
Notes on Link Universality. Rich Schwartz: In his 1991 paper, Ram-

sey Theorems for Knots, Links, and Spatial Graphs , Seiya Negami proved
a beautiful theorem about linearly embedded complete graphs. These notes
give a more straightforward proof. Up to the last step, all the ideas essen-
tially come from Negami’s paper. For the last step, “putting a link on the
twisted cubic” I couldn’t understand Negami’s proof so I found my own.
Negami also proves his Theorem for embedded graphs, but I ignore this case
for ease of exposition.

The Result: Let L be any link. Then there is an integer R = RL with
the following property: Let S be any collection of R points in general posi-
tion in R

3. Then there is a union of polygons L′, with vertices in S, having
the same link type as L. An equivalent formulation is that any straight line
embedding of a complete graph of size RL has a union of cycles with link
type L.

Warmup: Negami’s Theorem is a close cousin of the following result from
planar geometry. Given an integer n there is some other integer N = Nn

such that any N points in the plane in general position contains a convex
n-gon. Here is a proof of that result. We order the points, from 1 to N .
Let S3 denote the set of ordered triples of {1, ..., N}. That is, an element of
S3 has the form (i, j, k) with i < j < k. We color an element (i, j, k) white
if the corresponding triangle is positively oriented, and black in the other
case. Ramsey’s Theorem says that, once N is large enough, there is a subset
S ′ ⊂ S, having size n, such that every element of S ′

3
has the same color. But

then the vertices of S ′ make a convex n-gon.

Corollary: A subset S ⊂ R
3 is clean if S projects onto a finite set of

points contained in the graph of a convex function. The points of the pro-
jection are the vertices of a convex polygon, and they can be ordered left
to right. The warm-up result has the following corollary: Given any integer
n, there is some integer N with the following property. If S is a subset of
N general position points in R

3, then (after rotating S if necessary) some
n-element subset S ′ ⊂ S is clean.

Proof: taking N large, we obtain a 2n-element subset S ′ whose projection
is the vertices of a convex polygon. We can divide this polygon into 2 halves,
each of which is rotationally equivalent to a finite set of points on the graph
of a convex function. One of the halves has at least n points.
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Positivity: We call a linearly embedded complete graph clean if its ver-
tices form a clean set. In view of the corollary, it suffices to prove Negami’s
Theorem for clean complete graphs. Let Γ be a clean complete graph. We
orient the edges of Γ so that they point from left to right, when projected
into the plane. In other words, the tail vertex of each edge has smaller
x-coordinate than the head vertex.

We call a pair of crossing edges in the graph positive if they cross as in
Figure 1, with the edge having tail with larger x coordinate going over the
other one.

Figure 1: A positive crossing

We call Γ positive if every pair of crossing edges is positive. Now we prove the
following result. Given any n there is some N with the following property:
If Γ is a clean complete graph of size N , then (up to mirrror reflections) Γ
contains a positive clean complete graph Γ′ of size n.

The proof is just like the warmup. S be a clean set of N points in R
3.

Let S4(S) denote the set of ordered 4-tuples of {1, ..., N}. Given an element
(i, j, k, l), we consider the corresponding 4-tuple of points. There is a unique
way to make two crossing edges from these points. We color (i, j, k, l) white
if these edges form a positive crossing, and black otherwise. Ramsey’s The-
orem gives us a set S ′ ⊂ S of size n such that all elements of S4(S

′) get the
same color. If the color is white, we are done. If the color is black, we reflect
the picture in the xy plane.

The End of the Proof: Below we will prove the following claim. Given
any link L, there is some N = NL such that any positive clean complete
graph of size N contains a cycle with link type L. Call this claim C(+). At
the same time, one can define negative clean complete graphs and make a
similar claim. Call this claim C(−). Since C(+) is supposed to hold for all
links, including the mirror image of a given link, C(+) for all links implies
C(−) for all links.
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From what we have proved above, every sufficiently large linearly embed-
ded complete graph contains either a positive or a negative clean complete
graph of size NL. Hence, claims C(+) and C(−) finish the proof. However,
since C(+) implies C(−), just C(+) alone finishes the proof. So, to finish
the proof of Negami’s Theorem, we just have to prove C(+).

The Twisted Cubic Let Kn denote the complete graph on n vertices.
Any two clean positive embeddings of Kn are equivalent in the following
sense: They contain precisely the same links: The obvious bijection between
two such embeddings is such that the corresponding cycles in each one have
the same planar diagrams. Given this equivalence, it is useful to have a nice
model for a clean positive complete graph. The twisted cubic provides such a
model. The twisted cubic is the curve X with parametric equations (t, t2, t3).
This curve projects to the parabola (t, t2). Any collection of n points on X

gives rise to a clean positive embedding of Kn. So, for the purposes of prov-
ing C(+), we just have to show that any link can be realized as a polygon
having vertices on the twisted cubic.

Bridge Position: Let f(x, y, z) = x denote the map which takes the first
coordinate. Say that a smooth link L is in bridge position if if f(L) = [0, 1]
and the only critical points of f are either global minima, namely f−1(0),
and global maxima, namely f−1(1). When L is in bridge position, L is real-
ized as a bipartite graph where the (not necessarily straight) edges connect
minima to maxima. It is a well-known result that every link can be put in
bridge position. Intuitively, you just clasp all the minima of the link with
your left hand, and all the maxima with your right hand – then you pull the
link tight, like a rubber band. So, as a first step to proving C(+), we put
the given link in bridge position.

Positive Bridge Position: Let L be a link in bridge position. Think-
ing of L as a bipartite graph, we orient each of the strands of L from left
to right. We say that L is in positive bridge position if all the crossings are
positive. Every link can be placed in positive bridge position: Scanning the
link from left to right, you look for the first negative crossing. Assuming
you have found a negative crossing, you give the right half of the link a
twist while keeping (most of) the left half fixed. This twist has the effect of
removing the negative crossing at the expense of adding some new positive
crossings. Just do this finitely many times to eliminate all negative crossings.
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Realizing the Link (This part of the notes diverges significantly from what
Negami does.) Given a link in positive bridge position, we can spread out
the crossings so that they appear sequentially as in Figure 2. The portion
between each set of vertical lines is one of a small number of standard types.
We will call such a portion a segment . (The vertical lines are not part of the
link.) The crossings are all understood to be positive. The link below has 6
segments.

Figure 2: A link in positive bridge position

Each individual segment of the link L can certainly be realized as a col-
lection of arcs with endpoints on the twisted cubic. See Figure 4 below.
Moreover, we can realize each segment individually in such a way that it lies
in a thin tubular neighborhood of a single segment. Then we can concatenate
the individual realizations. This simple procedure almost works. Unfortu-
nately, it produces a link L∗ which is possibly different from L. However,
let L′ denote the new link in which every other segment has been reversed
top-to-bottom. Figure 3 shows what we mean by way of example. The red
colored segments have been reversed, but only segment 4 notices the differ-
ence. Segments 2 and 6 are symmetric.
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Figure 3: The twist of the link from Figure 2.
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The lucky thing is that (L′)∗ is isotopic to L. Figure 4 shows this in action.
Figure 4 shows the first 4 segments of L′ embedded on the twisted cubic. (We
have drawn the projection of the twisted cubic as an arc of a circle, to get a
better picture.) One goes from (L′)∗ to L simply by untwisting the picture,
starting at the right and moving left, making a (roughly) 180 degree twist at
each juncture. The positivity makes this twisting possible. For instance, all
the red lines of segment 4 go over the black lines of segment 3, allowing one
to straighten out segment 4 with a twist.

Figure 4: Realizing the first 4 segments of L′.
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