Mobius Maps Preserve Circles

Rich Schwartz

September 10, 2013

The purpose of this note is to give a strange proof that Mobius transformations map circles to circles. Let $C_0 = \mathbf{R} \cup \infty$, considered as a subset of $\mathbf{C} \cup \infty$. The proof assumes that the Mobius transformations form a group Gof homeomorphisms of $\mathbf{C} \cup \infty$. The proof is based on 4 additional properties.

- 1. For any circle C, there is some $T \in G$ such that $T(C_0) = C$.
- 2. If (a_1, a_2, a_3) and (b_1, b_2, b_3) are two triples of distinct points on C_0 , then there is some $R \in G$ such that $R(C_0) = C_0$ and $R(a_i) = b_i$ for i = 1, 2, 3.
- 3. $R \in G$ is determined by where it takes 3 distinct points of C_0 .
- 4. If γ is any non-circular loop, then there is some circle D such that $\gamma \cap D$ has cardinality at least 3.

Main Argument: Let $M \in G$ and let C be a circle. We could like to show that $\gamma = M(C)$ is a circle. Using Properties 1 and 4, it suffices to consider the case when $C = C_0$ and $\gamma = M(C_0)$ intersects C_0 in points b_1, b_2, b_3 . Let $a_i = M^{-1}(b_i)$ for i = 1, 2, 3. Let $R \in G$ be given by Property 2. Then R and M agree on a_1, a_2, a_3 . But then, by Property 3, R = M. But then $M(C_0) = R(C_0) = C_0$.

Property 1: Using similarities, we reduce to the case when C is the unit circle. The Mobius transformation T(z) = (z+i)/(z-i) evidently maps C_0 into C, and the upper halfplane outside the unit disk, and the lower halfplane inside the unit disk. Since T is a homeomorphism, we must have $T(C_0) = C$.

Property 2: By the group property, it suffices to consider the case when $(b_1, b_2, b_3) = (0, 1, \infty)$. The map

$$T(z) = \frac{-(a_2 - a_3)(a_1 - z)}{(a_1 - a_2)(a_3 - z)}$$

is a Mobius transformation and has all the properties.

Property 3: Using Property 2, and the group property, it suffices to show that a Mobius transformation is the identity provided that it fixes $(0, 1, \infty)$. Starting with T(z) = (az + b)/(cz + d), and plugging T(0) = 0 gives b = 0. Plugging in T(1) = 1 gives a = c + d. Plugging in $T(\infty) = \infty$ gives c = 0. We're left with T(z) = z.

Property 4: (The interesting one.) Suppose γ is noncircular. We can find a circle C(0) that is contained in the region bounded by γ and intersects γ in at least two points, say a and b. Let m(0) be the midpoint of one of the two arcs of C(0) bounded by a and b. If $m(0) \in \gamma$ we are done. Otherwise, m(0) lies in the interior of the region bounded by γ . Consider the family of circles C(t) containing a and b. Choose the parameter t so that the distance from m(t) to a tends to ∞ with t. But then, by continuity, there is some t such that $m(t) \in \gamma$. So, C(t) is the desired circle.