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Abstract

We introduce the crisscross and the cup, both of which are im-
mersed 3-twist polygonal paper Moebius band of aspect ratio 3. We
explain why these two objects are limits of smooth embedded paper
Moebius bands having knotted boundary. We conjecture that any
smooth embedded paper Moebius band with knotted boundary has
aspect ratio greater than 3. The crisscross is planar but the cup is
not.

1 Introduction

Informally, a paper Moebius band is what you get when you take a strip of
paper, give it an odd number of twists in space, then tape the ends together.
A formal definition is given e.g. in [S1]. A related concept is that of a
folded ribbon knot . This is what you get when you take a paper strip, fold
it up so that the ends meet, and then press it into the plane. A formal
definition of a folded ribbon knot is given e.g. in [DL]. The difference between
paper Moebius bands and folded ribbon knots is that the former are smooth
surfaces in space and the latter are polygonal objects in the plane, with some
additional combinatorial data akin to a knot crossing diagram.

We say that a paper Moebius band is multi-twisted if the boundary loop
∂Mλ is a non-trivial knot. One can make a similar definition for folded ribbon
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knots. The multi-tristed case corresponds to giving the strip of paper at least
3 twists.

This paper is a sequel to the papers [S1] and [S2]. In [S1], R.E.S. resolves
the minimum aspect ratio question for paper Moebius bands, discussed in W.
Wunderlich’s 1962 paper [W] and then formally conjectured by B. Halpern
and C. Weaver [HW] in 1977. (See [T] for an English translation of [W].)
The so-called triangular paper Moebius band , whose aspect ratio is λ =

√
3,

is the best one can do. This example has an unknotted boundary, a per-
fect equilateral triangle. The triangular Moebius band is not quite a paper
Moebius band because it is neither smooth nor embedded, but it has an
interpretation as a folded ribbon knot.

In [S2] R.E.S. establishes a similar result for paper cylinders having at
least 2 twists. In this case the best one has aspect ratio 2 and folds 4 times
around a right-isosceles triangle. This result, and some soft work involving
smooth approximations, resolves [DL, Conjecture 39] in the case n = 1.

B.E.B. subsequently got interested in this work and decided to find the
minimum aspect ratio for a multi-twisted paper Moebius band by a physical
experiment: Make a loose 3-twist paper Moebius band and then carefully
pull it tight. She found two surprising limits, which she calls the crosscross
and the cup. Both of these have aspect ratio 3, and they seem to be optimal
in the sense that they minimize aspect ratio amonst multi-twisted paper
Moebius bands.

The crisscross has an interpretation as a folded ribbon (un)knot. The
cup is somehow closer to a basketweave. In this note we will describe the
crosscross carefully and then sketch how it may be approximated by smooth
paper Moebius bands having knotted boundary. We will describe the cup
in a bit less detail, and then discuss heuristically some of the mathematical
implications of the cup.

One impressive thing about these objects is that their aspect ratio is much
less than 3

√
3, which is what one would get from a 3-twist paper Moebius

band by wrapping 3-times around the triangular Moebius band in a fairly
obvious way. Indeed, the famous hexaflexagon is just such a 3-fold wrapping.
For a while R.E.S. thought that the hexaflexagon had minimum aspect ratio
amongst multi-twist paper Moebius bands. This same speculation for folded
ribbon knots is the content of [DL, Conjecture 22]. The crisscross and the
cup demolish the hexaflexagon in terms of aspect ratio. Since the crisscross
is also a folded ribbon knot, it gives a counterexample to [DL, Conjecture
22].
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The existence of the crisscross (or the cup) and its knotted approximations
establishes the following result.

Theorem 1.1 Let λ∗ denote the infimal aspect ratio of a multi-twisted paper
Moebius band. Then λ∗ ≤ 3.

Inspired by the conjecture made by Halpern and Weaver in 1977 we make
the following conjecture.

Conjecture 1.2 A smooth embedded multi-twisted paper Moebius band has
aspect ratio greater than 3.

The conjecture and the theorem would combine to show that λ∗ = 3. In
the category of folded ribbon knots, Conjecture 1.2 is the same as [DL,
Conjecture 22] except that 3 replaces 3

√
3.

The existence of the cup and the crisscross together rules out the pos-
sibility of a theorem like [S1, Triangular Limit Theorem]. Assuming that
Conjecture 1.2 is true, a minimizing sequence of examples does not have a
unique limit. It might converge to the crisscross and it might converge to
the cup. How many possible limits are there? We think that probably there
are just these two limits, but we are prepared for a surprise.

We would like to thank Elizabeth Denne, Ben Halpern, Curtis McMullen,
Charles Weaver, and Sergei Tabachnikov for helpful discussions about topics
related to this paper.

3



2 The Crisscross

2.1 Basic Description

The left side of Figure 1 shows the folding pattern for the crisscross. The
middle picture shows an intermediate stage of folding. The right side shows
the thing all folded up. The strip of paper is aqua on one side and magenta
on the other.

2B

3A

Figure 1: The crisscross folding pattern.

The yellow arrows indicate the successive folds. The solid yellow arrows
indicate that the fold should be made in a “forward direction” with the
crease receding away from the viewer. In the bottom fold on the left, the
bottom square goes along for the ride. The one dotted arrow in the middle
indicates that the fold should be made “around the back”. The lettering has
the following meaning: Imagine that the crisscross is siting on the table as on
the right side of Figure 1. If you stick a pin though it, the pin will encounter
pieces 1, 2, 3, 4, 5 in order. The A-faces are facing up and the B-faces are
facing down. The crisscross is taped on the left hand vertical side.

Figure 2 shows another view of the crosscross. This time we are separating
out the 5 faces and indicating how the edges are glued together. The thick
red sides indicate the boundary. The oriented blue segments piece together
to make the midline of the crisscross.

4



1
2

E

A A
B D C

E

D
B C

a

b

c
fd e

43 5

Figure 2: Crisscross gluing pattern

Figure 2 uses two systems of letters. The letters A,B,C,D,E indicate
the side pairings. The letters a, b, c, d, e, f indicate the way the boundary
goes around the crisscross. We orient each of the sides labeled a, b, c, d, e, f
towards the letter. Thus the tail of each edge is at the unlettered vertex and
the head is at the lettered vertex. The edge labeled a runs into the edge
labeled b, with the head of a going to the tail of b. And so on, all the way
around.

2.2 Smooth Approximation

In this section we show that the crisscross can be smoothly approximated
as closely as we like. There are two ways to look at this problem. One
way to look at it is to observe that we made the crisscross by making a 3-
twist Moebius band and pulling it tight. With a bit of faith in the ability
of mathematics to model physical phenomena, one could imagine that the
intermediate stages are the very approximations we seek.

The above approach is somewhat vague, so here we describe a more precise
method. The method goes back at least to the 1930 paper by M. Sadowski
[Sa]. (See [HF] for an English translation.) In Sadowski’s paper the examples
are made by splicing together pieces of cylinders with flat polygons, resulting
in C1 examples with discontinuous mean curvature. A very similar method,
used by Halpern and Weaver [HW], uses more general smooth surfaces in
place of pieces of cylinders. This argument is described informally in [FT].
We use the same argument, more or less, in [S2]. For convenience we repeat
the argument in [S2] almost verbatim.

Using smooth bump functions one can easily make a U -shaped curve.
This curve agrees with line parallel line segments at either end and then
curves around to join these line segments. Call this curve U . The product
U × [a, b] is an isometrically embedded rectangle. Next we take the polygons
in Figure 2 and stack them on top of each other, separated by a very small
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distance. We now join the newly created edges of this stack of triangles by
the U -shaped rectangles.

If we make these U -shaped rectangles slightly thinner than the sides of the
polygons, they will not overlap each other. The key observation here is that
we never encounter 4 edges laying directly above each other and having an
interlaced gluing pattern. Indeed, there are exactly 2 edges lying vertically
above each other in each relevant plane.

The new object will be an embedded smooth paper Moebius band whose
boundary is not quite totally geodesic. To get a totally geodesic example,
we just trim off the rough edges. This gives you a smooth embedded twisted
cylinder with slightly larger aspect ratio. With this procedure you can make
λ as close to 3 as you like.

2.3 Knottedness of the Boundary

We give 3 ways to think about the knottedness of the boundary of the ap-
proximations to the crisscross.

Method 1: The informal method of approximating the crisscross by pulling
tight a loose example, then the knotting is automatic. The initial boundary
is a trefoil knot and then when we pull tight we are moving the boundary by
an isotopy and so it remains a trefoil knot.

Method 2: Another way to analyze the smooth approximations coming
from the more formal construction is just to make one, then to tape some
yarn along the edges, then detach the yarn, and then observe that the result
is actually knotted. We did this on the crisscross we built, which one can
think of as a very close relative of the smooth approximations constructed
above.

Here we describe the boundary of an approximation to the crisscross
based on the gluings in Figure 2. Figure 3 shows the path very nearly taken
by the boundaries. The numbers indicate the face containing the edges. The
little magenta segments indicate very nearly vertical segments which join a
piece on one layer to a piece on another. The crossings are dictated by the
numbering.
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Figure 3: Knottedness of the boundary

In the actual crisscross the arcs which look horizontal are horizontal and
the arcs which look vertical are vertical. The red boundary makes a perfect
square, but with some backtracking.

Method 3: Our last method is completely algorithmic in the sense that
it does not require any visualization or physical manipulation. It just re-
quires an analysis of Figure 2. In Figure 4 below we have copied down our
knotted red loop, but for this method we do not need to know anything about
this loop except the numbering of the strands. The information inside the
grey disks, which we got by some model-making in Method 2, is irrelevant
for Method 3.

The red loop in Figure 4 is as in Figure 3. The blue loop is the midline
of the crisscross. After orienting both the red and blue loops we can figure
out which passes over which, at each crossing, using the numbering of the
edges. Following this, we can assign a (+) or a (−) to each local crossing
according to the rules given by the 16 local models running around the outside
of the picture. (One of the groups of 4 comes from the Wikipedia page on
linking number and the other groups are obtained from the first one by
rotations.) Computing all the linking numbers and using the formula for
linking number (total sign divided by 2) we find that the linking number
between the red/magenta and blue loops is −3. This tells us that we have
3-twist Moebius bands, and these have knotted boundaries.
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Figure 4: The linking of the boundary and the midline

Having more than one method for a relatively simple example might seem
like overkill, but it seems that Method 3 is a nice way to algorithmically
deduce the twisting number of more general folded paper Moebius bands
based on gluing diagrams like Figure 2. One should compare the method in
[DL] for folded ribbon knots; it seems very similar.
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3 The Cup

3.1 Basic Description

As we mentioned in the introduction, B.E.B. has a much more symmetric
model for a 3-twist polygonal paper Moebius band of aspect ratio 3. In this
alternate version, which we call the cup, the image is a union of 3 right-
isosceles triangles which make 3 faces of a tetrahedron whose fourth face is
an equilateral triangle.

1A

2A3A

Figure 5: The folding pattern for the cup.

The left side of Figure 5 shows the folding pattern for the cup. The right
side shows what you would see if you were looking into the cup. The lettering
and coloring is a bit different. The A-faces are colored orange and yellow and
the B-faces are colored white. When this is folded up, the cup is yellow on
the “inside” and orange on the “outside”. The white faces are all pressed
together and would not be visible if you held the cup in your hands. The
faces 1A, 2A, 3A are on the “inside” of the cup and the faces 4A, 5A, 6A are
on the “outside”. Again, the cup does not lie flat in the plane and so the right
side of Figure 5 is a planar projection and hence geometrically distorted.
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We leave the details of the construction to the reader who likes to cut
out strips of paper and fold them up. Here is an example we made from wax
paper and washi tape.

Figure 6: A cup made from wax paper and washi tape.
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3.2 Smooth Approximations

We approximate the cup by smooth paper Moebius bands much in the same
way as we did for the crisscross. We separate out the 6 triangular faces
from each other and then attach the appropriate smooth folds. The folding
pattern is very interesting. First of all, there are 3 folds which go around the
rim of the cup. Then there are 3 more folds which make a Y -pattern and
meet at the central point of the cup.

It is interesting to observe how the boundary interacts with the picture.
The boundary consists of 6 unit segments, 3 of which run along the inside
of the cup in a Y -pattern and 3 of which run along the outside of the cup
in a Y -pattern. The whole picture has 3-fold rotational symmetry, so if you
run your finger around either on the inside or the outside of the cup you will
encounter the boundary in a kind of pinwheel fashion.

One can make the smooth approximations with 3-fold symmetry. Figure
6 shows that the boundary of such an approximation looks like.

Figure 7: The boundary of a nearby smooth approximation.
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3.3 Discussion

The existence of the cup means that the kinds of arguments made in [S1]
and [S2], by themselves, are unlikely to resolve Conjecture 1.2. The idea in
[S1] is to first show that a paper Moebius band has a pair of coplanar and
perpendicular bends, called a T -pattern. After this, the idea is to consider
the picture in the plane of the T -pattern and establish an optimization result.
The idea in [S2] is to find a nice planar projection of a twisted paper cylinder
and then do a similar kind of optimization trick. Both these approaches rely
on planar ideas.

It is worth pointing out that [S1, Triangular Limit Theorem] implies the
existence of some η > 0 such that any knotted paper Moebius band has
aspect ratio at least

√
3 + η. The point is that any paper Moebius band

having aspect ratio very close to
√

3 is also very close to the triangular
Moebius band. This would force the boundary of the paper Moebius band
to be unknotted, a contradiction.

More directly, a multi-twisted paper Moebius band Ω has a T -pattern. If
the aspect ratio of Ω is very near

√
3 then the convex hull ∇ of this T -pattern

is close to an equilateral triangle of perimeter 2
√

3. Since ∂Ω is knotted, the
projection of ∂Ω could not just follow along ∂∇. This gives us the extra
length and hence the better bound.

We did not try to find η, but we can say that such a scheme will never
prove that

√
3 + η = 3. Here is the problem: As a byproduct of such an

argument we would also prove that any near minimizer for the aspect ratio
is also nearly planar. But there are near minimizers which approximate the
cup, and these are far from planar. This is a contradiction.

Another approach to Conjecture 1.2 would be to show that an arbitrary
paper Moebius band could be deformed, through isometric embeddings, into
a folded ribbon knot. Call such a paper Moebius band flattenable. Conjecture
1.2 seems easier in the category of folded ribbon knots, though probably still
quite hard. If every paper Moebius band was flattenable, the folded ribbon
knot case would imply the general case.

The cup is a rigid object. Presumably, nearby smooth approximations
are also not flattenable. If they were, then we could probably extract a limit
and contradict the rigidity of the cup. (We have not thought through the
details of this.) In any case, one can ask: When is a paper Moebius band
flattenable? We don’t know any conditions which imply the answer one way
or the other.
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