symmetric pattern, or 5 kites arranged
in a symmetric pattern. But then Q∩B is obtained by repeatedly subdivid-
ing either 5 kites or the 5 darts. But this is how we produced pieces of P1

or P2. This shows that (up to rotation) Q∩B equals either P1∩B or P2∩B. ♠

Say that a pentagonal seed is a group of 5 kites arranged around a vertex.
Both the tilings P1 and P2 above are produced from repeated subdivision of
a pentagonal seed.

Theorem 5.2 There is a number D0 with the following property. If P is any

Penrose tiling and x is any point of the plane, then there is some pentagonal

seed of P within D0 units of x.

Proof: Looking at Figures 4-6, we see that the subdivision of a single kite
leads to a pentagonal seed after 2 iterations. We can write P = X ′′, where
X is another Penrose tiling. In other words, P is the second subdivision of
X. Note that X ′′ has lots of pentagonal seeds, because every kite of X gives
rise to a seed in X ′′. But X ′′ = P . ♠

Say that an n-seed is the result of subdividing a Pentagonal seed n times.
For large n, an n-seed is a huge portion of one of the 5-fold symmetric
Penrose tilings. The following result says that any Penrose tiling has huge
finite regions that have 5-fold rotational symmetry, even though the whole
tiling might not have 5-fold rotational symmetry.

Theorem 5.3 There is a number D
n

with the following property. If P is

any Penrose tiling and x is any point of the plane, then x is within D
n

units

of some n-seed of P .

Proof: This is the same proof as for the previous result, except that we write
P = Xn+2, the (n + 2)nd subdivision of X. Then P is the nth subdivision
of X ′′. We know that X ′′ has pentagonal seeds all over the place, so Xn+2

has n-seeds all over the place. ♠
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