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Abstract

We prove the following theorem. Let L be any link. There is some

N = NL such that every straight-edge embedding of the complete

bipartite graph KN,N contains a finite union of cycles having link

type L. This result builds on the ideas of S. Negami, who proved the

analogous result for complete graphs. Most of our motivation for this

paper is to give a simpler proof of Negami’s Theorem.

1 Introduction

In his 1991 paper, [N], Seiya Negami proved a beautiful theorem 1 about
linearly embedded complete graphs.

Theorem 1.1 (Negami) Let L be any link. Then there is some integer
N = NL with the following property. Any straight-edge embedding of the
complete graph KN contains a finite union of cycles having the same link
type as L.

A straight-edge embedding of KN is an embedding into R
3 such that

all the edges are realized by straight line segments. All that is required is
that the vertices of KN be in general position – i.e., no 4 coplanar. To say

∗ Supported by N.S.F. Research Grant DMS-0072607
1It is worth mentioning that Negami also proves a version of his result for knotted

graphs, but for ease of exposition we ignore this case.
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that a union of cycles has link type L is to say that some continuous motion
deforms the union of polygons into L without causing any of the strands to
cross themselves. In short, the union of polygons is isotopic to L. Negami’s
paper has a history of the problem of finding knots and links in embedded
complete graphs.

The purpose of this paper is to prove the following result.

Theorem 1.2 Let L be any link. Then there is some integer N = NL with
the following property. Any straight edge embedding of the complete bipartite
graph KN,N contains a finite union of cycles having link type L.

Theorem 1.2 grew out of our attempts to understand Negami’s original
paper, and the proof we give of Negami’s Theorem (while mainly following his
ideas) is considerably simpler. Theorem 1.2 is a strengthening of Negami’s
Theorem because the complete bipartite graphs are subgraphs of the com-
plete graphs, whereas even the complete graph K3 is never the subgraph of a
complete bipartite graph. Strictly speaking, not all the steps we use to prove
Negami’s Theorem are needed for the proof of Theorem 1.2, but they do put
our proof of Theorem 1.2 in context.

I would like to thank Ramin Naimi for telling me about Negami’s Theo-
rem, and also for helpful and interesting discussions about spatially embed-
ded graphs.

2 Proofs of the Results

2.1 Ramsey’s Theorem

For ease of exposition, we will state Ramsey’s Theorem just for 2-colorings.
Let Sk(A) denote the set of all k-element subsets of a finite set A.

Theorem 2.1 (Ramsey) Let k and n be given positive integers. There
exists some N = N(k, n) with the following property. Suppose that every
element of Sk(A) has been colored either red or blue. Then A has an n-
element subset A′ such that every element of Sk(A

′) has the same color.

The numbers N(2, n) are the classic Ramsey numbers. See [W, §8.3] for a
discussion and proof of Ramsey’s Theorem.
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2.2 Improving the Position

Negami’s Theorem is a close cousin of the following result.

Lemma 2.2 Given an integer n there is some other integer N = Nn such
that any N points in the plane in general position contain the vertex set of a
convex n-gon.

Proof: Assume n ≥ 5 and let N = N(4, n). Let A be the N -element set.
We color an element of S4(A) red if the corresponding points form a convex
quadrilateral, and otherwise blue. Note that the copy of K4 using the ver-
tices of a blue quadruple is embedded. By Ramsey’s Theorem, there is an
n-element subset A′ ⊂ A such that S4(A

′) has a monochrome coloring. If all
these points are blue, then one can give a planar embedding of Kn using the
vertices of A′. But K5 is not planar. Hence all elements of S4(A

′) are red.
Hence A′ is convex. ♠

Let π : R3 → R
2 be projection to the plane. Say that a subset S ⊂ R

3

is clean if π(S) is contained in the graph of a convex function. This means
that the points of π(S) are the vertices of a convex polygon, and also may
be ordered from left to right consecutively.

Corollary 2.3 Given any integer n, there is some integer N with the fol-
lowing property. If S is a subset of N general position points in R

3, then
(after rotating S if necessary) some n-element subset S ′ ⊂ S is clean.

Proof: Let N = N(4, 2n). By the previous result, there is a 2n-element
subset S ′ such that π(S) is the vertex set of a convex 2n-gon. But then we
can divide this 2n-gon half and rotate so that n of the points lie on the graph
of a convex function. ♠

We call a straight-edge embedded complete graph clean if its vertices
form a clean set. Let Γ be a clean complete graph. We orient the edges of Γ
so that they point from left to right, when projected into the plane. In other
words, the tail vertex of each edge has smaller x-coordinate than the head
vertex. We call a pair of edges crossing if their planar projections cross, and
positive if the crossing is positive in the sense of Figure 1 below. We call Γ
positive if every pair of crossing edges is positive.
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Figure 1: A positive crossing

Lemma 2.4 Given any n there is some N with the following property: If Γ
is a clean complete graph of size N , then (up to mirror reflections) Γ contains
a positive clean complete graph Γ′ of size n.

Proof: Let N = N(4, n) and let A be be a clean set of N points. Given an
element β ∈ S4(A), there is a unique way to pair the corresponding points so
that the edges cross when projected into the plane. We color β red if these
edges make a positive crossing, and otherwise blue. Ramsey’s Theorem gives
us a set A′ ⊂ A of size n such that of S4(A

′) has a monochrome coloring. If
the color is red, we are done. If the color is blue, we reflect the picture in
the xy plane. ♠

2.3 The Twisted Cubic

Below we will prove the following claim. Given any link L, there is some
N = NL such that any positive clean complete graph of size N contains a
cycle with link type L. Call this claim C(+). In view of Lemma 2.4, and
the fact that C(+) is supposed to hold for both a link and its mirror image,
Negami’s Theorem follows from C(+).

Let Kn denote the complete graph on n vertices. Any two clean positive
embeddings of Kn are equivalent in the following sense: They contain pre-
cisely the same links: The obvious bijection between two such embeddings
is such that the corresponding cycles in each one have the same planar dia-
grams. Given this equivalence, it is useful to have a nice model for a clean
positive complete graph. The twisted cubic provides such a model. The
twisted cubic is the curve X with parametric equations (t, t2, t3). This curve
projects to the parabola (t, t2). Any collection of n points on X gives rise to
a clean positive embedding of Kn. So, for the purposes of proving C(+), we
just have to show that any link can be realized as a polygon having vertices
on the twisted cubic. This formulation is made in Negami’s paper.
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2.4 Realizing the Link

Let f(x, y, z) = x denote the map which takes the first coordinate. Say that
a smooth link L is in bridge position if if f(L) = [0, 1] and the only critical
points of f are either global minima, namely f−1(0), and global maxima,
namely f−1(1). When L is in bridge position, L is realized as a bipartite graph
where the (not necessarily straight) edges connect minima to maxima. It is
a well-known result that every link can be put in bridge position. Intuitively,
you just clasp all the minima of the link with your left hand, and all the
maxima with your right hand – then you pull the link tight, like a rubber
band. So, as a first step to proving C(+), we put the given link in bridge
position.

Let L be a link in bridge position. Thinking of L as a bipartite graph, we
orient each of the strands of L from left to right. We say that L is in positive
bridge position if all the crossings are positive. Following Negami, we prove:

Lemma 2.5 Every link can be placed in positive bridge position.

Proof: Scanning the link from left to right, you look for the first negative
crossing. Assuming you have found a negative crossing, you give the right
half of the link a twist while keeping (most of) the left half fixed. This twist
has the effect of removing the negative crossing at the expense of adding
some new positive crossings. Just do this finitely many times to eliminate
all negative crossings. ♠

At this point, our proof diverges from what Negami does. Given a link in
positive bridge position, we can spread out the crossings so that they appear
sequentially as on the left side of Figure 2. The portion between each set of
vertical lines is one of a small number of standard types. We will call such
a portion a unit . (The vertical lines are not part of the link.) The crossings
are all understood to be positive. The link 2 below has 4 units.

Each individual unit of the link L can certainly be realized as a collection
of arcs with endpoints on the twisted cubic. Moreover, we can realize each
unit individually in such a way that it lies in a thin tubular neighborhood of
a single segment. Then we can concatenate the individual units, in a zig-zag
pattern, as shown on the right hand side of Figure 2. The positivity guaran-
tees that the segments of a given unit all cross over, or all cross under, the

2The example in Figure 2 is the unknot, but it serves to illustrate our general method.
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segments of an adjacent unit. For this reason, there is a fairly obvious isotopy
which just “unfolds” the realization back into the link L. This completes the
proof of Negami’s Theorem.

Figure 2: Realizing a link on the twisted cubic

2.5 A Corollary of Ramsey’s Theorem

The following variant of Ramsey’s Theorem concerns the coloring of certain
elements of S4(A∪B), namely those which have 2 elements in common with
each of A and B.

Lemma 2.6 For any integer n > 0 there is some N = Nn with the following
property. Suppose that A and B are two disjoint N -element sets. Suppose
every element of S2(A) × S2(B) bas been colored red or blue. Then there
exist n-element subsets A′ ⊂ A and B′ ⊂ B such that every element of
S2(A

′)× S2(B
′) has the same color.

Proof: Let e1, ..., eM be the list of unordered pairs of vertices in A. Let
B0 = B. Assuming that Bk is defined, let Bk+1 denote the largest subset of
Bk such that every element of S2(ek+1)× S2(Bk+1) has the same color ck. If
we choose N large enough, then repeated applications of Ramsey’s Theorem
guarantee that we can make BM have cardinality at least n. At the same
time, we can choose N large enough so that there is some n-element set
A′ ⊂ A such that ck is the same for all ek ⊂ A′. Let m be the largest index
such that em ⊂ A′. Let B′ denote any n element subset of Bm. Then A′ and
B′ satisfy the conclusion of the lemma. ♠
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2.6 Proof of Theorem 1.2

Suppose that X = A∪B is a union of 2N points in R
3, with N points each

in A and in B. Let KN,N be the straight-edge bipartite graph defined by X.
Let π denote projection to R

2. If necessary, we perturb, take subsets, swap
A and B, and translate so that the points of π(X) are in general position
and π(A) lies to the left of the y-axis and π(B) lies to the right of the y-axis.
We orient the edges of KN,N from left to right, so that their tails are in A

and their heads are in B.

Lemma 2.7 For any n there is some N = Nn with the following property.
Suppose X = A ∪ B is the general position union of two disjoint N -element
subsets of points in R

3. Then there are n-element subsets A′ ⊂ A and B′ ⊂ B

such that every quadrilateral formed from two points of π(A′) and two points
of π(B′) is convex.

Proof: Assume n ≥ 3. We color an element of S2(A) × S2(B) red if the
corresponding 4 points project to a convex quadrilateral, and otherwise blue.
Lemma 2.6 gives us n-element sets A′ ⊂ A and B′ ⊂ B such that every
element of S2(A

′)×S2(B
′) has the same color. If all these elements are blue,

then the points π(A′) and π(B′) can be used as the vertices of a straight-edge
planar embedding of Kn,n. But K3,3 is not planar. Hence, all elements of
S2(A

′)× S2(B
′) are red. ♠

Let A = {a1, ..., aN} and B = {b1, ..., bN}. Consider, for i < j and k < l,
the 4-tuple (ai, aj , bk, bl). By Lemma 2.7 we can reduce to the case where
these points necessarily project to a convex quadrilateral. This means that
either π(aibk) and π(ajbl) cross or π(aibl) and π(ajbk) cross, but not both.

Another application of Lemma 2.6, followed possibly by reversing the
ordering of A, reduces to the case where π(aibl) always crosses π(ajbk). Yet
another application reduces to the case where such crossings are all positive
in the sense of Figure 1. A final application, followed possibly by the reversal
of both the ordering on A and the ordering on B, reduces to the case where
π(aibk) ∩ Y always lies below π(ajbl) ∩ Y . Here Y denotes the y-axis.

We now construct out realization of the link L in a manner similar to
what is shown on the right hand side of Figure 2. Assume that L is given as
a link in positive bridge position with k local minima and k local maxima.
We realize the first unit of L using vertices a1, ..., ak and b1, ..., b2k. We realize
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the second unit using vertices b1, ..., b2k and ak+1, ..., a3k. We realize the third
unit using vertices ak+1, ..., a3k and b2k+1, ..., b4k. And so on. Thanks to
the crossing properties of KN,N , our realization L′ has the following general
features.

• L′ decomposes into units, each having a projection isomorphic to the
corresponding unit of L.

• Each unit of L′ either crosses entirely over or entirely under the adjacent
unit, and non-adjacent units have disjoint projections.

• The successive units of L′ form a zig-zag pattern, as in Figure 2, and
generally move upwards in terms of how they cross the y-axis.

From these features, we see that L′ is isotopic to L. This completes the proof
of Theorem 1.2.
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