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Abstract

This paper is a condensation of my monograph [S0], which con-
tains a complete proof that there is a constant ש ≈ 15.0488 such that
the triangular bi-pyramid is the minimizer, amongst all 5 point con-
figurations on the sphere, with respect to the power law potential
Rs(r) = sign(s)/rs, if and only if s ∈ (−2, 0)∪ (0, .[ש In this paper we
explain the main ideas and give proofs for some of the key lemmas.

1 Introduction

Let S2 denote the unit sphere in R3 and let X = {p̂0, ..., p̂n−1} be a finite list
of distinct points on S2. Given some function f : (0, 2] → R we can compute
the total f -potential

Ef (X) =
∑

i<j

f(‖p̂i − p̂j‖). (1)

For fixed f and n, one can ask which configuration(s) X minimize Ef (X).
This problem generally goes under the heading of Thomson’s Problem, and
some form of it originates in [Th].

For this problem, the energy functional f = Rs, where

Rs(r) = sign(s)r−s, (2)

is a natural one to consider. When s > 0, this is called the Riesz potential .
When s < 0 this is called the Fejes-Toth potential . The case s = 1 is specially
called the Coulomb potential or the electrostatic potential .
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There is a large literature on the energy minimization problem. See [Fö]
and [C] for some early local results. See [MKS] for a definitive numeri-
cal study on the minimizers of the Riesz potential for n ≤ 16. See [SK]
and [RSZ] for results with an emphasis on the case when n is large. See
[BBCGKS] for a survey of results about the higher dimensional case. For
n = 4, 6, 12 it is known that the set of vertices of the corresponding platonic
solid is the global minimizer with respect to any Riesz potential. See [KY],
[A], [Y]. See also [CK] for a vast generalization.

The case n = 5 has been notoriously intractable. There is a general
feeling that for a wide range of energy choices including the Riesz potentials,
the global minimizer is either the triangular bi-pyramid 1 (TBP) or else some
pyramid with square base – an FP. Here is a resume of results.

• The paper [HS] has a rigorous computer-assisted proof that the TBP
is the unique minimizer for R−1.

• My paper [S1] has a rigorous computer-assisted proof that the TBP is
the unique minimizer for R1 and R2.

• The paper [DLT] gives a traditional proof that the TBP is the unique
minimizer for the logarithmic potential.

• In [BHS, Theorem 7] it is shown that, as s → ∞, any sequence of
5-point minimizers w.r.t. Rs must converge (up to rotations) to the FP
made from 5 vertices of the regular octahedron. So, the TBP is not a
minimizer w.r.t Rs when s is very large.

• In 1977, T. W. Melnyk, O. Knop, and W. R. Smith, [MKS] conjectured
the existence of the phase transition constant, around s = 15.04808, at
which point the TBP ceases to be the minimizer w.r.t. Rs.

• In [T], A. Tumanov gives a traditional proof of the following result.
Define

Gk(r) = (4− r2)k, k = 1, 2, 3, ... (3)

Let f = a1G1 + a2G2 with a1, a2 > 0. The TBP is the unique global
minimizer with respect to f . Moreover, a critical point of f must be
the TBP. In particular, the TBP is a minimizer for G2.

1This is the configuration isometric to the one consisting of the north pole, the south
pole, and three points placed on the equator in an equilateral triangle.
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In my unpublished monograph [S0], I prove the following result.

Theorem 1.1 (Main) There exists a computable number

ש = 15.0480773927797... < 15 + 25/512

with the following properties:

• For s ∈ (−2, 0) ∪ (0, (ש the TBP is the unique minimizer w.r.t. Rs.

• For s = ,ש the TBP and some FP are the two minimizers w.r.t. Rs.

• For s ∈ ,ש) 15 + 25/512], some FP is the unique minimizer w.r.t Rs.

• For s ≥ 15 + 25/512 the TBP is not the global minimizer w.r.t. Rs.

It is worth remarking that the fourth item is pretty easy to prove with ele-
mentary methods, because it just involves a direct comparison between the
TBP and FPs.

The purpose of this paper is to give a condensed account of the work
in [S0], concentrating on the overall strategy and providing proofs of, or at
least insight into, the key technical lemmas. §2 of this paper gives an outline
of the proof and then subsequent chapters fill in the outline.

I would also like to mention that my Java Program [S3], which the reader
can download, is a companion to the monograph. This program illustrates
most of the ideas discussed here.

I would like to thank Ed Saff for suggesting that I write this condensa-
tion. I would also like to thank two anonymous referees for some helpful
suggestions.

2 Outline of the Proof

2.1 Interpolation

We consider two configurations the same if they are isometric, and as we
go on we will normalize our configurations in particular ways. Given the
function f and a 5-point configuration X we often write f(X) in place of
Ef (X) for ease of notation. Let Rs be as in the introduction.

Let T denote the triangular bi-pyramid. Let I ⊂ R denote an interval,
which we think of as an interval of power law exponents. We say that a
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triple (Γ2,Γ3,Γ4) of potentials is forcing on the interval I if the following
implication holds for any 5-point configuration X:

Γi(X) > Γi(T ) i = 2, 3, 4 =⇒ Rs(X) > Rs(T ) ∀s ∈ I. (4)

Recall that Gk(r) = (4 − r2)k. In the paper [T], A. Tumanov observes
that (G2, G3, G5) is forcing on (−2, 0) and (0, 2]. He does not supply a proof
for his observation, but we will take up a related idea. Consider the following
functions:

G♭
5 = G5 − 25G1

G#
10 = G10 + 13G5 + 68G2

G##
10 = G10 + 28G5 + 102G2

(5)

In the §3 we will sketch the ideas behind a proof of the following result.

Lemma 2.1 (Forcing) The following is true.

1. (G2, G3, G5) is forcing on (−2, 0).

2. (G2, G4, G6) is forcing on (0, 6].

3. (G2, G5, G
##
10 ) is forcing on [6, 13].

4. (G2, G
♭
5, G

#
10) is forcing on [13, 15.05].

Remarks:
(1) Item 4 in the Forcing Lemma plays a different role in the proof of the
Main Theorem because T is not the global minimizer for G#

10. While Items
1-3 play a role in the proof of the Big Theorem, Item 4 plays a role in the
proof of the Small Theorem.
(2) We don’t bother proving that (G2, G3, G5) is forcing on (0, 2] because we
don’t need this fact.
(3) Ideas like the Forcing Lemma are used in many papers on energy mini-
mization – see e.g. [CK], [BDHSS], and (for my inspiration) [T]. I believe
that the idea goes back to Yudin [Y].
(4) I found these triples through computer experimentation, taking Tu-
manov’s observation as a starting point. The reader can do experiments
themselves, using my Java program [S3]. One other guide to the experi-
ments is that T is not the minimizer for Gk when k = 7, 8, 9, ..., so one might
look at more complicated combinations of these functions.
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2.2 Divide and Conquer

As we explain in §4, we use a divide and conquer algorithm, together with a
certain energy estimate, to give a rigorous computer-assisted proof of

Theorem 2.2 (Big) The TBP is the unique global minimizer w.r.t.

G3, G4, G
♭
5, G6, G

##
10 .

We prove the energy estimate in §5.
We also recall that Tumanov’s result implies that the TBP is a minimizer

for both G1 and G2. We note that G5 is a positive combination of G1 and
G♭

5, so G5 also satisfies the conclusion of the Big Theorem. The Big Theorem
combines with Tumanov’s result and the Forcing Lemma to prove the Main
Theorem for all exponents s ∈ (−2, 0) ∪ (0, 13]. To finish the proof, we just
have to deal with the exponent interval (13, 15 + 25/512]. The TBP is not
the global minimizer for G#

10, but we can still squeeze information out of this
function.

The first idea of our proof is to transfer the main problem from the sphere
to the plane. For this purpose, there are a variery of coordinate systems we
could use. We will use steeographic projection because this map has several
virtues. First of all, it is a birational map: It is given by rational functions and
so is its inverse. This is very useful when we want to do computer calculations
with rational quantities. Were we to use spherical coordinates, for instance,
this would not work as well. Second of all, stereographic projection maps
generalized circles – i.e. circles or lines – to generalized circles. Our various
energy estimates are made easier by the fact that, in the guts of the proofs,
we work with lines and circles.

Stereographic projection is the map

Σ(x, y, z) =
( x

1− z
,

y

1− z

)
. (6)

The domain of this map is S2 − {(0, 0, 1)}. Here (0, 0, 1) is the north pole.
We rotate our configurations p̂0, p̂1, p̂2, p̂3, p̂4 so that p̂4 = (0, 0, 1). We then
have the correspondence

p̂0, p̂1, p̂2, p̂3, (0, 0, 1) ∈ S2 ⇐⇒ p0, p1, p2, p3 ∈ R2. (7)

Here pk = Σ(p̂k). We write pk = (pk1, pk2). We always normalize so that p0
lies in the positive x-axis and ‖p0‖ ≥ ‖pk‖ for k = 1, 2, 3. Let Ω denote those
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5-point configurations which are represented by 4-tuples (p0, p1, p2, p3) such
that

1. ‖p0‖ ≥ ‖pk‖ for k = 1, 2, 3.

2. 512p0 ∈ [433, 498]× [0, 0].

3. 512p1 ∈ [−16, 16]× [−464,−349].

4. 512p2 ∈ [−498,−400]× [0, 24].

5. 512p3 ∈ [−16, 16]× [349, 364].

This domain is pretty tight. We tried hard to get as far away from the TBP
configuration as possible. Figure 2.1 shows a picture of the sets corresponding
to the definition of Ω. The grey circle is the unit circle. Note that T 6∈ Ω.
The 4 black dots and the 4 white dots are the two nearby normalized TBP
configurations. As we discuss in §4, we prove the following companion to the
Big Theorem.

Theorem 2.3 (Small) Let X be some 5-point configuration. Suppose that

we have G#
10(X) ≤ G#

10(T ). Then either X = T or X ∈ Ω.

p0

p1

p2

p3

Figure 2.1: The sets defining Ω.

2.3 Symmetrization

Let K4 denote the 2-dimensional set of configurations whose stereographic
projections are rhombi with points in the coordinate axes. (Here K4 stands
for “Klein 4 symmetry”.) The TBP and all FPs have normalizations which
lie in K4.
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Note that K4∩Ω is the set of configurations X = (p0, p1, p2, p3) such that

−p2 = p0 = (x, 0), −p1 = p3 = (0, y), x ≥ y, x, y ∈
[348
512

,
495

512

]
.

The point (x, y) = (1, 1/
√
3), outside our slice, represents the TBP.

We consider the following map from Ω to K4. Starting with X, we let
(p′0, p

′
1, p

′
2, p

′
3) be the configuration which is obtained by rotating X about the

origin so that p′02 = p′22 and p′21 < p′01. We then define

−p∗2 = p∗0 =
(p′01 − p′21

2
, 0
)
, −p∗3 = p∗1 =

(
0,
p′12 − p′32

2

)
(8)

The points (p∗0, p
∗
1, p

∗
2, p

∗
3) define the symmetrized configuration X∗. In §6

we give some details about the following crucial result.

Lemma 2.4 (Symmetrization) Let s ∈ [12, 15+25/512] and suppose that

X ∈ Ω. Then Rs(X
∗) ≤ Rs(X) with equality iff X = X∗.

One strange thing is that the map X → X∗ is not clearly related to
spherical geometry. Rather, it is a linear projection with respect to the
stereographic coordinates we impose on the moduli space. I found the map
X → X∗ experimentally, after trying many alternatives. Combining the
Symmetrization Lemma and the Small Theorem, we get the following result:

Corollary 2.5 Let s ∈ [13, 15 + 25/512]. Suppose that Rs(X) ≤ Rs(T ) and
X 6= T . Then X ∈ K4 ∩ Ω.

This corollary practically finishes the proofs of the Main Theorem. It
leaves us with the exploration of a 2-dimensional rectangle in the configura-
tion space. We refer the reader to [S0] for a discussion of the endgame.

3 Interpolation

3.1 The General Approach

The purpose of this chapter is to explain the proof of Lemma 2.1, the Forcing
Lemma. Recall that Gk(r) = (4− r2)k.
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Let Γ0 be the constant function and let Γ1 = G1. Recall that T is the
TBP. We have Γ0(X) = Γ0(T ) and Γ1(X) ≥ Γ1(T ) for all 5-point configura-
tions X. Indeed, as is well known, the minimizers for Γ1 are precisely those
configurations whose center of mass is the origin. See also [T].

The distances involved in T are
√
2,
√
3,
√
4. (Writing

√
4 for 2 makes

the equations look nicer.) Let R be some function defined on (0, 2]. Suppose
that (Γ2,Γ3,Γ4) is one of the triples from the Forcing Lemma. Suppose we
can find a combination

Γ = a0Γ0 + ...+ a4Γ4, a1, a2, a3, a4 > 0 (9)

such that

Γ(x) ≤ R(x), Γ(
√
m) = R(

√
m), m = 2, 3, 4. (10)

Suppose also that Γj(X) ≥ Γj(T ) for j = 2, 3, 4, with strict inequality for at
least one index. Then

R(X) ≥ Γ(X) =
∑

aiΓi(X) >
∑

aiΓi(T ) = Γ(T ) = R(T ). (11)

If the above conditions are satisfied we call our triple good for R.
Here is how we find the coefficients {ai}. We impose the 5 conditions

• Γ(x) = R(x) for x =
√
2,
√
3,
√
4.

• Γ′(x) = R′(x) for x =
√
2,
√
3.

Here R′ = dR/dx and Γ′ = dΓ/dx. These 5 conditions give us 5 linear
equations in 5 unknowns. In the cases described below, the associated matrix
is invertible and there is a unique solution. The proof of the Forcing Lemma,
in each case, involves solving the matrix equation, checking positivity of the
coefficients, and checking the under-approximation property.

In this chapter we will present solutions to the matrix equation and some
discussion of the work in [S0, §3-6], which establishes all the claims about our
triples. My monograph [S0, §3] has computer plots for each case. The reader
can see much more extensive and interactive plots using my Java program
[S3].
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3.2 The Matrix Solutions
For the triple is (G2, G3, G5). The solution is





a0

a1

a2

a3

a4

δ




=

1

144





0 0 −144 0 0 0

−312 −96 408 24 80 0

684 −288 −396 −54 −144 0

−402 264 138 33 68 0

30 −24 −6 −3 −4 0

2496 768 −3264 −192 −640 −144









2
−s/2

3
−s/2

4
−s/2

s2−s/2

s3−s/2,

s4−s/2




.

It turns out that the triple is good for Rs when s ∈ (−2, 0].
For the triple G2, G4, G6 the solution is given by





a0

a1

a2

a3

a4

δ




=

1

792





0 0 792 0 0 0

792 1152 −1944 −54 −288 0

−1254 −96 1350 87 376 0

528 −312 −216 −39 −98 0

−66 48 18 6 10 0

−6336 −9216 15552 432 2304 792









2
−s/2

3
−s/2

4
−s/2

s2−s/2

s3−s/2,

s4−s/2




.

For the triple G2, G5, G
##
10 we have





a0

a1

a2

a3

â4

δ




=

1

268536





0 0 268536 0 0 0

88440 503040 −591480 −4254 −65728 0

−77586 −249648 327234 2361 65896 0

41808 −19440 −22368 −2430 −9076 0

−402 264 138 33 68 0

−707520 −4024320 4731840 34032 525824 268536









2
−s/2

3
−s/2

4
−s/2

s2−s/2

s3−s/2,

s4−s/2




.

For the triple G2, G
♭
5, G

#
10 we have





a0

a1

a2

a3

â4

δ




=

1

268536





0 0 268536 0 0 0

947112 131520 −1078632 −50694 −259072 0

−91254 −240672 331926 3483 68208 0

35778 −15480 −20298 −1935 −8056 0

−402 264 138 33 68 0

174268608 24199680 −198468288 −9327696 −47669248 268536









2
−s/2

3
−s/2

4
−s/2

s2−s/2

s3−s/2,

s4−s/2




.

In all cases, we also keep track of

δ = 2Γ′(2)− 2R′(2). (12)

This quantity is also positive on the relevant intervals. We will use the
positivity of δ in our under-approximation proof below.

Even though the expressions involved above are not polynomials in gen-
eral, we establish the various claims by showing that certain polynomials are
positive on certain domains. There are a variety of computational positivity
certificates for polynomials; I will discuss one that I thought of myself and
have used on several occasions in other work. We first discuss the general
approach, and then we turn the technique towards the verification of the
claims in this section.

9



3.3 Positive Dominance

Here we discuss some positivity certificates for polynomials in one and several
variables. See [S0, Chapter 5] and also [S2] for the proofs of the lemmas in
this section.

Given a multi-index I = (i1, ..., ik) ∈ (N ∪ {0})k we let

xI = xi11 · · · xikk . (13)

Any polynomial F ∈ R[x1, ..., xk] can be written succinctly as

F =
∑

aIX
I , aI ∈ R. (14)

For I ′ = (i′1, ..., i
′
k) we write I ′ ≤ I if i′j ≤ ij for all j = 1, ..., k. We call F

weak positive dominant (WPD) if

AI :=
∑

I′≤I

aI′ ≥ 0 ∀I, (15)

and if the sum of all the coefficients is positive. We call f positive dominant

(PD) if we have strict inequality in Equation 15 for all indices.

Lemma 3.1 (Positivity Criterion) If P is PD, then P > 0 on [0, 1]k. If

P is WPD, then P > 0 on (0, 1]k.

For the application we have in mind, Lemma 3.1 is not that useful, be-
cause the polynomials of interest to us are not WPD or PD in general. How-
ever, Lemma 3.1 feeds into a powerful divide-and-conquer algorithm. We
define the maps

Aj,1(x1, ..., xk) = (x1, ..., xj−1,
xj + 0

2
, xi+1, ..., xk),

Aj,2(x1, ..., xk) = (x1, ..., xj−1,
xj + 1

2
, xj+1, ..., xk), (16)

We define the jth subdivision of P to be the set

{Pj,1, Pj,2} = {P ◦ Aj,1, P ◦ Aj,2}. (17)

Lemma 3.2 For any index j = 1, ..., k, the following is true. P > 0 on

[0, 1]k if and only if Pj,1 > 0 and Pj,2 > 0 on [0, 1]k.
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We say that a marker is a non-negative vector (a1, ..., ak) ∈ Zk such that
ai+1 ∈ {ai − 1, ai} for all i = 0, ..., k− 1. We order the markers lexicographi-
cally. We define the youngest entry in the marker to the first minimum entry
going from left to right. The successor of a marker is the marker obtained by
adding one to the youngest entry. For instance, the successor of (2, 2,1, 1, 1)
is (2, 2, 2, 1, 1). We have made bold the youngest entry in our example. Let
µ+ denote the successor of µ.

We say that a marked polynomial is a pair (P, µ), where P is a polynomial
and µ is a marker. Let j be the position of the youngest entry of µ. We define
the subdivision of (P, µ) to be the pair

{(Pj,1, µ+), (Pj,2, µ+)}. (18)

Geometrically, we are cutting the domain in half along the longest side, and
using a particular rule to break ties when they occur. Now we have assembled
the ingredients needed to explain the Positive Dominance Algorithm.

1. Start with a list LIST of marked polynomials. Initially, LIST consists
only of the marked polynomial (P, (0, ..., 0)).

2. Let (Q, µ) be the last element of LIST. We delete (Q, µ) from LIST
and test whether Q is positive dominant.

3. Suppose Q is positive dominant. We go back to Step 2 if LIST is not
empty. Otherwise, we halt.

4. Suppose Q is not positive dominant. We append to LIST the two
marked polynomials in the subdivision of (Q, µ) and then go to Step 2.

If the algorithm halts, it constitutes a proof that P > 0 on [0, 1]k or (0, 1]k.
For the case of strict positivity, the algorithm halts if and only if P > 0 on
[0, 1]k. There is also a parallel version whose halting constitutes a proof that
max(P1, ..., Pm) > 0, where P1, ..., Pm is a finite list of polynomials. In the
parallel version we pass a block if one of the functions is PD (or WPD) on
it.

Remark: Below we will be somewhat imprecise about whether we use the
WPD version of the algorithm of the PD version. These fine details are taken
care of in [S0, §4-6].
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3.4 Positivity of the Coefficients

The coefficients from the previous section all have the form

A(s) = λ22
−s/2 + λ33

−s/2 + λ44
−s/2 + µ2s2

−s/2 + µ3s3
−s/2 + µ4s4

−s/2 (19)

for λi, µi ∈ Q for all i = 2, 3, 4. We wish to show that such an expression is
positive on some interval I ⊂ (−2, 16]. We break the interval (−2, 16] into the
intervals (−2,−1], [−1, 0], [0, 1], etc., and consider the problem separately
on each such interval.

Let I be one of these unit intervals. Let k be the even endpoint of I. For
each m ∈ {2, 3, 4} we have Taylor’s Theorem with Remainder:

m−s/2 =
11∑

j=0

(−1)j log(m)j

mk2jj!
(s− 2k)j +

Es

12!
(s− 2k)12. (20)

Here Es is the 12th derivative ofm−s/2 evaluated at some point in the interval.
(Going up to 12 derivatives is a somewhat arbitrary but convenient cutoff.)
We replace the powers of log(m) by nearby rational approximations in order
to get close rational under-approximations and rational over-approximations
to m−s/2 on I. We then feed these approximations back into Equation 19
to get a rational polynomial A(s) ≤ A(s) on I. We then take the relevant
sub-interval J ⊂ I and use the Positive Dominance Algorithm to show that
A(s) > 0 on J . Usually we have J = I but in Case 4 of the Forcing Lemma
we sometimes have J = [15, 15 + 25

512
] and I = [15, 16].

3.5 Under Approximation

Let Γ be as in Equation 9. Let Ω be the exponent interval of interest to us.
For instance, in Case 1, Ω = (0, 6]. We want to show that Γ(r) ≤ Rs(r) for
all r ∈ (0, 2] and all s ∈ Ω. Define

H(r, s) = 1− Γ(r)

Rs(r)
= 1− rsΓ(r), (21)

We just have to show that H ≥ 0 on (0, 2)×Ω. In Cases 1 and 2 the following
lemma, has a traditional proof that exploits the low degree of the polynomials
involved. The proof we sketch here is an industrial strength proof that works
(one case at a time) for all the cases.
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Lemma 3.3 For each fixed value s ∈ Ω, the function ∂rH(r, s) has 4 roots

in (0, 2), and these roots are all simple.

Proof: (Sketch.) The positive roots of ∂rH(r, s) are the same as the positive
roots of the polynomial ψ(r, s) = sΓ(r) + rΓ′(r). To show that ψ has simple
roots, we just have to show that ψ(r, s) and ∂rψ(r, s) do not simultaneously
vanish for (r, s) ∈ (0, 2]×Ω. Considered as polynomials in r, the coefficients
are functions of s having the same form as in Equation 19.

We work separately with each unit integer interval I that intersects Ω.
Using the same technique as in the previous section we produce rational
2-variable polynomials u, u, v, v such that

u(r, s) ≤ ψ(r, s) ≤ u(r, s), v(r, s) ≤ ∂rψ(r, s) ≤ v(r, s)

for all (r, s) ∈ (0, 2] × I. We then apply the parallel version of the Positive
Dominance Algorithm to the set of functions {u,−u, v,−v}. This time we
simply work with I. There is no need to restrict to a sub-interval J ⊂ I even
in Case 4. The algorithm halts, and this constitutes a proof that ψ(r, s) and
∂rψ(r, s) do not both vanish at the same point (r, s) ∈ (0, 2]× I.

Now we turn to the number of roots. We first observe that ∂rH(r, s) < 0
for r > 0 sufficiently small, and also ∂rH(2, s) < 0. The second fact comes
from the fact that the quantity δ in Equation 12 is positive for all s ∈ Ω. We
will abbreviate these two conditions as the asymptotic conditions .

The asymptotic conditions imply that ∂rH(r, s) has an even number of
simple roots for r ∈ (0, 2). The asymptotic conditions also imply the follow-
ing phenomenon: As s changes, the number of roots of ∂rH(r, s) can change
only if 2 non-real and conjugate roots converge to the interval (0, 2). But this
would give ∂rH(r, s) a double root for some s. In other words, the asymp-
totic conditions imply that the number of simple roots is independent of s.
We then check in each case, for a single value of s, that this number is 4. ♠

Lemma 3.4 ∂2rH(r, s) > 0 for r =
√
2 and r =

√
3.

Proof: We check this in each case for a single value of s. If the condition
ever failed for some other value of s, then there would be a value of s such
that ∂2rH(r, s) = 0. But then ∂rH(r, s) would not have all simple roots. ♠

Lemma 3.4 combines with the asymptotic conditions and Lemma 3.3 to
show that H(r, s) ≥ 0 for all (r, s) ∈ (0, 2]× I.
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4 Divide and Conquer

4.1 Normalized Configurations

The purpose of this chapter is to explain the proofs of Theorem 2.2, the Big
Theorem, and Theorem 2.3, the Small Theorem.

Recall that p̂0, ..., p̂4 is our configuration and pk = Σ(p̂k) for k = 0, 1, 2, 3.
As usual p̂4 = (0, 0, 1). Setting pk = (pk1, pk2), we normalize so that

• p0 lies in the positive x-axis. That is, p01 > 0 and p02 = 0.

• ‖p0‖ ≥ max(‖p1‖, ‖p2‖, ‖p3‖).

• p12 ≤ p22 ≤ p32 and 0 ≤ p22.

If, in addition, we are working with a monotone decreasing energy function,
we also require that p12 ≤ 0. If this condition fails then our normalization
implies that all the points lie in the same hemisphere. But then one can
decrease the energy by reflecting one of the points across the hemisphere
boundary. (This argument can fail for the one energy function we consider
which is not monotone, namely G♭

5.) We call such configurations normalized .

Lemma 4.1 Let Γ be any of G3, G4, G
♭
5, G5, G6, G

#
10, G

##
10 . Any normalized

minimizer w.r.t. Γ has p0 ∈ [0, 4] and ‖pk‖ ≤ 3/2 for k = 1, 2, 3.

Proof: The TBP has 6 bonds of length
√
2, and 3 bonds of length

√
3, and

one bond of length 2. Hence,

Gk(T ) = 3(2k+1 + 1), k = 1, 2, 3, ... (22)

Suppose that Γ is one of the energies above, but not G3 or G♭
5. If ‖p0‖ ≥ 4

then the distance from p̂0 to (0, 0, 1) is at most d =
√
4/17. We check this

by computing Σ−1(4, 0), which would be the farthest point from (0, 0, 1) with
the given constraints. We check by direct calculation that Γ(d) > Γ(T ) in
all cases. This single bond contributes too much to the energy all by itself.
If the second condition fails then we have ‖pk‖ > 3/2 for some k and also
‖p0‖ > 3/2. The distance from p̂k and p̂0 from p̂4 is at most d′ = 4/

√
13. In

all cases we compute that 2Γ(d′) > Γ(T ). For example G4(T ) = 99 whereas
2G4(d

′) ≈ 117.616.
This deals with all cases except G3 and G♭

5. See [S0] for the more elabo-
rate argument that deals with these two cases. ♠
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4.2 The TBP Configurations

The TBP has two kinds of points, the two at the poles and the three at the
equator. When ∞ is a polar point, the points p0, p1, p2, p3 are, after suitable
permutation,

(1, 0), (−1/2,−
√
3/2), (0, 0), (−1/2,+

√
3/2). (23)

We call this the polar configuration. When ∞ is an equatorial point, the
points p0, p1, p2, p3 are, after suitable permutation,

(1, 0), (0,−1/
√
3), (−1, 0), (0, 1/

√
3). (24)

We call this the equatorial configuration. We can visualize the two configu-
rations together in relation to the regular 6-sided star. The black points are
part of the polar configuration and the white points are part of the equato-
rial configuration. The grey point belongs to both configurations. The points
represented by little squares are polar and the points represented by little
disks are equatorial.

02

Figure 4.1: Polar and equatorial versions of the TBP.

For each k = 0, ..., 4 we introduce the quantity

δk = min
i
p̂i · p̂k. (25)

We say that a normalized configuration is totally normalized if

δ4 ≥ δk, k = 0, 1, 2, 3. (26)

This condition is saying that the points in the configuration are bunched up
around p̂4 = (0, 0, 1) as much as possible. The polar TBP has δ4 = −1 and
3 values of k for which δk = 0. Hence, it is not totally normalized. The
equatorial TBP is totally normalized.
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4.3 Dyadic Blocks

For the moment we find it convenient to only require that pk ∈ [−2, 2]2 for
k = 1, 2, 3. Later on, we will enforce the stronger condition given by Lemma
4.1. Define

� = [0, 4]× [−2, 2]2 × [−2, 2]2 × [−2, 2]2. (27)

Any minimizer of any of the energies we consider is isometric to one which
is represented by a point in this cube. This cube is our universe.

In 1 dimension, the dyadic subdivision of a line segment is the union of
the two segments obtained by cutting it in half. In 2 dimensions, the dyadic
subdivision of a square is the union of the 4 quarters that result in cutting
the the square in half along both directions. We say that a dyadic segment is
any segment obtained from [0, 4] by applying dyadic subdivision recursively.
We say that a dyadic square is any square obtained from [−2, 2]2 by apply-
ing dyadic subdivision recursively. We count [0, 4] as a dyadic segment and
[−2, 2]2 as a dyadic square.

Hat and Hull Notation: We let 〈X〉 denote the convex hull of any Eu-
clidean subset. Thus, we think of a dyadic square Q as the set of its 4
vertices and we think of 〈Q〉 as the solid square having Q as its vertex set.

For any S ⊂ R2 we let Ŝ = Σ−1(S), where Σ is stereographic projection. In
particular,

• Q̂ is a set of 4 co-circular points on S2.

• 〈Q̂〉 is a convex quadrilateral whose vertices are Q̂.

• 〈̂Q〉 is a “spherical patch” on S2, bounded by 4 circular arcs.

Good Squares: A dyadic square is good if it is contained in [−3/2, 3/2]2

and has side length at most 1/2. Note that a good dyadic square cannot cross
the coordinate axes. The only dyadic square which crosses the coordinate
axes is [−2, 2]2, and this square is not good. Our computer program only
does spherical geometry calculations on good squares.

Dyadic Blocks: We define a dyadic block to be a 4-tuple (Q0, Q1, Q2, Q3),
where Q0 is a dyadic segment and Qi is a dyadic square for j = 1, 2, 3. We say
that a block is good if each of its 3 component squares is good. By Lemma
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4.1, any energy minimizer for Gk is contained in a good block. Our algorithm
quickly chops up the blocks in � so that only good ones are considered.

The product
〈B〉 = 〈Q0〉 × 〈Q1〉 × 〈Q2〉 × 〈Q3〉 (28)

is a rectangular solid in the configuration space �. On the other hand, the
product

B = Q0 ×Q1 ×Q2 ×Q3 (29)

is the collection of 128 vertices of 〈B〉. We call these the vertex configurations
of the block.

Definition: We say that a configuration p0, p1, p2, p3 is in the block B if
pi ∈ 〈Qi〉 for i = 0, 1, 2, 3. In other words, the point in � representing our
configuration is contained in 〈B〉. Sometimes we will say that this configu-
ration is associated to the block.

Sudvidision of Blocks: There are 4 obvious subdivision operations we
can perform on a block.

• The operation S0 divides B into the two blocks (Q00, Q1, Q2, Q3) and
(Q01, Q1, Q2, Q3). Here (Q00, Q01) is the dyadic subdivision of Q0.

• the operation S1 divides B into the 4 blocks (Q0, Q1ab, Q2, Q3), where
(Q100, Q101, Q110, Q111) is the dyadic subdivision of Q1.

The operations S2 and S3 are similar to S1. These subdivision operations
will feed into a subdivision algorithm akin to the one discussed in §3.3.

4.4 Spherical Geometry Estimates

We introduce some geometric quantities in this section.

• Let d(Q) be the diameter 〈Q̂〉.

• Let d1(Q)be the length of the longest edge of 〈Q̂〉.

• Let DQ ⊂ R2 denote the disk containing Q in its boundary and d2(Q)

be the diameter of D̂Q.
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When Q is a dyadic segment, we define δ(Q) = χ(2, d2). When Q is a
good dyadic square, We define

δ(Q) = max
(
χ(1, d1), χ(2, d2)

)
, χ(D, d) =

d2

4D
+

d4

2D3
(30)

We call δ(Q) the Hull approximation constant of Q.

Lemma 4.2 (Hull Approximation) Let Q be a dyadic segment or a good

dyadic square. Every point of the spherical patch 〈̂Q〉 is within δ(Q) of a

point of the convex quadrilateral 〈Q̂〉.

Proof: (Sketch.) The basic idea behind many of our estimates is that the

set 〈̂Q〉, which is a spherical patch on S2, is quite close to the convex hull of

the vertices of this set, namely 〈Q̂〉. See [S0, §8] for more details. ♠

Let Q be a dyadic segment or a good dyadic square. Let δ be the hull
approximation constant of Q. Let {qi} be the points of Q. We make all the
same definitions for a second dyadic square Q′. We define

(Q ·Q′)max = max
i,j

(q̂i · q̂′j) + δ + δ′ + δδ′. (31)

(Q · {∞})max = max
i

q̂i · (0, 0, 1) (32)

We define the same quantities with respect to min, except that in the first
equation we subtract δ+δ′+δδ′. Let Ω(Q) denote the union of line segments

that connect points in 〈̂Q〉 to a nearest point in 〈Q̂〉. Note that Ω(Q) contains
〈̂Q〉. We define Ω(Q′) similarly.

Lemma 4.3 (Dot Product Bounds) For all V, V ′ ∈ Ω(Q)× Ω(Q′),

(Q ·Q′)min ≤ V · V ′ ≤ (Q ·Q′)max

Proof: (Sketch.) The dot product is bilinear, and so the restriction of the

dot product to the convex polyhedral set 〈Q̂〉 × 〈Q̂′〉 takes on its extrema
at vertices. The rest of the proof comes down to several applications of the
Cauchy-Schwarz Inequality, the Hull Approximation Lemma, and the trian-
gle inequality. See [S0, §8] for more details. ♠
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Let B = (Q0, Q1, Q2, Q3) be a good block. As usual Q4 = {∞}. For each
index j we define

(B, k)min = min
j 6=k

(Qj ·Qk)min, (B, k)max = min
j 6=k

(Qj ·Qk)max. (33)

We say that B is disordered if there is some k ∈ {0, 1, 2, 3} such that

(B, 4)max < (B, k)min (34)

The following result is an immediate consequence of Lemma 4.3 and the
definition given in Equation 25.

Lemma 4.4 If B is disordered, then B contains no totally normalized con-

figurations.

4.5 Irrelevant Blocks

Call a block irrelevant if no configuration in the interior of the block is
totally normalized. Call a block relevant if it is not irrelevant. Every relevant
configuration in the boundary of an irrelevant block is also in the boundary
of a relevant block. So, to prove the Big and Small Theorems, we can ignore
the irrelevant blocks. Let Qjk and Q

jk
denote the maximum and minimum

kth coordinate of a point in Qj. Call B certifiably irrelevant if B satisfies at
least one of the following conditions.

1. min(|Q
k1
|, |Qk1|) ≥ Q01 for some k = 1, 2, 3.

2. min(|Q
k2
|, |Qk2|) ≥ Q01 for some k = 1, 2, 3.

3. Q
12

≥ 0, provided we have a monotone decreasing energy.

4. Q22 ≤ 0.

5. Q32 ≤ Q
22
.

6. Q22 ≤ Q
12
.

7. B is disordered.

The reason for our terminology is that the above conditions give a com-
putational test for showing that B is irrelevant.
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Lemma 4.5 If B is good and certifiably irrelevant, then B is irrelevant.

Proof: Conditions 1 and 2 each imply that there is some index k ∈ {1, 2, 3}
such that all points in the interior of Bk are farther from the origin than
all points in B0. Condition 3 implies that all points in the interior of B1 lie
above the x-axis. This violates our normalization when the energy function
is monotone decreasing. Condition 4 implies that all points in the interior
of B2 lie below the x-axis. Condition 5 implies that all points in the interior
of B3 lie below all points in the interior of B2. Condition 6 implies that all
points in the interior of B2 lie below all points in the interior of B1. Lemma
4.4 takes care of Condition 7. ♠

4.6 The Energy Theorem

We think of the energy potential G = Gk as being a function on (R2 ×∞)2,
via the identification p↔ p̂. We take k ≥ 1 to be an integer.

Let Q denote the union of the following sets.

• The set of dyadic squares in [−2, 2]2.

• The set of dyadic segments in [0, 4].

• The point {∞}.

When Q = {∞} the corresponding hull approximation constant is 0, and the
corresponding hull diameter are 0.

Now we are going to define a function ǫ : Q × Q → [0,∞). First of all,
for notational convenience we set ǫ(Q,Q) = 0 for all Q, When Q,Q′ ∈ Q are
unequal, we define

ǫ(Q,Q′) =
1

2
k(k − 1)T k−2d2 + 2kT k−1δ (35)

Here

• d is the diameter of Q̂.

• δ = δ(Q) is the hull approximation constant for Q.

• T = T (Q,Q′) = 2 + 2(Q ·Q′)max.
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This is a rational function in the coordinates of Q and Q′. The quantities d2

and δ are essentially quadratic in the side-lengths of Q and Q′. Note that we
have ǫ({∞}, Q′) = 0 but ǫ(Q, {∞}) is nonzero when Q 6= {∞}.

Let B = (Q0, Q1, Q2, Q3). For notational convenience we set Q4 = {∞}.
We define

ERRk(B) =
3∑

i=0

4∑

j=0

ǫ(Qi, Qj). (36)

This is a rational function of the vertices of B.

Theorem 4.6 (Energy)

min
v∈〈B〉

Ek(v) > min
v∈B

Ek(v)− ERRk(B).

Remark: As the form of Equation 36 suggests, a similar result holds for N
point configurations. Our argument in §5 readily covers this more general
case.

Theorem 4.6 suffices to deal with G3, G4, G6, but we need a more general
result to deal with G♭

5, G
#
10 and G##

10 . Suppose we have some energy of the
form

F =
N∑

k=1

akGk (37)

where a1, ..., aN is some sequence of numbers, not necessarily positive.
Suppressing the dependence on F , we define

ǫ(Qi, Qj) =
∑

|ak| ǫk(Qi, Qj), (38)

where ǫk(Qi, Qj) is the above quantity computed with respect to Gk. We
then define ERR exactly as in Equation 36. With this definition, we have

Corollary 4.7 Suppose that F is as in Equation 37. Suppose that B is a

block such that

min
v∈B

EF (v)− ERRF (B) > EF (TBP). (39)

Then all configurations in B have higher energy than the TBP.
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We can write

ERR(B) =
3∑

i=0

ERRi(B), ERRi(B) =
4∑

j=0

ǫ(Qi, Qj). (40)

We define the subdivision recommendation to be the index i ∈ {0, 1, 2, 3} for
which ERRi(B) is maximal. A tie never arises in practice, but in the event
of a tie we would pick the smaller index.

4.7 Estimates on the Hessian

The Energy Theorem is too crude to deal with configurations very near the
TBP. Since we are considering totally normalized configurations we only have
to worry about a neighborhood of the equatorial TBP. Let B0 ⊂ � denote
the cube of side-length 2−17 centered at the configuration representating the
equatorial TBP. We consider our energy functions on the configuration space
�. We set

Γk = Gk ◦ Σ−1. (41)

Here Σ is stereographic projection. The fact that Σ−1 is a rational function
means that all the functions of interest to us are rational functions on �. In
[S0, §11] we prove the following result.

Lemma 4.8 (Hessian) For each Γ = Γ3,Γ4,Γ5,Γ
♭
5,Γ

♯
10,Γ

♯♯
10, the Hessian of

Γ is positive definite at all points of B0.

The basic idea is to get global upper bounds on the 8th partial derivatives
of Γ which hold on all of B0 using crude combinatorial information about the
function. The bounds we get are on the order of 290. We then essentially
use Taylor’s Theorem with Remainder, evaluating at the point representing
the equatorial TBP, to bound the lower derivatives. There is nothing sacred
about the cutoff at the 8 derivative; this is just what worked. Also, it seems
possible that we could replace B0 by a considerably larger region. However,
the proof for a much larger region seems much more difficult.

4.8 The Main Algorithm

We fix some energy function F that appears in either the Big Theorem or the
Small Theorem. Our divide and conquer algorithm works schematically like
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the one described in §3.3, except that we don’t use the Positivity Criterion
from Lemma 3.1 and we determine the subdivision order differently. Rather,
we perform the following test to each block B = (Q0, Q1, Q2, Q3).

1. If B lies entirely in the region SMALL and we are working with the
function G♯

10 we pass B. This is the extra step for the Small Theorem.

2. If some component square Qi of B has side length more than 1/2 we
fail B and recommend that B be subdivided along the first such index.
This step guarantees that we only pass good blocks.

3. If B is certifiably irrelevant, we pass B.

4. If we compute that Qi 6⊂ [−3/2, 3/2]2 for some i = 1, 2, 3, we pass B.
Given Step 2, we know that Qi is disjoint from (−3/2, 3/2)2.

5. If B ⊂ B0, the small cube from the Hessian Lemma, we pass B.

6. If B satisfies Corollary 4.7, we pass B. Otherwise, we fail B and sub-
divide the block according to the subdivision recommendation.

In [S0, §10] we explain how we implement our calculations using interval
arithmetic so as to avoid round-off error. We also detail the results of the
calculations. In short, everything runs to completion successfully and the
whole calculation takes about 12 hours on a modern MacBook Pro. This
gives a rigorous computer-assisted proof of the Big Theorem and the Small
Theorem. The reader can see the algorithm run on our Java program [S3].

5 Proof of the Energy Theorem

5.1 A Polynomial Inequality

In this chapter we prove Theorem 4.6. For the (dis)interested reader, we
remark that the discussion of symmetrization in the next chapter does not
depend on the work here. Theorem 4.6 builds on the case M = 4 of the in-
equality below. My motivation was to get an expression that varied quadrat-
ically regardless of the exponent k. I am grateful to the referee for pointing
out a very efficient proof of the following preliminary lemma.
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Lemma 5.1 Suppose a, x ∈ [0, 1] and k ≥ 2. Then f(x) ≤ g(x), where

f(x) = (axk + 1− a)− (ax+ 1− a)k; g(x) =
1

8
k(k − 1)(1− x)2. (42)

Proof: Since f(1) = g(1) = f ′(1) = g′(1) = 0 the Cauchy Mean Value
Theorem (applied twice) tells us that for any x ∈ (0, 1) there are values
y < z ∈ [x, 1] such that

f(x)

g(x)
=
f ′(y)

g′(y)
=
f ′′(z)

g′′(z)
= 4azk−2

[
1−a

(
a+

1− a

z

)k−2]
≤ 4a(1−a) ≤ 1. (43)

This completes the proof. ♠

Here is the inequality mentioned above.

Lemma 5.2 Let M ≥ 2 and k = 1, 2, 3.... Suppose

• 0 ≤ x1 ≤ ... ≤ xM

• ∑M
i=1 λi = 1 and λi ≥ 0 for all i.

Then

0 ≤
M∑

i=1

λix
k
i −

( M∑

I=1

λixi

)k

≤ 1

8
k(k − 1)xk−2

M (xM − x1)
2. (44)

The lower bound is a trivial consequence of convexity, and both bounds
are trivial when k = 1. So, we take k = 2, 3, 4, ... and prove the upper bound.
Suppose first that M ≥ 3. We have one degree of freedom when we keep∑
λixi constant and try to vary {λj} so as to maximize the left hand side of

the inequality. The right hand side does not change when we do this, and the
left hand side varies linearly. Hence, the left hand size is maximized when
λi = 0 for some i. But then any counterexample to the lemma for M ≥ 3
gives rise to a counter example for M − 1. Hence, it suffices to prove the
inequality when M = 2.

In the case M = 2, we set a = λ1. Both sides of the inequality in Lemma
5.2 are homogeneous of degree k, so it suffices to consider the case when
x2 = 1. We set x = x1. Our inequality then becomes exactly the one treated
in Lemma 5.1. ♠
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5.2 The Local Energy Lemma

Let Q = {q1, q2, q3, q4} be the vertex set of Q ∈ Q. We allow for the degener-
ate case that Q is a line segment or {∞}. In this case we just list the vertices
multiple times, for notational convenience.

Note that every point in the convex quadrilateral 〈Q̂〉 is a convex average

of the vertices. For each z ∈ 〈Q〉, there is a some point z∗ ∈ 〈Q̂〉 which is as

close as possible to ẑ ∈ 〈̂Q〉. There are constants λi(z) such that

z∗ =
4∑

i=1

λi(z) q̂j,
4∑

i=1

λi(z) = 1. (45)

We think of the 4 functions {λi} as a partition of unity on 〈Q〉. The choices
above might not be unique, but we make such choices once and for all for each
Q. We call the assignment Q→ {λi} the stereographic weighting system.

Lemma 5.3 (Local Energy) Let ǫ be the function defined in the Theorem

4.6. Let Q,Q′ be distinct members of Q. Given any z ∈ Q and z′ ∈ Q′,

∣∣∣G(z, z′)−
4∑

i=1

λi(z)G(qi, z
′)
∣∣∣ ≤ ǫ(Q,Q′). (46)

Proof: For notational convenience, we set w = z′. Let

X = (2 + 2z∗ · ŵ)k. (47)

The Local Energy Lemma follows from the triangle inequality and the fol-
lowing two inequalities

∣∣∣
4∑

i=1

λiG(qi, w)−X
∣∣∣ ≤ 1

2
k(k − 1)T k−2d2 (48)

|X −G(z, w)| ≤ 2kT k−1δ. (49)

We will establish these inequalities in turn.

Let q1, q2, q3, q4 be the vertices of Q. Let λi = λi(z). We set

xi = 4− ‖q̂i − ŵ‖2 = 2 + 2q̂i · ŵ, i = 1, 2, 3, 4. (50)
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Note that xi ≥ 0 for all i. We order so that x1 ≤ x2 ≤ x3 ≤ x4. We have

4∑

i=1

λi(z)G(qi, w) =
4∑

i=1

λix
k
i , (51)

X = (2 + 2ẑ∗ · ŵ)k =
( 4∑

i=1

λi(2 + q̂i · ŵ)
)k

=
(∑

i=1

λixi

)k

. (52)

By Equation 51, Equation 52, and the case M = 4 of Lemma 5.2,

∣∣∣
4∑

i=1

λiG(qi, w)−X
∣∣∣ =

∣∣∣
4∑

i=1

λix
k
i −

( 4∑

i=1

λixi

)k∣∣∣ ≤ 1

8
k(k− 1)xk−2

4 (x4 − x1)
2.

(53)
By Lemma 4.3, we have

x4 = 2 + 2(q̂4 · ŵ) ≤ 2 + 2(Q ·Q′)max = T. (54)

Since d is the diameter of 〈Q̂〉 and ŵ is a unit vector,

x4 − x1 = 2ŵ · (q̂4 − q̂1) ≤ 2‖ŵ‖‖q̂4 − q̂1‖ = 2‖q̂4 − q̂1‖ ≤ 2d. (55)

Plugging Equations 54 and 55 into Equation 53, we get Equation 48.
Now we establish Equation 49. Let γ denote the unit speed line segment

connecting ẑ to z∗. Note that the length L of γ is at most δ, by the Hull
Approximation Lemma. Define

f(t) =
(
2 + 2ŵ · γ(t)

)k

. (56)

We have f(0) = X. Since ŵ and γ(1) = ẑ are unit vectors, f(L) = G(z, w).
Hence

X −G(z, w) = f(0)− f(L), L ≤ δ. (57)

By the Chain Rule,

f ′(t) = (2ŵ · γ′(t))× k
(
2 + 2ŵ · γ(t)

)k−1

. (58)

Note that |2ŵ · γ′(t)| ≤ 2 because both of these vectors are unit vectors. γ
parametrizes one of the connectors from Lemma 4.3, so

|f ′(t)| ≤ 2k
(
2 + 2ŵ · γ(t)

)k−1

≤ 2k
(
2 + 2(Q ·Q′)max

)k−1

= 2kT k−1. (59)

Equation 49 now follows from Equation 57, Equation 59, and integration. ♠
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5.3 From Local to Global

Let ǫ be the function from the Energy Theorem. Let B = (Q0, ..., QN ) be a
list of N + 1 elements of Q. We care about the case N = 4 and Q4 = {∞},
but the added generality makes things clearer. Let qi,1, qi,2, qi,3, qi,4 be the
vertices of Qi. The vertices of 〈B〉 are indexed by a multi-index

I = (i0, ..., in) ∈ {1, 2, 3, 4}N+1.

Given such a multi-index, which amounts to a choice of vertex of 〈B〉, we
define the energy of the corresponding vertex configuration:

E(I) = E(q0,i0 , ..., qN,iN ) (60)

We will prove the following sharper result.

Theorem 5.4 Let z0, ..., zN ∈ 〈B〉. Then
∣∣∣E(z0, ..., zN )−

∑

I

λi0(z0)...λiN (zN)E(I)
∣∣∣ ≤

N∑

i=0

N∑

j=0

ǫ(Qi, Qj). (61)

The sum is taken over all multi-indices.

Lemma 5.5 Theorem 5.4 implies Theorem 4.6.

Proof: Notice that

∑

I

λi0(z0)...λiN (zN) =
N∏

j=0

( 4∑

a=1

λa(zj)
)
= 1. (62)

Therefore

min
v∈B

E(v) ≤
∑

I

λi0(z0)...λiN (zN)E(I) ≤ max
v∈B

E(v), (63)

because the sum in the middle is the convex average of vertex energies.
We will deal with the min case of Theorem 4.6. The max case has the

same treatment. Choose some (z1, ..., zN ) ∈ B which minimizes E . We have

0 ≤ min
v∈B

E(v)− min
v∈〈B〉

E(v) = min
v∈B

E(v)− E(z0, ..., zN ) ≤

∑

I

λi0(z0)...λiN (zN)E(I)− E(z0, ..., zN ) ≤
N∑

i=0

N∑

j=0

ǫ(Qi, Qj). (64)

The last expression is ERR when N = 4 and Q4 = ∞. ♠

We now prove Theorem 5.4.
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5.3.1 A Warmup Case

Consider the case when N = 1. Setting ǫij = ǫ(Qi, Qj), the Local Energy
Lemma gives us

G(z0, z1) ≥
4∑

α=1

λα(z0)G(q0α, z1)− ǫ01. (65)

G(q0α, z1) ≥
4∑

β=1

λβ(z1)G(q1β(z1), q0α)− ǫ10. (66)

Plugging the second equation into the first and using
∑
λα(z0) = 1, we have

G(z0, z1) ≥
(∑

α,β

λα(z0)λβ(z1)G(q0α, q1β)
)
− (ǫ01 + ǫ10). (67)

Similarly,

G(z0, z1) ≤
(∑

α,β

λα(z0)λβ(z1)G(q0α, q1β)
)
+ (ǫ01 + ǫ10). (68)

Equations 67 and 68 are equivalent to Equation 61 when N = 1.

5.3.2 The General Case

Now assume that N ≥ 2. We rewrite Equation 67 as follows:

G(z0, z1) ≥
∑

A

λA0
(z0)λA1

(z1) G(q0A0
, q1A1

)− (ǫ01 + ǫ10). (69)

The sum is taken over multi-indices A of length 2.
We also observe that

∑

I′

λi2(z2)...λiN (zN) = 1. (70)

The sum is taken over all multi-indices I ′ = (i2, ..., iN ). Therefore, if A is
held fixed, we have

λA0
(z0)λA1

(z1) =
′∑

I

λI0(z0)...λIN (zN). (71)
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The sum is taken over all multi-indices of length N + 1 which have I0 = A0

and I1 = A1. Combining these equations, we have

G(z0, z1) ≥
∑

I

λI0(z0)...λIN (zN)G(q0I0 , q1I1)− (ǫ01 + ǫ10). (72)

The same argument works for other pairs of indices, giving

G(zi, zj) ≥
∑

I

λI0(z0)...λIN (zN)G(qiIi , qjIj)− (ǫij + ǫji). (73)

Now we interchange the order of summation and observe that

∑

i<j

(∑

I

λI0(z0)...λIN (zN) G(qiIi , qjIj)
)
=

∑

I

∑

i<j

λI0(z0)...λIN (zN) G(qiIi , qjIj) =

∑

I

λI0(z0)...λIN (zN)

(∑

i<j

G(qiIi , qjIj)

)
=

∑

I

λI0(z0)...λIN (zN) E(I). (74)

When we sum Equation 73 over all i < j, we get

E(z0, ..., zN ) ≥
∑

I

λi0(z0)...λiN (zN)E(I)−
N∑

i=0

N∑

j=0

ǫ(Qi, Qj). (75)

Similary,

E(z0, ..., zN ) ≤
∑

I

λi0(z0)...λiN (zN)E(I) +
N∑

i=0

N∑

j=0

ǫ(Qi, Qj). (76)

These two equations together are equivalent to Theorem 5.4. This com-
pletes the proof.
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6 Symmetrization

6.1 A Three Step Process

In this chapter we sketch the ideas behind Lemma 2.4, the Symmetrization
Lemma. Our symmetrization is a retraction from the small domain Ω to
K4, the set of configurations with 4-fold Klein symmetry. Here we describe
it as a 3 step process. We start with the configuration X having points
(p0, p1, p2, p3) ∈ Ω.

1. (Rotating) We let (p′0, p
′
1, p

′
2, p

′
3) be the configuration which is obtained

by rotating X about the origin so that p′0 and p′2 lie on the same hor-
izontal line, with p′0 lying on the right. This slight rotation does not
change the energy of the configuration, but it does slightly change the
domain. While X ∈ Ω, the new configuration X ′ lies in a slightly
modified domain Ω′ which we describe in [S0, §13].

2. (Horizontal Sliding) Given a configuration X ′ = (p′0, p
′
1, p

′
2, p

′
3) ∈ Ω′,

there is a unique configuration X ′′ = (p′′0, p
′′
1, p

′′
2, p

′′
3), invariant under

reflection in the y-axis, such that p′j and p
′′
j lie on the same horizontal

line for j = 0, 1, 2, 3 and ‖p′′0 − p′′2‖ = ‖p′0 − p′2‖. There is a slightly
different domain Ω′′ which containsX ′′. Again, we describe Ω′′ precisely
in [S0, §13]. The domain Ω′′ is 4-dimensional.

3. (Vertical Sliding) Given a configuration X ′′ = (p′′0, p
′′
1, p

′′
2, p

′′
3) ∈ Ω′′ there

is a unique configuration X∗ = (p∗0, p
∗
1, p

∗
2, p

∗
3) ∈ K4 such that p′′j and

p∗j lie on the same vertical line for j = 0, 1, 2, 3.

We prove the Symmetrization Lemma in two steps. First, we prove the
following result.

Lemma 6.1 Rs(X
′′) ≤ Rs(X

′) for all X ′ ∈ Ω′ and s ≥ 2, with equality iff

X ′ = X ′′.

Second, we prove the following result.

Lemma 6.2 Rs(X
∗) ≤ Rs(X

′′) for all X ′′ ∈ Ω′ and s ∈ [12, 15 + 1/2], with
equality iff X ′′ = X∗.
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Remarks:
(1) Horizontal and Vertical Sliding are really the same operation. The one
operation is just the other one “turned sideways”, so to speak. However, it
is useful to separate them out into two steps, because the domains involved
are different and the resulting estimates we can get are also different.
(2) I tested these inequalities extensively on random inputs before attempting
a proof. The inequalities seem to be quite robust, and work for a much wider
domain than just the domains Ω′ and Ω′′ derived from Ω. However, the proof
strategy, described in the next section, requires the small domains to work.
I don’t know a robust proof.
(3) It seems that variants of Lemmas 6.1 and 6.2 might be useful in proving
5-point configurations for s > 15 + 25

512
, but I could not make any headway

on this.

6.2 Horizontal Symmetrization Proof Strategy

There are 10 bonds (i.e. distances between pairs of points) in a 5 point
configuration p̂0, ..., p̂4. Ultimately, when we perform the symmetrization
operations we want to see that a sum of 10 terms decreases. Doing this
directly seems extremely difficult, given the complexity of the expressions
involved. What makes our technique work is that we found a way to break
the 10-term sum into smaller pieces, all of which decrease separately under
the operation. This stronger kind of monotonicity seems to require the very
small domains we use. Here are the pieces:

A1,s = Rs(p̂1, p̂0) +Rs(p̂1, p̂2). (77)

A2,s = Rs(p̂3, p̂0) +Rs(p̂3, p̂2). (78)

B13,s = Rs(p̂1, p̂3) +Rs(p̂1, p̂4) +Rs(p̂3, p̂4). (79)

B02,s = Rs(p̂0, p̂2) +Rs(p̂0, p̂4) +Rs(p̂2, p̂4). (80)

To prove Lemma 6.1 we establish the following stronger results. These
results are meant to hold for all s ≥ 2 and all X ′ ∈ Ω′.

1. A1,s(X
′′) ≤ A1,s(X

′).
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2. A3,s(X
′′) ≤ A3,s(X

′).

3. B02,s(X
′′) ≤ B02,s(X

′) with equality iff X ′ = X ′′.

4. B13,s(X
′′) ≤ B13,s(X

′) with equality iff X ′ = X ′′.

Inequalities 3 and 4 must be proved for each exponent s, but they are pretty
easy. Each inequality involves a pair of points in the plane. Our proof is
more or less geometric. See [S0, §14].

Inequalities 1 and 2 seem much harder, and I don’t know a geometric
proof. However, we first note the following standard result.

Lemma 6.3 (Monotonicity) Let λ1, ..., λn > 0. If β/α > 1. Then

N∑

i=1

λβi −N ≥ β

α

( N∑

i=1

λαi −N
)
.

See [S0, §12.1] for a proof. It follows from the Monotonicity Lemma that
the truth of Inequality 1 at s = 2 implies the truth of Inequality 1 for s > 2.
The same goes for Inequality 2. We deal with the case s = 2 with a direct
calculation involving the positivity certificate from Lemma 3.1.

Consider Inequality 1. Since the x-coordinates of p0 and p2 are the
same, we just have a 5-dimensional space of possibilities. We find 4 maps
f1, f2, f3, f4 from the unit cube [0, 1]5 into the configuration space of triples
of points such that the union

⋃
fj([0, 1]

5) covers the projection of the domain
Ω′ onto the first 6 coordinates. That is, every triple (p0, p1, p2) that arises in
a configuration of Ω′ lies in the images of one of the cubes.

We then define

φj = (Abottom
s (X ′)− Abottom

s (X ′′)) ◦ fj. (81)

The function φj is a rational function on the unit cube for each j = 1, 2, 3, 4.
The numerator and denominators of φj are enormous. They have several
thousand terms and degree about 40. Nonetheless, we show that both the
numerator and denominator satisfy the Positivity Criterion in Lemma 3.1!
This establishes Inequality 1. The proof for Inequality 2 is similar. See [S0,
§13,14] for more details.
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6.3 Vertical Symmetrization in Brief

It seems that Inequalities 1-4 also work in the case of Lemma 6.2, except
that for Inequalities 1 and 2 we need to take s fairly large. I found failures
for exponents as high as s = 9. In principle, we could prove Lemma 6.2 using
a strategy similar to the one used for Lemma 6.1, except that we would pick
(say) s = 12 for Inequalities 1 and 2. The problem is that the high exponent
leads to enormous polynomials. When trying to understand the failure of In-
equalities 1 and 2 for small exponents, I noticed the following phemonenon:
When Inequality 1 or 2 fails, Inequalities 3 and 4 hold by a wide margin. The
proof of Lemma 6.2, given in [S0, §13-15], makes calculations for Inequalities
1 and 2 at the exponent s = 2 similar to the ones described for Lemma 6.1,
and then uses Lp estimates to exploit the phenomenon just mentioned. The
proof is considerably more delicate.

Remark: Lemma 6.2 has a painful proof, and one would like to do without
this lemma. To this end, we mention that Lemma 6.1 implies that any min-
imizer for Rs with s ∈ [13, 15 + 25

512
] has to have 3 points on an equator and

the remaining two points symmetrically placed with respect to reflection in
this equator. It seems that there should be many endgames from here which
avoid Lemma 6.2.
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