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1 The Siegel Domain

We equip C
2,1 with the Hermitian form

〈Z,W 〉 = Z1W 3 + Z2W 2 + Z3W 1. (1)

CH
2 is defined as the projectivization [N−] ⊂ CP

2, where

N− = {V | 〈V, V 〉 < 0}. (2)

This model of CH
2 is sometimes called the Siegel domain.

The ideal boundary of CH
2 is the set [N0] ⊂ CP

2, where

N0 = {V | 〈V, V 〉 = 0}. (3)

There is an inclusion C
2 → CP

2 given by the equations

(z, w) → [z : w : 1]. (4)

In this way, we identify C
2 with a subset of CP

2. We have

[N0] ∩C
2 = Z, Z = {(z, w)| ℜ(z) = −|w|2/2} (5)

In fact, [N0] is the one-point compactification of Z. If we define

∞ = [1 : 0 : 0], (6)

then
[N0] = Z ∪∞. (7)

The set Z is the boundary of the Siegel domain.
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2 The Heisenberg Group

The Heisenberg Group is the space C ×R, equipped with the group law

(z1, t1) ∗ (z2, t2) = (z1 + z2, t1 + t2 + ℑ(z1z2)). (8)

That weird symbol denotes “imaginary part”. We’ll denote the Heisenberg
group by H. The space H is closely related to the complex hyperbolic plane.

There is a natural map Z → H, given by

(z, w) → (w,−ℑ(z)). (9)

The inverse map is given by

(w, t) → (−it− |w|2/2, w). (10)

Let’s work out the symmetries of CH
2 in terms of their action on Z and

(using the map above) H.

Rotation: Let u be a unit complex number. The map (z, w) → (z, uw)
is clearly a symmetry of Z. The correspinding map on H is given by

(w, t) → (uw, t). (11)

Geometrically, this rotates around the vertical axis in H. One can check that
this map is an automorphism of H, with respect to the above group law.

Vertical Translation: Let s ∈ R. The map (z, w) → (z − is, w) is a
symmetry of Z. The corresponding map on H is given by

(w, t) → (0, s) ∗ (w, t). (12)

So, we get left multiplication by the element (0, s).

Dilation: Let s > 0 be real. The map (z, w) → (s2z, sw) is a symmetry of
Z. The corresponding map on H is given by

(w, t) → (sw, s2t). (13)

This is also an automorphism of H.
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Translation: Let s ∈ R. The point (−(y + s)2/2, y + s) lies on Z ∩ R
2

for all s. Expanding this out and using the fact that x = −y2/2, we see that
the map

(x, y) → (x− sy − s2/2, y + s) (14)

preserves Z ∩R
2. But then this same map preserves Z when we allow x and

y to be complex variables. In short, the affine map

(z, w) → (z − sw − s2/2, w + s) (15)

preserves Z. The corresponding map on H is given by

(w, t) → (s, 0) ∗ (w, t). (16)

Again, we see left multiplication on H.

Inversion: The map (a, b, c) → (c, b, a) is an obvious symmetry of the Her-
mitian form we have introduced. The corresponding map on Z ∪∞ is given
by (z, w) → (1/z, w/z). This map interchanges (0, 0) ∈ Z with ∞. It is the
analog of inversion. The corresponding action on H ∪∞ is given by

I(w, t) =
(

−w

|w|2/2 + it
,ℑ

(

1

|w|2/2 + it

))

. (17)

Fibration: There is a canonical map π : H → C, given by

π(w, t) = w. (18)

We do not consider inversion to be a symmetry of H. We call the other maps
considered above symmetries . Every symmetry T of H acts on C via the
rule

T ∗(w) = π ◦ T (w, s). (19)

The definition turns out to be independent of the choice of s. The map
T → T ∗ carries T to a similarity of C. We say that T covers T ∗.

The fibration is a nice way to study the structures in H, because we can
project them to C and then draw them. This is one of secrets of under-
standing the 4-dimensional space CH

2: First look at how things intersect
the boundary, then map to H, then project to C.
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3 Structures in the Heisenberg Group

3.1 The Contact Plane Field

The map Z → H carries the complex line field tangent to Z to a left-invariant
plane field on H. We can figure out this plane field using the symmetries
above. We call this plane field the contact plane field . We call the planes of
the contact field the contact planes . The name comes from the connection
to contact geometry.

Lemma 3.1 At (0, 0), the contact plane is C × {0}.

Proof: Symmetry. The only plane through (0, 0) invariant under rotations
is C × {0}. ♠

Lemma 3.2 The contact plane field is the kernel of the 1-form

dz − (xdy − ydx).

Proof: At the point (1, 0), the plane is spanned by the vectors

(1, 0), (i, 1). (20)

In real notatation, these vectors are (1, 0, 0) and (0, 1, 1). We get this from
setting s = 1 in Equation 14 and considering the resulting action on C×{0}.
Note that both vectors are killed by the form dz−dy. So, the claim is true at
(1, 0). But both the contact field and the kernel of the 1-form are invariant
under rotations, dilations, and vertical translations. Hence, by symmetry,
the claim is true everywhere. ♠

Let Π be any contact plane. The restriction π : Π → C naturally gives
Π a complex structure – i.e. a canonical identification with C. We can say
that a Π-circle is an ellipse E ⊂ Π such that π(E) is a circle. We will see
this structure on Π come up below when we discuss C-circles.
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3.2 C-circles

A C-circle is the image in H if the boundary of a C-slice of CH
2.

Lemma 3.3 A straight line in H lies in a C-circle iff the line is vertical.

Proof: The set
CH

2 ∩ {[z1 : 0 : z3]} (21)

is a C-slice. The corresponding set in H is the vertical line 0 ×R. It now
follows from translation symmetry that any vertical line in H lies in a C-
circle.

Conversely, suppose that L is a straight line lying in a C-circle. Applying
Heisenberg symmetries, we can assume that L goes through the origin. But
then L corresponds to a C-slice in CH

2 containing (0, 0) and ∞. Such a
C-slice is unique and must be the one we have already considered, namely
0×R. ♠

Call a curve in H non-straight if it is not a straight line.

Lemma 3.4 A loop X in H is a non-straight C-circle if and only if X is a

Π-circle contained in the contact plane Π through its own center of mass.

Proof: For the purposes of this lemma, call a loop good if it is a Π-circle
contained in the contact plane Π through its own center of mass. The one
point compactification of the set

CH
2 ∩ {(−1/2, w, 1)| |w| = 1} (22)

is a C-slice. The corresponding C-circle in H is S1 × {0}, where S1 is the
unit circle in C. Note that the center of mass of X is the origin, and X
is contained in C × {0} and π(X) = S1. So, S1 × {0} is good and also a
C-circle.

Using Heisenberg symmetries, we see that every good loop is a C-circle.
Conversely, we can move a C-circle by Heisenberg symmetries so that it
contains the two points (±1, 0). But then, by uniqueness of C-slices, the
loop we get must be the one we first considered. Moreover, the Heisenberg
symmetries preserve goodness. Hence, all C-circles are good. ♠
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3.3 R-circles

A R-circle is the image in H if the boundary of a R-slice of CH
2.

We call a curve γ ⊂ H integral if it is always tangent to the contact plane
field. The C-circles are not contact.

Lemma 3.5 A straight line in H lies in an R-circle if and only if it is

contact.

Proof: The set CH
2 ∩ R

2 is the image of the parabola x < −y2/2. The
ideal boundary is the parabola x = −y2/2. The corresponding R-slice in H
is the line R× {0}. This line is integral.

The image of R × {0} under any Heisenberg symmetry is again an R-
circle. It is not hard to show that any straight line integral to the plane
field can be obtained this way. Hence, every integral straight line lies in an
R-circle.

Conversely, any straight R-circle corresponds to an R-slice which can be
moved to CH

2 ∩R
2 by symmetries which fix ∞. Hence every straight R-

circle is an integral straight line. ♠

We recall a definition from classical geometry. A Lemniscate is any curve
which is similar to the one given, in polar coordinates, by r2 = cos(2θ).
At the same time, a Lemniscate is what you get when you invert a square
hyperbola xy = a.

Lemma 3.6 A loop X in H is non-straight R-circle if and only if X is

integral and π(X) is a lemniscate.

Proof: Call X good if X is integral and projects to a lemniscate.
We apply the Heisenberg inversion I from Equation 17 to the R-circle

γ = R × {1}. Parametrizing this R-circle by (s, 1), we see that the first
coordinate of I(γ) is given by

−1

s/2 + i/s
. (23)

But the curve s → s/2 + i/s lies on the hyperbola xy = 1/2. Hence the first
coordinate of I(γ) is a Lemniscate. Hence I(γ) is both good and an R-circle.

The rest of the proof follows from the kind of symmetry used several times
already. ♠
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3.4 Bisectors and Spinal Spheres

Recall that a bisector in CH
2 is the equidistant set between two points.

Lemma 3.7 The set X = (R×C) ∩CH
2 is a bisector.

Proof: Consider the points

p± = (−1± i : 0 : 1) ∈ CH
2. (24)

Given q = (s : w : 1) ∈ X, we compute

〈p±, p±〉 = −2; 〈q, p±〉 = (s− 1)± i. (25)

Therefore, the quantity

cosh(d(p±, q)) =
〈p±, q〉〈q, p±〉

〈p±, p±〉〈q, q〉
=

(s− 1)2 + 1

−2〈q, q〉
(26)

is the same for both points p+ and p−. ♠

A spinal sphere is the ideal boundary of a bisector. We call a spinal
sphere in H straight if it contains ∞.

Lemma 3.8 A surface in H is a straight spinal sphere if and only if it is a

contact plane.

Proof: The spinal sphere in H corresponding to the bisector we have just
considered is C × {0}. This is certainly a contact plane. As above, the rest
of the lemma follows from symmetry. ♠

The contact plane C × {0} has a double (singular) foliation:

• The C-circles {|z| = r} × {0} give one singular foliation.

• The straight R-circles through the origin give the other one.

These give a natural polar coordinate system to the spinal sphere. By sym-
metry, these foliations exist on all the spinal spheres, not just the straight
ones.

The non-straight spinal spheres are a bit messier to describe and I won’t
do it. They are all smooth spheres with these two singular foliations.
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4 The Carnot Metric

The Heisenberg symmetries discussed above all cover similarities of C. It
turns out that there is a metric on H such that all Heisenberg symmetries
are similarities. The metric is defined as follows. On each contact plane
Π, we put the Euclidean metric which makes π : Π → C an isometry. We
then define the length of an integral curve to be the integral of the its speed!
This definition makes no sense for non-integral curves. We define the Carnot
distance between two points to be the infimal length of an integral curve
connecting them.

Lemma 4.1 The Carnot distance from (0, 0) to (0, 2πr2) is 2πr.

Proof: Use the contact form dz − (xdy + ydx), and Green’s Theorem, and
the isoperimetric inequality. The best curve in this case is a helix which
projects to the circle of radius r centered at the origin. ♠

Lemma 4.2 The Carnot distance from (0, 0) to (r, 0) is r.

Proof: The segment [0, r]×{0} is the best integral connector in this case. ♠

Notice that when r is small, the distance from (0, 0) to (0, πr2) is huge
in comparison to the Euclidean distance between the two points. Thus,
the Carnot metric is not bi-lipschitz equivalent to the Euclidean metric (or
any Riemannian metric) on H. Indeed, it turns out that the Hausdorff
dimension of H, with respect to the Carnot metric, is 4-dimensional. This
crazy-sounding statement is not so hard to prove. Using Lemmas 4.1 and
4.2 and symmetry, one can see that it takes about O(ǫ−4) Carnot-balls of
diameter ǫ to fill up the unit Carnot ball.
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