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This is a running list of errata for my book. In each section, I'll list the
mistake and (when possible) offer some replacement text which fixes the
mistake.

1 Section 8.5

1.1 The Problem

This section proves the Bolyai-Gerwein Theorem, but never states the result.
So, I should add the statement of the theorem.

1.2 Replacement Text

We continue with the theme of polygon dissections. Here we prove the classic
result that any two polygons having the same area are dissection equivalent.
The formal definition is given below, but informally this means that one can
cut the first polygon into finitely many pieces, using straight-edge cuts, and
then reassemble the pieces to make the second polygon. This result is called
the Bolyai-Gerwein Theorem...

(the rest of the text is the same.)



2 Section 17.4

2.1 The Mistake

The definition of a translation surface given here is incomplete, and Theorem
4.1 is not correct. What is technically known as a translation surface requires
a slightly stronger definition than I have given. In particular, Theorem 4.1
is not correct. The easiest fix is to simply add the condition of Theorem 4.1
into the definition, and then omit Theorem 4.1 entirely.

2.2 Replacement Section 17.4

A translation surface is a Euclidean cone surface which admits a parallel vec-
tor field which is defined everywhere except at the cone points. By Exercise
3 above, the cone angles of a translation surface are all integer multiples of
2.

At first it might seem that a Euclidean surface whose cone angles are
all integer multiples of 27 must admit a parallel vector field, but this is
not so. As Rick Kenyon pointed out to me, M. Troyanov constructed some
counter examples. See ”Les surfaces euclidienne a singularites coniques”, by
M. Troyanov, published in Enseign. Math (2) 32 (1986), 79-94. You might
like to try to find some examples yourself without looking up Troyanov’s
article.

(After Theorem 4.1 is omitted, the rest of the text remains as is.)

3 Section 18.6

In the second paragraph, the sentence The corresponding linear fractional
transformation acting on H? is a hyperbolic reflection is inaccurate. The
sentence should read the corresponding hyperbolic isometry acting on H? is
a hyperbolic reflection.



4 Section 24.4

4.1 The Mistake

The proof of Lemma 24.3 is not correct. Even though Lemma 24.4 is correct
as stated, it does not always help to prove Lemma 24.3.

4.2 Replacment Section 24.4

Let P be a polygon whose edges are labelled (4) and (—). We say that P has
a good labelling if the list of labels around its edges is good; that is, there at
least 2 sign changes from (+) to (—). A quadrilateral with a good labelling
must be labelled (4, —, +, —), up to cyclic ordering.

Figure 24.1. Adding edges and vertices and filling in with curves.

Figure 24.1 shows examples of how one can divide a polygon with a good
labelling into quadrilaterals with good labellings. In the subdivision process,
you are allowed to add both edges and vertices.

Exercise 6. Prove Lemma 4.1 below.

Lemma 4.1 Suppose that P is a polygon with a good labelling, and all the
edge labels are nonzero. Let P, denote the vertex set of P. We can partition
P into alternately labelled quadrilaterals, extending the labelling on P, such
that the following is true:

e Fvery vertex has at least 3 edges incident to it.

e No vertex is incident to 3 consecutive (+) edges.



We think of P as a flat cone surface. Let P’ denote P minus the vertices.
We fill each quadrilateral of the partition with arcs which run perpendicular
to the (+) edges and parallel to the (—) edges. These curves piece together
across the (+) edges to fill all of P’. The lines tangent to these curves define
a continuous line field on P'.

To show that such a line field cannot exist, we imitate the proof of the
Hairy Ball Theorem given in Section 9.6. To an oriented loop v in P’, we
assign an integer w(y) which records how many times the line field turns
clockwise relative to the tangent lines of v as we travel once around 7. To
fix the orientations, we identify P with C' U oo in such a way that 0 and oo
are not vertices.

Let 7y be a small counterclockwise loop around the origin. Let v; be
a large counterclockwise loop which surrounds all the vertices of P. Let
{v] t € [0,1]} be a homotopy between 7, and ;. We imagine v; expanding
from 7y to 71, as on the left hand side of Figure 9.3. As in the Hairy Ball
Theorem, we can use the homotopy on the right hand side of Figure 9.3 to
show that w(vy;,) = —2.

The value w(~;) can only change when ~; passes through one of the ver-
tices of P. When ~; passes through a vertex, we have

w(ete) = w(y-e) + w(B) =2, (1)

where (3 is a small counterclockwise loop around the vertex. To see this,
we arrange that ~_. and 7. differ only in a small neighborhood of the
vertex, so that v, is obtained from ~,_. by “annexing” . Note that the
formula is obviously correct if the line field extends continuously across the
vertex, because then w(f) = 2 and w(v;—.) = w(V+c). This suggests that
the formula correctly records the local analysis in general.

The conditions in Lemma 24.4 force w(/3) > 2. The key point is that our
curves never connect points on two consecutive (+) edges emanating from
the vertex. Since w(f) > 2, we have w(Vi4e) > w(y—). But then w(v;) > 2,
which is a contradiction.

(the rest of the text is the same)



