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A supplementary quad is a convex quadrangle whose opposite interior angles
sum to π. Equivalently, the vertices are co-circular. These notes succinctly
prove Brahmagupta’s formula for such quads: A2 = B2, where A is the area
and B2 = (s− a)(s− b)(s− c)(s− d). Here a, b, c, d are the side lengths and
s = (a+ b+ c+ d)/2.

Proof: Let C = A2/B2. Let X be the space of supplementary quads. To
morph a quad is to replace it by one with the same angles. To recut a quad
is to cut along a diagonal and reverse one triangle. Recutting preserves C.
We claim morphing does too. From any point in X we can reach all nearby
points by morphs and recuts. (Recut, morph, re-recut; repeat using the other
diagonal; morph.) Hence C is constant on X. As X has squares, C = 1.

Proof of Claim: Let L(ρ, σ) be the space of lines `a, `b, `c, `d with slopes
ρ, σ,−ρ,−σ and `a ∩ `c = (0, 0). Parametrize L ∼= R2 by (x, y) = `b ∩ `d.
Let a, b, c, d be the signed distances between vertices of the associated quads,
and let A be the signed area. Choose signs so that a, b, c, d, A > 0 in a con-
vex case. B2(x, y) is a degree 4 polynomial as a(x, y), ..., d(x, y) are linear.
A(x, y), a sum of determinants of linear functions, is a degree 2 polynomial.
If xy = 0 the quads are butterflies , so A = 0; also |a| = |c| and |b| = |d|
and ab = −cd, so 2 factors of B2 vanish. Given their degrees, A(x, y) ∝ xy
and B2(x, y) ∝ (xy)2. Hence C|L is constant. Our claim follows: A (generic)
quad and its morphs are all isometric to quads in the same L. ♠
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Discussion: John Conway long sought a simple and beautiful geometric
proof of Brahmagupta’s formula, like Sam Vandervelde’s recent “Conway’s
Dream” proof. My proof would not have satisfied Conway; hence my title.

In addition to being short, my proof is pretty elementary. It only depends
on basic facts about polynomials and continuity. However, I found this proof
by thinking about some deeper modern mathematics. (It also helps to have
smart friends; see the acknowledgements at the end.)

The main idea is that the roots, counted with multiplicity, determine a
real polynomial up to constants provided that the number of roots equals the
degree of the polynomial. A single evaluation then determines the constant.
My proof can be summarized like this: The function C = A2/B2 is invariant
under recutting. It is also invariant under morphing because, when analyti-
cally continued, A2 and B2 vanish to the same order on the set of butterflies
and nowhere else. The recutting/morphing process spreads the constancy of
C through X like a virus.

To make this idea work, we have to enlarge the space X so that it includes
some nonconvex quads, especially butterflies. We’ll explain it from another
point of view here. First of all, let us modify X so that we consider supple-
mentary quads modulo isometry. Call quads cousins if they are morphs of
each other. We think of X as a fiber bundle, where the fibers are the cousin
families. Each fiber is a convex cone in R2. We create a new space X∗ by
replacing these cones by the copies of R2 which contain them. The space X∗

is a plane bundle with the same base. The fibers are our L spaces.
The fact that A is a degree 2 polynomial on the fibers is a key idea of Bill

Thurston’s paper Shapes of Polyhedra. In Thurston’s work, he introduces
local complex linear coordinates on the space of flat cone spheres with pre-
scribed cone angles. Prescribing the cone angles is like restricting to a fiber.
Thurston’s coordinates are like my (x, y) coordinates. He shows the area of
a flat cone surface with fixed cone angles is the diagonal part of a Hermitian
form in his coordinates. There is also a real valued version of this theory
which is even closer to my proof, exposited recently in a Notices paper by
Danny Calegari. The same ideas also arise in translation surfaces.

The main point is that if you fix the slopes of the lines (or the cone
angles, in Thurston’s case), various algebraic functions are simplified and
become linear. For example, if we fix the angles of a right triangle then its
area is a quadratic function in the length of the hypotenuse because both the
base and height are linear functions of the length of the hypotenuse. The
constant of proportionality α depends on the angles, of course.
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Incidentally, the fact just mentioned is the basis for one of the greatest
ever proofs of the Pythagorean Theorem. Start with a right triangle Tc with
sides a, b, c and hypotenuse c. Drop the altitude to c and consider the two
new triangles Ta and Tb whose union is Tc. All three triangles are in the same
similarity class. The area of Tc is the sum of the areas of Ta and Tb. But then
αc2 = αa2 +αb2. Cancelling α we get the result. My proof of Brahmagupta’s
formula is a close cousin (no pun intended) of this proof.

Now we discard X∗ and go back to X. Once we know that C is fiberwise
constant on X how do we equate the constants across the fibers? Let me
mention two alternate approaches. Each fiber contains triangles (i.e. de-
generate quads) and then C = 1 by Heron’s formula. Heron’s formula is a
degenerate version of Brahmagupta’s formula which is somewhat easier to
prove, but you would still need to prove it. Better yet, Peter Doyle noticed
that each fiber contains a (perhaps nonconvex) quad whose diagonals are per-
pendicular, and that for such quads Brahmagupta’s formula can be verified
with some clever but ultimately easy algebra. I’ll leave this as a challenge for
the interested reader. I like Peter’s endgame, but I wanted something with
no computation.

My inspiration for the morphing/recutting proof came from control-theory
flavored proofs of ergodicity. The prototypical example is E. Hopf’s proof
that the geodesic flow on a hyperbolic surface is ergodic, meaning that any
invariant (measurable) function is (almost everywhere) constant. The con-
nection between our modest recutting trick and Hopf’s ergodicity proof may
seem far-fetched, but consider the picture.

The geodesic flow lives on a 3-manifold, the unit tangent bundle of the
surface. This 3 manifold has 2 invariant codimension 1 foliations, the stable
foliation and the unstable foliation. The first step in Hopf’s proof is that to
use the expansion/contraction properties of the flow along the leaves of the
foliations to establish the (almost everywhere) constancy on each leaf of the
stable foliation and each leaf of the unstable foliation. The next step is to
walk around, going from a stable leaf to an unstable leaf to a stable leaf, etc,
to spread this constancy around over the whole 3-manifold.

The space X has 2 codimension 1 foliations, each consisting of quads
sharing a pair of opposite interior angles. Morphing and recutting, using
one diagonal and then the other, we take a similar kind of walk through
the leaves. When we view these 2 foliations as living in the 3-manifold of
similarity classes of supplementary quads, this looks a lot like the ergodicity
proof.

3



I can’t resist mentioning another way to do the control theory part of
the proof. You can algorithmically change any supplementary quad into a
square by a finite sequence of morphs and recuts, so C = 1. To make the
algorithm as clean as possible we note that both morphing and recutting
extend to degenerate supplementary quads – i.e. triangles with one marked
point. Morph so as to maximize the intersection angle between the diagonals,
recut along the longest diagonal, repeat until done. The algorithm produces
a finite number of marked triangles, then one or two quads with perpendic-
ular diagonals, then a square. To appreciate what this is doing, restrict it
to quads inscribed in the unit circle, and note how it increases the minimum
length of the diagonals.
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