
Notes on Random Graphs: The purpose of these notes is to explain
what is meant by Paul Erdos’ result that “any two random graphs are iso-
morphic.”. These notes are structured in such a way that we avoid talking
about randomness and probability until the last section. Most of the proofs
in these notes have nothing (directly) to do with random graphs. To save
words, we stipulate now that all our infinite graphs have the natural numbers
N as their vertex sets.

The Extension Property: Let Γ be an infinite graph. We say that Γ
has the extension property if the following is true. For any two disjoint finite
subsets A,B ⊂ N , there exists a vertex v ∈ N − A − B such that v is
connected to all vertices in A and to no vertices in B.

Lemma 0.1 If Γ has the extension property then Γ also has the following

property. For any disjoint finite subsets A,B ⊂ N , there are infinitely many

vertices {vi} so that vi is connected to all vertices in A and none in B.

Proof: Assume that we have produced v1, ..., vn having the above property
with respect to A and B. We then let A′ = A∪ v1∪ ...∪ vn and B′ = B. The
extension property guarantees that there is some v′ such that v′ is connected
to all vertices in A′ and none in B′. But then we set vn+1 = v′, and v1, ..., vn+1

all have the desired property with respect to A and B. By induction, we can
find an infinite list of such vertices. ♠

Just to anticipate where these notes are going, we’re going to prove later
on that a random graph with a countable vertex set has (with probability
1) the extension property. So, any results about graphs with the extension
property will then hold (with probability 1) for random graphs.

Isomorphisms between Graphs Here is the main result.

Lemma 0.2 Suppose that Γ1 and Γ2 are two infinite graphs, both having the

extension property. Then Γ1 and Γ2 are isomorphic.

Proof: Let Γj(n) denote the subgraph induced by vertices {1, ..., n} of Γj.
Certainly there is an isomorphism f1 : Γ1(1) → Γ2(1). We are just talking
about single points here. We let g1 = f−1

1 .
Suppose, by induction, that we have produced maps fn and gn and sub-

graphs Γ′

1(n) and Γ′

2(n) such that
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• Γ1(n) ⊂ Γ′

1(n).

• Γ2(n) ⊂ Γ′

2(n).

• fn : Γ′

1(n) → Γ′

2(n) is an isomorphism.

• gn : Γ′

2(n) → Γ′

1(n) is the inverse of fn.

If fn is already defined on (n+ 1), we let (in+1) = fn(n+ 1). Otherwise,
we make the following definition. Let A1 be the set of vertices of Γ′

1(n)
connected in Γ1 to (n+ 1). Let B1 be the vertices of Γ′

1(n) not connected in
Γ1 to (n + 1). By the extension property, there is some vertex (in+1) of Γ2

which is connected in Γ2 to all vertices of fn(A1) and not connected in Γ2 to
any vertices of fn(A2).

If gn is already defined on (n+1), we define (jn+1) = gn(n+1). Otherwise,
we define (jn+1) just like we defined (in+1), but with the roles of Γ1 and Γ2

reversed. We let Γ′

1(n+1) be the graph induced by V (Γ′

1(n))∪ (jn+1) and we
let Γ′

2(n + 1) be the graph induced by V (Γ′

2(n)) ∪ (in+1). We let fn+1 = fn
on Γ′

1(n) and then (if necessary)

fn+1(n+ 1) = (in+1), fn+1(jn+1) = (n+ 1).

Likewise we define gn+1 = gn on Γ′

2(n) and (if necessary)

gn+1(n+ 1) = (jn+1), gn+1(in+1) = (n+ 1).

We then map in the edges according to where their endpoints go. This is the
desired extension.

By induction we get an infinite sequence {fn} and {gn} of maps, and the
sequences are compatible in the sense that fn = fn+1 and gn = gn+1 wher-
ever both maps are defined. For any vertex v of Γ1 we define f(v) = fn(v),
where n is any value such that v is a vertex of Γ′

1(n). The compatibility
between these maps guarantees that f is well defined. Similarly we define
the limiting map g. By construction f and g are inverses of each other, and
f is an isomorphism from Γ1 to Γ2 (and g is an isomorphism from Γ2 to Γ1.) ♠

It is worth pointing out why we considered both f and g in the above
construction. Were we to just consider f we might have just produced an
isomorphism between Γ1 and some subgraph of Γ2. By considering both {fn}
and {gn} at the same time, we guaranteed that f : Γ1 → Γ2 was onto.
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Homogeneity: Our argument gives us somewhat more than we have claimed
so far. Call a subgraph of a graph induced if it is, in the classical sense, in-
duced by some subset of the vertices. An induced subgraph involves all
the edges of the graph which connect vertices within the vertex set of the
subgraph.

Lemma 0.3 Suppose that Γ1 and Γ2 are two infinite graphs with the ex-

tension property. Suppose that Γ′

1 ⊂ Γ1 and Γ′

2 ⊂ Γ2 are finite induced sub-

graphs. If there is an isomorphism f ′ : Γ′

1 → Γ′

2 then there is an isomorphism

f : Γ1 → Γ2 which extends f ′.

Proof: We set f0 = f ′ and g0 = f−1
0 . We then repeat the argument given

in the previous lemma, producing sequence of maps {fn} and {gn} which
respectively extend f0 and g0. The limit map f is the desired isomorphism.
♠

A graph is called vertex transitive if there is a graph automorphism that
takes any vertex to any other vertex. A graph is called edge transitive if
there is a graph automorphism which takes any edge to any other edge.

Corollary 0.4 A graph with the extension property is both vertex transitive

and edge transitive.

Proof: Let Γ be such a graph. Let v1 and v2 be arbitrary vertices of Γ.
We set Γ1 = Γ2 = Γ, and Γ′

1 = {v1} and Γ′

2 = {v2}. We then apply the
above lemma. This proves vertex transitivity. The same kind of argument
establishes edge transitivity. ♠

The Rado Graph: Now we know that there is at most one countable
graph with the extension property, and that this graph (assuming it exists)
is both vertex transitive and edge transitive. However, we have yet to give
an example of a graph like this. The Rado graph is the canonical example.

Suppose that i < j ∈ N are two numbers. We join i to j by an edge
if and only if the ith bit in the binary expansion of j is a 1. We count the
bits from right to left. Thus (k) is connected to 2k−1 vertices in a row, then
skips 2k−1 vertices, then is connected to 2k−1 vertices, and so on. To show
that the Rado graph has the desired properties, suppose that A and B are
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finite disjoint subsets of N . Just choose any number that has all 1s in the
places corresponding to numbers of A and all 0s in the places corresponding
to numbers of B. The vertex with this number does the job.

Measure Theory: Here is a very brief and superficial account of the large
subject of measure theory. Let S ⊂ [0, 1] be a set. A countable open cover of
S is a countable collection {Ij} of open 1 intervals in [0, 1] such that S ⊂

⋃
Ij.

Given S, we define

m(S) = inf
C

∞∑

i=1

|Ij|. (1)

Here |Ij| is the length of the interval Ij. The infimum is taken over the set
C of all open covers of S. We call S a null set if m(S) = 0. The countable
union of null sets is also null.

The function m is defined for any subset of [0, 1] but it only behaves well
for certain subsets. A σ-algebra of subsets of [0, 1] is a collection A of subsets
with the following properties.

• If S belongs to A then so does [0, 1]− S.

• The countable union of subsets in A belongs to A.

• The countable intersection of subsets in A belongs to A.

The intersection of any collection of σ-algebras is again a σ-algebra. For this
reason, it makes sense to speak of the smallest σ-algebra that contains all
open sets of [0, 1]. This σ-algebra is called the Borel σ-algebra. A Borel

set is a member of the Borel σ-algebra. Intuitively, a Borel set is obtained
by starting with open sets and taking countable unions, complements, and
intersections countably many times.

A Lebesgue set is any set of the form B∪N , where B is a Borel set and N

is a null set. When S is a Lebesgue set, m(S) is called the Lebesgue measure

of S. The function m behaves nicely for Lebesgue sets. For instance, if {Si}
is any countable collection of pairwise disjoint Lebesgue sets, we have

m(
⋃

Si) =
∑

m(Si).

Likewise, m([0, 1]− S) +m(S) = 1 for any Lebesgue set S.

1We count [0, x) and (x, 1] as open intervals in [0, 1].
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If S is a set which has a length in the traditional sense – e.g., S is a finite
union of intervals – then m(S) coincides with the length of S. What is nice
about the Lebesgue measure is that it makes sense for sets which don’t have
length in the traditional sense. For instance, the set of irrationals in [0, 1]
has measure 1 because the set of rationals (a countable set) has measure 0.

Random Graphs: In this section, “measure” always denotes “Lebesgue
measure”. Let S denote the set of all infinite binary sequences which have
infinitely many 0s and infinitely many 1s. There is a map φ from S to [0, 1],
which maps the binary sequence to the number in [0, 1] that has this sequence
as its binary expansion. φ is injective, and the image of φ contains everything
in [0, 1] except a countable set. Let’s write [0, 1]′ = φ(S). Note that [0, 1]′

has measure 1.
Call an infinite graph Γ normal if Γ has infinitely many edges, and the

complement of Γ has infinitely many edges. Choose some enumeration of the
pairs i, j ∈ N with i < j. Each binary sequence s ∈ S gives rise to a normal
infinite graph: If (i, j) is the nth pair, we join (i) to (j) in our graph if and
only if the nth bit of s is 1. This construction clearly produces every normal
graph. In this way, we produce a bijection between the set of normal infinite
graphs and [0, 1]′. If we have some subset of the set of normal graphs, we can
talk about its measure. By this, we mean the measure of the corresponding
set in [0, 1]′.

Intuitively, a sequence in S represents the result of flipping a fair coin
infinitely often. So, we are flipping a coin for each edge to decide if that edge
belongs to our graph. The identification of S with [0, 1]′ does exactly the
right thing in terms of measuring the probabilities of events. For instance,
the set in [0, 1]′ corresponding to those sequences having n specified bits has
measure 2−n.

To say that a normal graph has some property with probability 1 is to
say that the set of normal graphs having that property has measure 1. Or, in
other words, the set of normal graphs not having that property has measure
0. We don’t lose anything by throwing out the set of non-normal infinite
graphs, because there are only countably many of these. Determining the
edges by a fair coin flip produces a normal graph with probability 1.

Lemma 0.5 With probability 1, a normal infinite graph has the extension

property.

Proof: Let A and B be finite disjoint subsets of N . For any v ∈ N−A−B,
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let P (v) denote the set of normal graphs for which v fails to satisfy the basic
property with respect to A and B. That is, either v is not connected to
some vertex in A or else v is connected to some vertex in B. The set P (v)
corresponds to the subset of [0, 1]′ consisting of numbers which have some
bit “incorrect” in one of the spots determined by A or B. Letting n be the
cardinality of A∪B, we see that the set P (v) has measure 1−2−n. Intuitively,
we are flipping a coin n times and the chances that everything goes right is
2−n. So, the chances that something goes wrong is 1− 2−n.

What happens with respect to one vertex is independent from what hap-
pens with respect to another. Hence, for distinct vertices v1, ..., vk, we have

m(P (v1) ∩ ... ∩ P (vk)) = (1− 2−n)k.

But then the set S(A,B) of normal graphs for which all the vertices fail to
have the extension property for the pair (A,B) has measure at most (1−2−n)k

for all k = 1, 2, 3, .... This is only possible if S(A,B) has measure 0.
In other words, if we fix A and B, the set of normal graphs having the ex-

tension property for A and B has measure 1. But there are countably many
pairs (A,B) of finite disjoint sets. The intersection of a countable collection
of measure 1 sets again has measure 1. Hence, the set of normal graphs
having the extension property has measure 1. ♠

If we produce two random graphs then, with probability 1, they both
have the extension property. Hence, they are isomorphic to each other (and
also to the Rado graph.) This is what is meant by the statement that any
two random countable graphs are isomorphic.
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