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Abstract

Let Sol be the 3-dimensional solvable Lie group whose underlying
space is R3 and whose left-invariant Riemannian metric is given by

e−2zdx2 + e2zdy2 + dz2.

Let E : R3 → Sol be the Riemannian exponential map. Given
V = (x, y, z) ∈ R3, let γV = {E(tV )|t ∈ [0, 1]} be the correspond-
ing geodesic segment. Let AGM stand for the arithmetic-geometric
mean. We prove that γV is a distance minimizing segment in Sol if
and only if

AGM

(√
|xy|, 1

2

√
(|x|+ |y|)2 + z2

)
≤ π.

We use this inequality to precisely characterize the cut locus in Sol,
prove that the metric spheres in Sol are topological spheres, and almost
exactly characterize their singular sets.

1 Introduction

1.1 Background

Sol is one of the 8 Thurston geometries [Th], the one which uniformizes
torus bundles which fiber over the circle with Anosov monodromy. Sol
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has sometimes been the topic of studies in coarse geometry and geomet-
ric group theory. The deep and difficult work of A. Eskin, D. Fisher, and K.
Whyte [EFW], a landmark of geometric group theory, shows that any quasi-
isometry of Sol is boundedly close to an isometry. As another example, N.
Brady [B] proves that lattices in Sol are not asynchronously automatic.

The metric geometry of Sol is intriguing and mysterious. Sol has two
totally geodesic foliations by hyperbolic planes, meeting at right angles, but
somehow the two foliations are “turned upside down” with respect to each
other. This engenders a kind of topsy-turvy feel. Another complicating
feature is that Sol has sectional curvatures of both signs, causing an interplay
of focus and dispersion. A number of authors have studied the differential
geometry of Sol, with an emphasis on mean curvature surfaces. See the work
by R. López and M. I. Munteanu [LM] and the references therein.

In [T], M. Troyanov integrates the geodesic equations for Sol and gets
explicit formulas for the geodesics in terms of elliptic integrals. He uses these
expressions to determine what he calls the horizon of Sol: the topological
space of equivalence classes of geodesics, where two geodesics are equivalent if
they have finite Hausdorff distance. The horizon gives information about the
large-scale organization of the Sol geodesics. This theme is further pursued
by S. Kim in [K]. In [BS], A. Bölcskei and B. Szilágyi take a related approach
to the geodesics in Sol, with the view towards drawing pictures of the spheres
in Sol. Their paper has pictures of the spheres of radius 1 and 2.

Matt Grayson’s 1983 Princeton PhD thesis [G] takes a different approach
to studying the geodesics. Working in a special frame of reference, Grayson
converts the geodesic flow on Sol to a particular Hamiltonian flow on the
2-sphere, and then gives a detailed, penetrating analysis of the geodesics in
Sol. We think that Grayson had many of the ingredients needed to establish
the results in our paper, but he doesn’t quite go in that direction. In any
case, [G] was a tremendous inspiration for us.

The Hamiltonian flow approach, which we also take, goes back at least
to V. I. Arnold’s work [A] on hydrodynamics. See also the book by V. I.
Arnold and B. Khesin [AK]. In a related direction, A. V. Bolsinov and I.
A. Taimanov [BT] use the same formalism to study the geodesic flow on a
3-dimensional solv-manifold and construct an integrable geodesic flow with
positive topological entropy.

In a different direction, R. Coulon, E. A. Matsumoto, H. Segerman, and
S. Trettel [CMST] recently made a virtual reality ray-tracing program for
Sol. We can say, from firsthand experience, that this thing is amazing.
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1.2 Main Results

The AGM, or arithmetic-geometric mean, is defined for 0 ≤ α0 ≤ β0, as
follows. We iteratively define

αn+1 =
√
αnβn, βn+1 =

αn + βn
2

. (1)

Then
AGM(α0, β0) = lim

n→∞
αn = lim

n→∞
βn. (2)

This definition gives a rapidly converging sequence. See [BB] for details.
Given V = (x, y, z) ∈ R3 we define

µ(V ) = AGM

(√
|xy|, 1

2

√
(|x|+ |y|)2 + z2

)
. (3)

Note that µ(V ) = 0 iff xy = 0. Also, µ(rV ) = |r|µ(V ). The function µ is an
“extension” of the AGM because µ(V ) = AGM(|x|, |y|) when z = 0.

We equip Sol with the left invariant metric

e−2zdx2 + e2zdy2 + dz2. (4)

Given V ∈ R3 as above, we let γV = {E(tV )|t ∈ [0, 1]} be the corresponding
geodesic segment. Here E denotes the Riemannian exponential map.

We call V and γV small , perfect , or large whenever we have µ(V ) < π,
µ(V ) = π, or µ(V ) > π, respectively. These notions have an interpretation
in terms of Hamiltonian dynamics. The vector field

Σ(x, y, z) = (xz,−yz,−x2 + y2), (5)

which is the symplectic gradient of the function F (x, y, z) = xy, encodes the
geodesic flow on Sol in a way we will describe in §2.2. The geodesic segment
γV corresponds to some integral curve σV of Σ. At least generically, γV is
small if σV is embedded, perfect if σV makes precisely one closed loop, and
large if σV winds more than once around a closed loop. More geometrically,
γV is small, perfect, or large according as γV spirals less than, equal to, or
more than once around its Grayson cylinder . See §5.2 for a discussion.

Theorem 1.1 (Main) A geodesic segment in Sol is a distance minimizer
if and only if it is small or perfect. That is, γV is a distance minimizing
geodesic segment if and only if µ(V ) ≤ π.
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The Main Theorem is a very compact way of writing a more extensive
result, which we call the Cut Locus Theorem. We now describe this result.
Let Π be the plane Z = 0. We define sets

∂0M ⊂ ∂M ⊂M ⊂ R3, ∂0N ⊂ ∂N ⊂ N ⊂ Sol

as follows.

• Let M ⊂ R3 be the set of small vectors.

• Let ∂M ⊂ R3 be the set of perfect vectors.

• Let ∂0M = ∂M ∩ Π.

• Let ∂0N = E(∂0M).

• Let ∂N be the complement, in Π, of the component of Π − ∂0N that
contains the origin.

• Let N = Sol− ∂N .

Note the sets N and ∂N are defined entirely from the 1-dimensional set
∂0N . It turns out that ∂0N is the disjoint union of 4 properly embedded
curves, each diffeomophic to a line and the graph of a function in polar
coordinates. See Lemma 3.1. Figure 3 in §3.2 shows one component of ∂0N
and the corresponding component of ∂N .

Theorem 1.2 (Cut Locus) The following is true:

1. E induces a diffeomorphism from M to N .

2. E induces a 2-to-1 local diffeomorphism from ∂M −∂0M to ∂N −∂0N .

3. E induces a diffeomorphism from ∂0M to ∂0N .

The Cut Locus Theorem gives ∂N as the cut locus of the identity in Sol.
Our main motivation for understanding the cut locus is to understand

something about the spheres in Sol. We think that opinion had been divided
as to whether or not the metric spheres in Sol are topological spheres. In
§4.3 we deduce the following easy corollary of the Main Theorem.
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Theorem 1.3 (Sphere) Metric spheres in Sol are topological spheres. For
the sphere SL of radius L centered at the identity in Sol the following holds.

• When L < π
√

2, the sphere SL is smooth.

• When L = π
√

2, the sphere SL is smooth except (perhaps) at the 4
points (x, y, 0) where |x| = |y| = π.

• When L > π
√

2, the sphere SL is smooth away from 4 disjoint arcs, all
contained in the intersection of the plane Z = 0 and the set |XY | = H2

L

for some HL > π.

We do not know whether the sphere Sπ
√

2 is smooth at the 4 points (x, y, 0)
where |x| = |y| = π. The function L → HL is defined by the following
property.

L =
√

8 + 8mK(m) =⇒ HL =
4E(m)√
1−m

−
√

4− 4mK(m). (6)

Here K and E respectively are the complete elliptic integrals of the first and
second kind, called EllipticK and EllipticE in Mathematica [W, p 774],
and m ∈ [0, 1) is the parameter used in Mathematica. See §5.2 for the
definition of K. One can derive Equation 6 from the formulas in [G] or [T],
but we will not give a derivation because we do not need the formula for our
proofs.

Figure 1: Two projections of the Sol metric sphere S5.

Figure 1 shows two projections of a small portion of S5. The black arc
is one of the singular arcs mentioned in the Sol Sphere Theorem. The grey
curves are images of lines of longitude under the exponential map. The Java
program one of us wrote [S] generates these pictures and shows animations.
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1.3 Proof Outline

We first recall several standard definitions from Riemannian geometry. See
e.g. [KN, §8] for details. A geodesic segment is a minimizer if it is the
shortest geodesic segment connecting its endpoints. It is a unique minimizer
if it is the only such geodesic of minimal length connecting its endpoints.
A geodesic segment γ0 has a conjugate point if there is some nontrivial 1-
parameter family γt of geodesics which vanishes to first order at 2 distinct
points on γ0, but not at all points along γ0. The basic result is that if a
geodesic segment is a minimizer, then every proper sub-segment is a unique
minimizer without conjugate points. Call this the restriction principle. Now
we can give the sketch.

Step 1: We call V+ = (x, y, z) and V− = (x, y,−z) partners . It turns
out that V+ is perfect if and only if V− is perfect. Moreover, if V± is perfect,
we prove that E(V+) = E(V−). This is a surprising1 result because the map
(x, y, z) → (x, y,−z) is not an isometry of Sol. By the restriction principle
(and a bit of fussing with the case z = 0), no large geodesic segment is a
minimizer. We carry out this step in §2.

Step 2: This is the crucial step. We show that E(M) ∩ ∂N = ∅. Hence
E(M) ⊂ N . Let Π+ be the portion of the plane Z = 0 above the X-axis
and below the diagonal line Y = X. By symmetry it suffices to show that
E(M) ∩ ∂N ∩ Π+ = ∅. The set E(M) ∩ Π+ is a union of plane curves ΩL

with L ∈ [π/2,∞). Figure 3 from §3.2 shows some of these, in blue. We
show that each such plane curve ΩL is contained in the right triangle ∆L

shown (for L = 5) on the right side of Figure 3. The yellow set in Figure 3
is ∂N ∩Π+. We prove the result that ΩL ⊂ ∆L, which we call the Bounding
Triangle Theorem, by computing the differential equation satisfied by ΩL

and analyzing the behavior of this equation. The claim that E(M)∩∂N = ∅
follows readily. We carry out this step in §3.

Step 3: We show that E(∂M) ⊂ ∂N . Combining this with step 2, we
see that E(∂M) ∩ E(M) = ∅. The key point in showing that E(∂M) ⊂ ∂N
is showing that E is injective on the closure of each component ∂M − ∂0M .

1We are not the first to notice this kind of phenomenon. [K, Lemma 4.1] is the less
precise result that geodesics tangent to partner vectors meet “at some point”. Sungwoon
Kim proves this by analytic methods that differ from our more geometric approach.
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This follows from our Corollary 2.10. We carry out this step in §4.1, though
we prove Corollary 2.10 at the end of §2.

Step 4: Step 3 tells us that E(M) ⊂ N . Steps 1 and 3 tell us that if a
geodesic segment γ is not a minimizer, then the actual minimizer γ∗ with
the same endpoints must also be perfect. The injectivity result in Step 3
then implies that γ and γ∗ are the geodesic segments associated to part-
ner perfect vectors, and hence have the same length, a contradiction. Hence,
perfect geodesic segments are minimizers. We also carry out this step in §4.1.

Step 5: By the restriction principle, small geodesic segments are unique
minimizers without conjugate points. Now we can say that the cut locus is
∂N . The rest of the proof is quite easy. We finish the proof of the Cut Locus
Theorem in §4.2. At the end of §4 we deduce the Sphere Theorem from
the Cut Locus Theorem, and then the Main Theorem from the Cut Locus
Theorem and Equation 21.
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2 Basic Structure

2.1 The Metric and its Symmetries

The underlying space for Sol is R3 and the group law is

(x, y, z) ∗ (a, b, c) = (eza+ x, e−zb+ y, c+ z). (7)

This is compatible with the left invariant metric on Sol given in Equation 4.
For the sake of calculation, we mention two additional formulas:

(x, y, z)−1 = (−e−zx,−ezy,−z), (8)

(x, y, z)−1 ∗ (a, b, 0) ∗ (x, y, z) = (e−za, ezb, 0). (9)

We identify R3 with the Lie algebra of Sol in such a way that the stan-
dard basis elements (1, 0, 0), (0, 1, 0), and (0, 0, 1) respectively generate the
1-parameter subgroups t → (tx, 0, 0), t → (0, ty, 0) and t → (0, 0, tz). See
§5.1 for a discussion of the left invariant vectorfields extending the standard
basis elements.

Sol has 3 interesting foliations.

• The XY foliation is by (non-geodesically-embedded) Euclidean planes.

• The XZ foliation is by geodesically embedded hyperbolic planes.

• The YZ foliation is by geodesically embedded hyperbolic planes.

The complement of the union of the two planes X = 0 and Y = 0 is
a union of 4 sectors . One of the sectors, the positive sector , consists of
vectors of the form (x, y, z) with x, y > 0. The sectors are permuted by the
Klein-4 group generated by isometric reflections in the planes X = 0 and
Y = 0. The Sol isometry (x, y, z) → (y, x,−z) also permutes the sectors.
Because the coordinate planes X = 0 and Y = 0 are geodesically embedded,
the Riemannian exponential map E carries each open sector of R3 into the
same open sector of Sol. We will abbreviate this by saying that E is sector
preserving .

There are 3 kinds of geodesics in Sol:

1. Certain straight lines contained in XY planes.

2. Hyperbolic geodesics contained in the XZ and YZ planes.

3. The rest. We call these typical .

We discuss the nature of typical geodesics in Sol in the next section.
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2.2 The Geodesic Flow

Let G = Sol. Let S(G) denote the space of unit tangent vectors based at the
origin in G. Given a unit speed geodesic γ, the tangent vector γ′(t) is part of
a left invariant vector field on G, and we let γ∗(t) ∈ S(G) be the restriction
of this vector field to (0, 0, 0). In terms of left multiplication on G, we have
the formula

γ∗(t) = dLγ(t)−1(γ′(t)). (10)

In §5.1 we verify that γ∗ satisfies the following differential equation.

dγ∗(t)

dt
= Σ(γ∗(t)), Σ(x, y, z) = (+xz,−yz,−x2 + y2). (11)

This is the point of view taken in [A] and [G]. This system in Equation 11
is really just geodesic flow on the unit tangent bundle of Sol, viewed in a
left-invariant reference frame. Our formula agrees with the one in [G] up to
sign, and the difference of sign comes from the fact that our group law differs
by a sign change from the one there.

This vector field Σ has Klein-4 symmetry and vanishes at the 6 points:
(0, 0,±1) and (±1/

√
2,±1/

√
2, 0). The first two points are saddle singular-

ities and the rest are elliptic. The geodesics corresponding to the elliptic
singularities are straight (diagonal) lines in the plane Z = 0. The geodesics
corresponding to the saddle singularities are vertical geodesics in the XZ and
YZ planes. The geodesics corresponding to the flowlines connecting the sad-
dle singularities lie in the XZ and YZ planes; these are all geodesics of the
second kind. The rest of the geodesics are typical. The flowlines correspond-
ing to the typical geodesics lie on closed loops.

Let us say more about these closed loops. Let F (x, y, z) = xy. The
restriction of F to S2 gives a function on the sphere. The symplectic gradient
XF is defined by taking the gradient of this function (on the sphere) and
rotating it 90 degrees counterclockwise. Up to sign XF = Σ. By construction,
the flow lines of Σ lie in the level sets of F . Most of the level sets of F are
closed loops. We call these loop level sets .

Each loop level set Λ has an associated period L = LΛ, which is the time
it takes a flowline – i.e., an integral curve – in Λ to flow exactly once around.
Equation 21 below gives a formula. We can compare L to the length T of
a geodesic segment γ associated to a flowline that starts at some point of Λ
and flows for time T . We call γ small , perfect , or large according as T < L,
or T = L, or T > L.
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2.3 Concatenation

Let g be the flowline given by

g(t) = (x(t), y(t), z(t)), t ∈ [0, T ]. (12)

The corresponding geodesic segment is Tg(0). This geodesic has length T .
We call g small , perfect , or large according as the corresponding vector Tg(0)
is small, perfect, or large. We define

Λg = E(Tg(0)) (13)

Here Λg is the far endpoint of the geodesic segment corresponding to g when
this segment starts at the origin.

We use the notation g = a|b to indicate that we are splitting the flowline
g into sub-flowlines a and b. Here a is some initial part of g and b is the final
part. It follows from the left invariant nature of the geodesics that

Λg = Λa ∗ Λb (14)

This is also a consequence of Equation 17 below.
While the elements Λa and Λb do not necessarily commute, their vertical

displacements commute. This gives us

πZ ◦ Λg = πZ ◦ Λa + ΠZ ◦ Λb. (15)

Here ΠZ is projection onto the Z-coordinate. Equation 15 has a nice integral
form:

πZ(Λg) =

∫ T

0

z(t) dt. (16)

Remark: Here is how we numerically simulate geodesics in Sol and repro-
duce the numerics in [G]. We choose equally spaced times

0 = t0 < t1 < ... < tn = T,

and consider the corresponding points g0, ..., gn along the flowline g. We then
have

Λg = lim
n→∞

(εng0) ∗ ... ∗ (εngn), εn = T/(n+ 1). (17)

In practice, we first pick some large n and then use Euler’s method to find
approximations to g0, ..., gn. We then take the product in Equation 17.
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Let us deduce some consequences from the equations above. We call
g a symmetric flowline if the endpoints of g have the form (x, y,+z) and
(x, y,−z). Let Π be the plane Z = 0.

Lemma 2.1 A small flowline g is symmetric if and only if Λg ∈ Π.

Proof: If g is symmetric, then the integral in Equation 16 vanishes, by sym-
metry. Hence πZ(Λg) = 0. If b is a small flowline having both endpoints
on the same side of Π then ΠZ(Λb) 6= 0 because the integrand in Equation
16 either is an entirely negative function or an entirely positive function. In
general, if g is not symmetric then we can write g = a|b|c where a, c are either
symmetric or empty, and b lies entirely above or entirely below Π. But then
πZ(Λg) = πZ(Λb) 6= 0 by Equation 15. ♠

Lemma 2.2 If g is a perfect flowline then Λg ∈ Π. If g1 and g2 are perfect
flowlines in the same loop level set, and Λgj = (aj, bj, 0), then a1b1 = a2b2.

Proof: We can write g = u|v where u and v are both small symmetric
flowlines. But then by Equation 15 and Lemma 2.1,

πZ(Λg) = πZ(Λa) + π3(Λb) = 0 + 0 = 0.

Hence Λg ∈ Π and we can write Λg = (a, b, 0). We can write g1 = u|v and
g2 = v|u for suitable choices of small flowlines u and v. Then Λg1 = Λa ∗ Λb

and Then Λg2 = Λb ∗Λa. Hence Λg1 and Λg2 are conjugate in Sol. The second
statement now follows from Equation 9. ♠

Our Theorem 2.3 below strengthens [K, Lemma 4.1], but the method of
proof is completely different. Let E be the Riemannian exponential map.

Theorem 2.3 If V+ and V− are perfect partners, then E(V+) = E(V−).

Proof: Let g± ⊂ S(G) be the flowline corresponding to V±. We can write
g+ = u|v and g− = v|u where u and v are small flowlines. Since V+ and
V− are partners, we can take u and v both to be symmetric. But then the
elements Λu and Λb both lie in the plane Z = 0 and hence commute. Hence,
by Equation 14, we have E(V+) = Λg+ = Λu∗Λv = Λv∗Λu = Λg− = E(V−). ♠
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2.4 Large Geodesic Segments are not Minimizers

Now we complete Step 1 of our proof outline. Our result is essentially a
corollary of Theorem 2.3, but we have to bring in some other results to
handle special cases.

Lemma 2.4 If x, z > 0 and (x, x, z) is perfect, then E(x, x, z) = (h, h, 0)
for some h.

Proof: This is a result of [G]. Here is another proof. Let g be the flowline
corresponding to (x, x, z). We can write g = u|v where u is the flowline
starting at (x, x, z) and ending at (x, x,−z) and v is the flowline starting at
(x, x,−z) and ending at (x, x, z). Both u and v are small symmetric arcs.
Also, the isometry (x, y, z)→ (y, x,−z) swaps u and v. Hence Λu = (α, β, 0)
and Λv = (β, α, 0). But then

E(x, x, y) = Λg = (α, β, 0) ∗ (β, α, 0) = (h, h, 0),

with h = α + β. ♠

Corollary 2.5 A large geodesic segment is not a length minimizer.

Proof: If this is false then, by the restriction principle, we can find a perfect
geodesic segment γ, corresponding to a perfect vector V = (x, y, z), which is a
unique geodesic minimizer without conjugate points. If z 6= 0 we immediately
contradict Theorem 2.3. If z = 0 and |x| 6= |y| we consider the variation,
ε→ γ(ε), through same-length perfect geodesic segments γ(ε) corresponding
to the vector Vε = (xε, yε, ε). The vectors Vε and V−ε are partners, so γ(ε)
and γ(−ε) have the same endpoint. Hence, this variation corresponds to a
conjugate point on γ, a contradiction.

It remains only to consider the segments connecting (0, 0, 0) to (t,±t, 0)
with |t| > π. By symmetry it suffices to show that the segment connecting
(0, 0, 0) to (t, t, 0) is not a distance minimizer when t > π. This is proved
in [G]. For the sake of completeness, we give another proof. It follows from
Equation 21 below that there are values h ∈ (π, t) such that (h, h, 0) = E(V )
for some perfect vector V of the form (x, x, z) with z 6= 0. Hence, by the
restriction principle, the segment connecting (0, 0, 0) to (t, t, 0) is not a dis-
tance minimizer. ♠
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2.5 The Reciprocity Lemma

In this section we prove a technical result which is a crucial ingredient for
Step 2 of our outline. We discovered this result experimentally. It does not
appear in [G].

Lemma 2.6 (Reciprocity) Let V = (x, y, z) be any perfect vector. Then
there some λ 6= 0 such that E(V ) = λ(y, x, 0).

Proof: By symmetry it suffices to work in the positive quadrant. We write
ζ = ζ(t) for any quantity ζ which depends on t. Let p = (x, y, z) be a
flowline for the structure field Σ with initial conditions x(0) = y(0) and (say)
z(0) > 0. Let (a, b, 0) = E(x, y, z). We want to show that a/b = y/x for
all t. We do this by showing that the two functions satisfy the same O.D.E.
and have the same initial conditions. We get the same initial conditions by
Lemma 2.4: we have a(0)/b(0) = 1 = y(0)/x(0).

We get the O.D.E. for y/x using the definition of Σ and the product rule:

d

dt

y

x
=
y′x− x′y

x2
=
−yzx− xzy

x2
= −2z × y

x
. (18)

Now we work out the O.D.E. satisfied by a/b. By definition,

d

dt

a

b
= lim

ε→0

1

ε

(
a(t+ ε)

b(t+ ε)
− a(t)

b(t)

)
.

Let p(t, ε) denote the minimal flowline connecting p(t) to p(t+ ε). Refer-
ring to the definition in §2.3, we have

Λp(t,ε) ≈ ε(x, y, z). (19)

Here the approximation means that we have equality up to order ε2. Hence

(a(t+ ε), b(t+ ε), 0) = Λ−1
p(t,ε) ∗ (a, b, 0) ∗ Λp(t,ε) ≈

(εx, εy, εz)−1 ∗ (a, b, 0) ∗ (εx, εy, εz) = (ae−εz, be+εz, 0).

The first equality is Equation 14. The approximation (to order ε2) comes
from Equation 19. The last equality is Equation 9. But then

d

dt

a

b
= lim

ε→0

e−2εz − 1

ε
× a

b
= −2z × a

b
. (20)

Therefore a/b satisfies the same O.D.E. as does y/z. ♠
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2.6 The Period Function

Let La be the period of the loop level set containing Ua = (a, a,
√

1− 2a2).

Lemma 2.7 dLa/da < 0.

Proof: This is part of [G, Lemma 3.2.1], and it also follows from the formula

La =
π

AGM(a, 1
2

√
1 + 2a2)

. (21)

We derive this formula in §5.2. ♠

Lemma 2.8 Let V0 = (x, y, z) be a perfect vector with x, y, z > 0. Then E
is a local diffeomorphism in a neighborhood of V0.

Proof: By the Inverse Function Theorem, this is the same as saying that
the differential dE has full rank at V0. Let S be the sphere in R3 centered at
the origin and containing V0. Let T0 be the tangent plane to S at V0. Let N0

be the orthogonal complement of T0. As is well known, the images dE|V0(T0)
and dE|V0(N0) are orthogonal, and the latter space is 1-dimensional. So, we
just need to show that dE|V0(T0) contains 2 linearly independent vectors.
Below, the symbols O(t) and O(1) denote quantities which respectively are
bounded below by positive constants times t and 1. Both our variations
below consist of vectors all having the same length.

Let Vt ∈ S be a curve of perfect vectors which moves at unit speed away
from V0 and which remain in a single loop level set. The projection of Vt into
Π moves at speed O(1) because Vt 6∈ ∂0M . This point moves monotonically
along a hyperbola. By the Reciprocity Lemma, E(Vt) moves with speed O(1)
in Π. Hence dEV0(T0) contains a nonzero vector of the form (a, b, 0).

Let Π be the plane Z = 0. Now let Vt ∈ S be the curve of constant-
length vectors moving at unit speed orthogonally to the loop level sets, with
Vt a small vector for t > 0. Let gt be the flowline corresponding to Vt.
Let Θt be the loop level set containing gt. Let ht be the complementary
flowline, so that gt|ht is a perfect flowline in Θt. By Equation 16, we have
πZ ◦ E(Vt) = −πZ(Λht). Let L(t) be the period of Θt. By Lemma 2.7 we
have dL/dt > 0. Hence ht travels for time O(t). The distance from Π to
ht is O(1). Therefore, by Equation 15, we have |πZ(Λht)| = O(t). Hence
dE|V0(T0) contains a vector (a′, b′, c′) with c′ 6= 0. ♠
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2.7 The Holonomy Function

If V is a perfect vector, and (a, b, 0) = E(V ), then we let H(V ) =
√
|ab|. We

call H(V ) the holonomy invariant of V . By Lemma 2.2, this only depends
on the loop level set. Thus H is a function of L, the level set period. By
Equation 21 we have L ≥ π

√
2 and 2 H(π

√
2) = π. The next result is stated

on [G, p 78]. We give independent proofs.

Lemma 2.9 dH/dL ≥ 0, with strict inequality when when L > π
√

2. Also,
H is a proper monotone increasing function of L.

Proof: Let us first show that H is an unbounded function. Pick an arbitrary
R > 0 and let V be the shortest vector such that E(V ) = (R,R, 0). Corollary
2.5 says that V is either small or perfect. In either case, there is some λ ≥ 1
such that λE is perfect. Geodesic segments in the positive sector cannot be
tangent to the coordinate planes X = X0 or Y = Y0. Hence E(λV ) = (a, b, 0)
with a, b ≥ R. Hence H(‖λV ‖) ≥ R.

Now we know that H is unbounded. Suppose there is L > π
√

2 where
H ′(L) = 0. Consider the perfect vectors Ut = (xt, xt, zt), with positive coor-
dinates, such that ‖Ut‖ = L+ t. By Lemma 2.4, we have E(Ut) = (at, at, 0).
Since H ′(L) = 0 we have da/dt(0) = 0. This shows that dE is singular at U0.
But this contradicts Lemma 2.8. Hence H ′ has just one sign on (π

√
2,∞).

Since H is unbounded, the sign must be positive. Since H is monotone and
unbounded, H is proper. ♠

Our final result is not in [G].

Corollary 2.10 The map E is injective on the set of perfect vectors having
all non-negative coordinates.

Proof: Since V1 and V2 have the same holonomy invariant, Lemma 2.9 im-
plies ‖V1‖ = ‖V2‖. But then Lemma 2.7 implies that U1 = V1/‖V1‖ and
U2 = V2/‖V2‖ lie in the same loop level set. Hence U11U12 = U21U22. But
then V11V12 = V21V22. Here Uij and Vij respectively are the jth coordinates
of Ui and Vi. The Reciprocity Lemma says that V12/V11 = V22/V21. Hence
V11 = V21 and V21 = V22. Since ‖V1‖ = ‖V2‖ we have V13 = V23 as well. ♠

2The results of Grayson we mention here are stated in terms of D = H
√

2. Grayson
states that D ≥ L and D ∼

√
2 exp(L/4) as L→∞. (His formula for D in terms of L on

p 75 line -7 has a typo – an extra factor of 2.)
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3 Controlling Small Geodesic Segments

3.1 Preliminary Topological Information

The goal of this chapter is to prove that E(M) ∩ ∂N = ∅, where M and
∂N are as in the Cut Locus Theorem. Here we gather some preliminary
topological information. Given any set S, either in R3 or Sol, let S+ denote
the intersection of S with the positive sector. Also, let Π be the plane Z = 0.
The properness statement in the next lemma justifies our definition of N as
the closure of a certain union of components of Π− ∂0N .

Lemma 3.1 The ∂0N+ is the graph of a function in polar coordinates, dif-
feomorphic to R, and properly embedded in Π.

Proof: The set ∂0M+ is the graph of a smooth function in polar coordinates.
By Equation 21, the function is

f(θ) =
π

AGM(sin(θ), cos(θ))
. (22)

The polar defining function g for ∂0N+ is

g(θ) =
√

2/ sin(2θ)×H(f(θ)) ≥ π
√

2√
sin(2θ)

. (23)

Here H is the holonomy function from Lemma 2.9. The statements in the
lemma follow from this formula.

Here we derive Equation 23. Let V = (x, y, 0) ∈ ∂0M+ be the vector
which makes angle θ with the X-axis. By the Reciprocity Lemma we have
E(V ) = λ(y, x, 0). This gives us

g(θ) = ‖E(V )‖ = λ
√
x2 + y2, H(f(θ)) = H(‖V ‖) = λ

√
xy.

We also have the trig identity:√
x2 + y2

√
xy

=
√

2/ sin(2θ),

Equation 23 comes from these relations and a bit of algebra. The inequality
in Equation 23 comes from Lemma 2.9 and the fact H(π

√
2) = π. ♠
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3.2 Small Symmetric Flowlines

We want to show that E(M) ∩ ∂N = ∅. Let M symm
+ ⊂ M denote those

vectors having all positive coordinates which correspond to small symmetric
flowlines in the sense of Lemma 2.1. Let Π be the plane Z = 0.

Lemma 3.2 Suppose that E(M) ∩ ∂N 6= ∅. Then E(M symm
+ ) ∩ ∂N+ 6= ∅.

Proof: Let V = (x, y, z) ∈ M be such that E(V ) ∈ ∂N . By symmetry,
it suffices to assume that x, y, z ≥ 0. Since E is sector-preserving, we must
have E(V ) ∈ ∂N+. If x = 0 then E(V ) lies in the plane X = 0, a set which
is disjoint from ∂N+. Hence x > 0. Similarly, y > 0. If x = y and z = 0
then E(V ) = (x, x, 0) and x < π. Since the minimum holonomy invariant is
π, the vector E(V ) is too short to land in ∂N .

We have ruled out all the possibilities which correspond to vectors not
associated to small flowlines in the sense of §2.3. So, V is associated to a
small flowline. Since ∂N+ ⊂ Π, we must have E(V ) ∈ Π. But then, V is as-
sociated to a small symmetric flowline, by Lemma 2.1. In this case, we must
have z > 0 because the endpoints of small symmetric flowlines are partner
points in the sense of §2.3. So, V ∈M symm

+ , as claimed. ♠

By Equation 21, every vector in M symm
+ has length L for some L > π

√
2.

Let Θ+
L denote those points in the (unique in the positive sector) loop level

set of period L having all coordinates positive. Every element of M symm
+ cor-

responds to a small symmetric flowline starting in Θ+
L for some L > π

√
2.

The Canonical Parametrization: The set Θ+
L is an open arc. We fix

L and we set ` = L/2. Let p0 = (x(0), y(0), 0) ∈ ΘL ∩ Π be the point with
x(0) > y(0). We then let

pt = (x(t), y(t), z(t)) (24)

be the point on Θ+
L which we reach after time t ∈ (0, `) by flowing backwards

along the structure field Σ. That is

dp

dt
= (x′, y′, z′) = −Σ(x, y, z) = (−xz,+yz, x2 − y2). (25)

Here and below we use x′ to stand for dx/dt, etc.
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The Associated Flowlines: We let pt be the partner of pt, namely

pt = (x(t), y(t),−z(t)). (26)

We let gt be the small symmetric flowline having endpoints pt and pt. Since
the structure field Σ points downward at p0, the symmetric flowline gt starts
out tiny and increases all the way to a perfect flowline as t increases from
0 to `. We the limiting perfect flowline g`. Figure 2 shows the symmetric
flowlines gt as t increases. The arrows indicate the direction of the structure
field flow.

p p
0

p

p
t

t

Figure 2: Increasingly long symmetric flowlines.

The Associated Plane Curves: Let Vt ∈M symm
+ be the vector correspond-

ing to gt. (To reconcile our notation, we recall from §2.3 that E(Vt) = Λgt .)
Define

ΛL(t) := E(Vt) = (a(t), b(t), 0) t ∈ (0, `]. (27)

These curves are the main objects of interest to us.

Lemma 3.3 ΛL(`) ∈ ∂0N+, and 0 < b(`) < a(`).

We have ΛL(`) ∈ ∂0N+ because g` is perfect and starts at (x(`), y(`), 0).
Note that x(`) = y(0) and y(`) = x(0). Hence x(`) < y(`). The reciprocity
Lemma, applied to the perfect vector V`, now gives 0 < b(`) < a(`). ♠

We have E(M symm
+ ) ∩ ∂N+ = ∅ provided that

ΛL(0, `) ∩ ∂N+ = ∅, ∀L > π
√

2. (28)

So all we have to do is establish Equation 28.
Equation 28 looks true numerically. The left side of Figure 3 shows part

of ∂0N+ and ΛL(0, `) for various values of L. The right side of Figure 3 shows
part of ∂N+ in yellow and focuses on the curve Λ5. The right side also shows
the triangle ∆5, where ∆L is the triangle with vertices (0, 0, 0), (a(`), 0, 0)
(a(`), b(`), 0).
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Figure 3: ∂0N+ (black), ∂N+ (yellow), ΛL (blue), and ∆L (red).

Theorem 3.4 (Bounding Triangle) ΛL(0, `) ⊂ interior(∆L) for all L.

The Bounding Triangle Theorem gives us what we need to establish Equa-
tion 28. We need one preliminary result.

Lemma 3.5 If (a, b, 0) ∈ ∂0N+ is such that 0 < b < a, and ∆ is the solid tri-
angle with vertices (0, 0, 0), (a, 0, 0) and (a, b, 0), then ∂0N+∩∆ = {(a, b, 0}).

Proof: Let ρ be the ray in Π+ starting at the origin and going through
(a, b, 0). Let h be the positive component of the hyperbola XY = ab. Let us
trace out ∂0N+ starting at the angle θ = π/4 and decreasing θ. Because we
are tracing out a graph in polar coordinates, we are separated from ∆ by ρ
until we hit (a, b, 0). But then, by Lemma 2.9, we are separated from ∆ by
h thereafter. So, we just brush past ∆, hitting (a, b, 0) and missing the rest
of it. ♠

Corollary 3.6 E(M) ∩ ∂N = ∅.

Proof: By Lemma 3.5, interior of ∆L is disjoint from ∂N+. Hence Equation
28 is true. Equation 28 combines with Lemma 3.2 to finish the proof. ♠
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3.3 Proof of The Bounding Triangle Theorem

Now we prove the Bounding Triangle Theorem. Recall that

pt = (x(t), y(t), z(t)), ΛL(t) = (a(t), b(t), 0). (29)

Here a, b, x, y, z > 0 on (0, `). In particular, ΩL(0, `) avoids the bottom side
of ∆L. We will show that a′ > 0 on (0, `). This implies that ΩL(0, `) is the
graph of a function and hence avoids the vertical side of ∆L. We define

f(t) = φ(t)− φ(`), φ(t) =
b(t)

a(t)
. (30)

We will show that f < 0 on (0, `). This means that Ω(0, `) avoids the diag-
onal side of ∆L as well. So, the two inequalities a′ > 0 and f < 0 on (0, `)
imply the Bounding Triangle Theorem.

The First Inequality: Compare the proof of the Reciprocity Lemma. We
write gt+ε = u|gt|v, where u is the flowline connecting pt+ε to pt and v is the
flowline connecting pt to pt+ε. We have

(a′, b′, 0) = Λ′L(t) = lim
ε→0

ΛL(t+ ε)− Λ(t)

ε
,

ΛL(t+ ε) ≈ (εx, εy, εz) ∗ (a, b, 0) ∗ (εx, εy,−εz).

The approximation is true up to order ε2 and (∗) denotes multiplication in
Sol. A direct calculation gives a′ = 2x+az and b′ = 2y−bz. Since a, x, z > 0
on (0, `) we have a′ > 0 on (0, `).

Continuous Extension: The function f extends continuously to 0 and
f(0) = 0. (Geometrically, the diagonal edge of ∆L is tangent to ΛL at the
origin. Compare Figure 3.) To see this, we use L’Hopital’s rule:

φ(0) = lim
t→0

2y(t)− b(t)z(t)

2x(t) + a(t)z(t)
=
y(0)

x(0)
=
x(`)

y(`)
=∗

b(`)

a(`)
= φ(`). (31)

The starred equality is the Reciprocity Lemma, which applies to the perfect
vector V`. The function ψ = ab′ − ba′ also extends continuously to 0: We
have ψ(0) = 0 because a(0) = b(0) = 0 and a′, b′ do not blow up at 0.
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The Second Inequality: We have f(0) = f(`) = 0. If f ≥ 0 some-
where on (0, `) then f has a local maximum at some t0 ∈ (0, `). We have
f ′(t0) = 0 and f ′′(t0) ≤ 0. Recalling that ψ = ab′ − ba′, we have

ψ = ab′ − ba′ = a2φ′ = a2f ′, ψ′ = 2aa′f ′ + a2f ′′. (32)

Hence ψ(t0) = 0 and ψ′(t0) ≤ 0. Recalling Equation 25, we have

a′ = 2x+ za, b′ = 2y − zb, x′ = −xz, y′ = yz, z′ = x2 − y2.

From all this and from the fact that ψ′ = ab′′ − ba′′, we get

a′′ = (+x2 − y2 + z2)a, b′′ = (−x2 + y2 + z2)b, ψ′ = 2ab(y2 − x2). (33)

Note that y2 − x2 = −z′ is negative on (0, `/2), zero at `/2, and positive
(`/2, `). (Compare Figure 2.) Hence ψ′ has these same properties. Hence
t0 ≤ `/2. But ψ is negative on (0, `/2] because ψ(0) = 0 and ψ′ is negative
on (0, `/2). Hence ψ(t0) < 0. This contradiction establishes the second
inequality. Our proof is done.
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4 The Main Results

4.1 Separating Small and Perfect Vectors

Here we carry out Step 3 of the outline. Let E be Riemannian exponential
map. Let Π be the plane Z = 0. Let M be the component of ∂M+ − ∂0M+

which contains vectors with all coordinates positive. Let N = ∂N+ − ∂0N+.

Lemma 4.1 E(M) ⊂ N .

Proof: By Corollary 2.10, the map E is injective on M∪ ∂0M+. At the
same time, E(∂0M+) = ∂0N+. Hence

E(M) ⊂ Π− ∂0N+. (34)

By definition, N is one of the components of the Π− ∂0N+. Therefore, since
M is connected, the image E(M) is either contained in N or disjoint from
N . By Lemma 2.4 and Lemma 2.9 we have E(V ) ∈ N where V ∈ M has
the form (x, x, z) and ‖V ‖ is large. So, we have containment rather than
disjointness. ♠

Corollary 4.2 E(∂M) ∩ E(M) = ∅.

Proof: Up to Sol symmetries, every vector in ∂M lies either in M or in
∂0M . By definition, E(∂0M) = ∂0N ⊂ ∂N . So, by the previous result, we
have E(∂M) ⊂ ∂N . By Corollary 3.6 we have E(M) ∩ ∂N = ∅. Combining
these two statements gives the result. ♠

Theorem 4.3 Perfect geodesic segments are length minimizing.

Proof: Suppose V1 ∈ ∂M and E(V1) = E(V2) for some V2 with ‖V2‖ < ‖V1‖.
We take V2 to be the shortest vector with this property. By symmetry we
can assume both V1 and V2 have all coordinates non-negative. By Corollary
2.5, we have V2 ∈ M ∪ ∂M . By Corollary 4.2 we have V2 ∈ ∂M . But then
V1 = V2 by Corollary 2.10. This is a contradiction. ♠
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4.2 Proof of the Cut Locus Theorem

The results above identity ∂M as the cut locus of the identity of Sol – we
will justify this momentarily. So, our next lemma seems redundant, given
standard properties of the cut locus in a Riemannian manifold. But we
include the proof just to be sure.

Lemma 4.4 The map E is a proper map from M to N .

Proof: Note first that E(M) ⊂ N because Sol = N∪∂N and E(M)∩∂N = ∅
by Corollary 3.6. Suppose {Vn} is a sequence in M which exits every com-
pact subset of M . Since vectors in M correspond to distance minimizing
geodesics, we have ‖E(Vn)‖ → ∞ when ‖Vn‖ → ∞. If ‖Vn‖ remains bounded
than Vn → ∂M . By continuity E(Vn)→ ∂N in this case. Hence E(Vn) exits
every compact subset of N . Hence E : M → N is proper. ♠

Proof of Statement 1: We know already that a geodesic segment is a
length minimizer if and only if it is small or perfect. By the restriction
principle mentioned in the introduction, small geodesic segments are unique
length minimizers and they have no conjugate points. Hence E : M → N is
an injective, proper, local diffeomorphism. But this implies that E : M → N
is also surjective and hence a diffeomorphism. ♠

Proof of Statement 2: Let M and N be as in the previous section. By
symmetry it suffices to prove that E is a diffeomorphism fromM to N . Note
first that E(M) ⊂ N by Lemma 4.1. To see that M is a smooth surface,
note thatM is an open subset of µ−1(π). Given that µ(tV ) = tµ(V ) for t > 0
we see that any positive value, including π, is a regular value for the smooth
function µ. HenceM is a smooth surface. We now see that E :M→N is a
local diffeomorphism by Lemma 2.8, injective by Corollary 2.10, and proper
by an argument just like the one given in Lemma 4.4. All these properties
together imply that E :M→N is a diffeomorphism. ♠

Proof of Statement 3: By symmetry it suffices to consider the map
E : ∂0M+ → ∂0N+. By definition, E(∂0M+) = ∂0N+. This map is sur-
jective by definition, injective by Corollary 2.10, and a local diffeomorphism
by the Reciprocity Lemma. Hence E : ∂0M+ → ∂0N+ is a diffeomorphism. ♠
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4.3 Proof of The Sphere Theorem

Let SL denote the sphere of radius L centered at the origin in R3. Let SL
denote the metric sphere of radius L centered at the origin of Sol. When
L < π

√
2, we have SL ⊂M and so E : SL → SL is a diffeomorphism.

Let T = {(x, y, 0)| |x| = |y| = π}. When L = π
√

2, we have SL ⊂M ∪T .
The map E is a homeomorphism when restricted to M ∪ T and the identity
on T . Hence SL = E(SL) is a topological sphere. Since E is smooth on M ,
we see that SL is smooth away from the 4 points of T .

Now we get to the interesting case. Let L > π
√

2. Define

S ′L = SL ∩ (M ∪ ∂M). (35)

The space S ′L is a 4-holed sphere. The boundary ∂S ′ consists of 4 loops, each
contained in ∂M , each homothetic to the loop level set of period L, each
having holonomy invariant HL. It follows from the Cut Locus Theorem that
SL = E(S ′L) and that E is a diffeomorphism when restricted to S ′L−∂S ′L. On
∂S ′L = S ′L ∩ ∂M , the map E is a 2-to-1 folding map which identifies partner
points within each component. Thus, we see that SL is obtained from a
4-holed sphere by gluing together each boundary component (to itself) in
a 2-to-1 fashion. This reveals SL to be a topological sphere. Also, SL is
smooth away from E(∂S ′L). This latter set lies in the union of 4 planar arcs
satisfying Z = 0 and |XY | = H2

L.

4.4 Proof of The Main Theorem

Let V = (x, y, z) be a vector such that V/‖V ‖ lies in a loop level set. For
our formula we will take x, y > 0. The other cases follow from symmetry. If
we define the quantity a by the formula

a2 =
xy

‖V ‖2
=

xy

x2 + y2 + z2
, (36)

then V/‖V ‖ lies in the same loop level set as Ua = (a, a,
√

1− 2a2). By
the Cut Locus Theorem, V corresponds to a distance minimizing geodesic
if and only if ‖V ‖ ≤ La, the period of the loop level set containing Ua. So,
by Equation 21, and the Cut Locus Theorem, V correponds to a distance
minimizing geodesic if and only if

π ≥ ‖V ‖ × AGM(a,
1

2

√
1 + 2a2) = µ(V ).

This completes the proof of the Main Theorem.

24



5 Technical Calculations

5.1 The Structure Field

In this section we derive Equation 11. The derivation is a bit different from
the one on [G, pp 62-65]. Let {e1, e2, e3} denote the standard Euclidean
orthonormal basis. Let Ej be the left invariant vector field which agrees with
ej at (0, 0, 0). The triple {E1, E2, E3} is a left-invariant orthonormal framing
of Sol. If we express the derivative γ′ of a unit speed geodesic γ in terms of
our left-invariant framing, namely

γ′(t) =
∑

ui(t)Ei,

then Equation 11 describes the evolution of the coefficients. For convenience,
we have set x(t) = u1(t) and y(t) = u2(t) and z(t) = u3(t).

Let∇ denote the covariant derivative for Sol. The fact that γ is a geodesic
means that the covariant derivative of γ′ along γ vanishes. That is,

0 = ∇γ′(γ
′) =

∑
i

dui
dt
Ei +

∑
ij

uiuj∇Ej
Ei. (37)

Parallel translation along any curve contained in a totally geodesic plane
Π preserves the unit normals to Π along that curve, and thus the covariant
derivative of that unit normal along the curve vanishes. Hence ∇Ej

Ei = 0
for (j, i) = (1, 2), (2, 1), (3, 1), (3, 2). Also, ∇E3E3 = 0 because the curves
integral to E3 are geodesics. Below we will show that

∇E1E1 = +E3, ∇E1E3 = −E1, ∇E2E2 = −E3, ∇E2E3 = +E2. (38)

Plugging all this information into Equation 37, we get

0 =

(
du1

dt
− u1u3

)
E1 +

(
du2

dt
+ u2u3

)
E2 +

(
du3

dt
+ u2

1 − u2
2

)
E3. (39)

This is equivalant to Equation 11.
It only remains to establish Equation 38. Since E1, E3 are parallel to the

totally geodesic plane x2 = 0 and form an orthonormal framing of this plane,
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and since parallel translation along the curves integral to E1 is an isometry,
there is some constant λ such that ∇E1E1 = λE3 and ∇E1E3 = −λE1. By
left invariance, we have λ = Γ3

11(0, 0, 0), the Christoffel symbol with respect
to {e1, e2, e3), evaluated at (0, 0, 0). Let gij be the (ij)th entry of g−1. Using
the facts that, at (0, 0, 0),

g31 = 0, g32 = 0, g33 = 1,
dg1i

dx1

= 0,
dg11

dx3

= −2,

we have

Γ3
11(0, 0, 0) =

1

2

3∑
i=1

g3i

(
dg1i

dx1

+
dg1i

dx1

− dg11

dxi

)
= 1.

This deals with the first two equalities in Equation 38. The last two have
similar treatments, and indeed follow from the first two and the existence of
the isometry (x1, x2, x3)→ (x2, x1,−x3).

5.2 Grayson’s Cylinders and Period Formula

Let Ua = (a, a,
√

1− 2a2) and let La be the period of the loop level set
containing Ua. The following result bundles together some of the results on
[G, pp 67-75].

Proposition 5.1 When a ∈ (0,
√

2/2) and r ∈ R, we have E(rUa) ∈ Ca,
where

Ca = {(x, y, z)|w2 + cosh 2z =
1

2a2
}, w =

x− y√
2
.

The geodesic segment corresponding to the perfect vector LaUa winds once
around Ca. Moreover,

La =

∫ ta

a

4dt√
1− 2a2 cosh 2t

, ta =
1

2
cosh−1

(
1

2a2

)
. (40)

One can deduce from symmetry and from Proposition 5.1 that every
typical geodesic lies on some cylinder isometric to Ca, and that a typical
geodesic segment is small, perfect, or large according as it winds less than,
equal to, or greater than once around the cylinder that contains it.

Our one remaining goal is to prove Equation 21. For this we don’t need
Proposition 5.1 but we do need Equation 40. For the sake of completeness,
we essentially repeat the proof given on [G, p 68]. In our derivation, the
symbol · denotes a quantity we don’t need to compute.
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Lemma 5.2 Equation 40 is true.

Proof: Let u denote the flow line for the structure field Σ corresponding to
the vector 1

4
LaUa. Referring to Equation 11 the flowline u starts at Ua and

ends the first time it reaches Π, the plane Z = 0. The loop level sets are level
sets of the function F (x, y, z) = xy, and they lie on the unit sphere. Hence

u = S([0, ta]), S(t) = (aet, ae−t,
√

1− 2a2 cosh 2t). (41)

Referring to Equation 11, the two quantities S ′(t) and Σ(S(t)) are scalar
multiples. Setting S(t) = (xt, ·, zt), and noting that dxt/dt = xt, we have

S ′(t) = (xt, ·, ·) = (1/zt)× (xtzt, ·, ·) = (1/zt)× Σ(S(t)). (42)

Let γ be the geodesic corresponding to u. Let γ(t) be the point of γ
corresponding to S(t). By definition, the unit tangent field T (t) along γ(t)
lies in the same left invariant vector field as S(t). By the Chain Rule and
Equation 42,

dγ

dt
(t) =

1

zt
T (t). (43)

By symmetry and by definition, La is 4 times the length of the geodesic
segment γ just considered. Noting that ‖T (t)‖ = 1, and integrating Equation
43, we have

La = 4 Length(γ) = 4

∫ ta

a

∥∥∥∥dγdt
∥∥∥∥dt = 4

∫ ta

a

dt

zt
=

∫ ta

a

4dt√
1− 2a2 cosh(t)

.

This completes the proof ♠

5.3 The AGM Period Formula

Now we manipulate Equation 40 until it is equivalent to Equation 21. Using
the relations

cosh(2t) = 2 sinh2(t) + 1, m =
1− 2a2

1 + 2a2
, µ =

√
m

1−m
=

√
1− 2a2

2a
,

we see that Equation 40 is equivalent to the following:

La =
4√

1 + 2a2
× Ia, Ia =

1√
m

∫ sinh−1(µ)

a

dt√
1− (sinh(t)/µ)2

. (44)
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To get further we relate this expression to something more classical. Let

K(m) = F(π/2,m), F(φ,m) :=

∫ φ

a

dθ√
1−m sin2 θ

. (45)

These quantities respectively are called the complete and incomplete elliptic
integrals of the first kind.

Lemma 5.3 Ia = K(m).

Proof: This is related to Equation 19.7.7 in the Electronic Handbook of
Mathematical Functions. The substitution

u = tan−1 sinh(t), du = dt/ cosh(t) = dt cos(u)

gives

Ia =
1√
m
×F(tan−1(µ),

1

m
).

The substitution t = sin(θ) gives

Ia =
1√
m

∫ √m
a

dt√
(1− t2)(1− t2/m)

, K(m) =

∫ 1

a

dt√
(1− t2)(1−mt2)

.

The substitution u = t/
√
m converts Ia into K(m). ♠

See e.g. [BB] for a proof of the following classic identity:

K(m) =
π/2

AGM(
√

1−m, 1)
, m ∈ (0, 1). (46)

Combining Lemma 5.3 and Equation 46, we get Equation 21:

La =
4√

1 + 2a2
× π/2

AGM(1,
√

1−m)
=

π

AGM(a, 1
2

√
1 + 2a2)

.
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