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Abstract

We consider the curve shortening flow applied to a class of figure-eight
curves, those with dihedral symmetry, convex lobes, and a monotonicity as-
sumption on the curvature and its derivative. We estimate the shapes of the
possible limits when (non-conformal) linear transformations are applied to the
solution so as to keep the bounding box the unit square. Along the way we
prove that suitably chosen arcs of our evolving curves, when suitably rescaled,
converge to the Grim Reaper Soliton under the flow. Our Grim Reaper The-
orem is an analogue of a theorem of S. Angenent, which Angenent proved in
the locally convex case.

1 Introduction

We say that a smooth family C : S1 × [0, T )→ R2 of closed immersed plane curves
is evolving according to curve shortening flow (CSF) if and only if for any point
(u, t) ∈ S1 × [0, T ) we have

∂C

∂t
= kN

where k is the curvature and N is the unit normal vector of the immersed curve
u→ C(u, t). We often abbreviate this curve as C(t). In all cases, there is some time
T > 0, called the vanishing time, such that C(t) is defined for all t ∈ (0, T ) but not
at time T .
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Some powerful results are known about this PDE. In [9], M. Gage and R. Hamil-
ton prove that when C(0) is convex the curve C(t) (which remains convex) shrinks to
a point as t→ T and moreover there is a similarity St such that St(C(t)) converges
to the unit circle. See also [10] and [11]. In [12], M. Grayson proves that if C(0)
is embedded then there is some time t ∈ (0, T ) such that C(t) is convex. Thus,
the combination of these two results says informally that the curve-shortening flow
shrinks embedded curves to round points.

In [3], S. Angenent proves that if C(0) is immersed and with finitely many self-
intersections, then the number of self-intersections is monotone non-increasing with
time. In the case of a Figure-8, a smooth loop with one self-intersection, M. Grayson
proves two things:

• If one of the two lobes of the figure-8 has smaller area than the other, then
this lobe shrinks to a point before the vanishing time. Then the flow can be
continued through the singularity and it turns into the embedded case.

• If the lobes have equal area, the double point does not disappear before the
vanishing time T , and the isoperimetric ratio of C(t) tends to ∞ as t→ T .

Grayson conjectures [13] that in the second case, the figure-8 converges to a point
under the curve-shortening flow, but this is as yet unresolved. In case C(0) has 2-
fold rotational symmetry, it follows from Corollary 2 of [6] that C(t) does shrink to
a point (the double point) as t → T . In a related direction, the papers [1], [7], and
[14] discuss self-similar solutions to the CSF. These shrink to a point and retain their
shape.

We work with figure-8 curves that have convex lobes and 4-fold dihedral symme-
try. We normalize so that the coordinate axes are the symmetry axes and that the
x-axis intersects the curve in 3 points. Thus, our curves look like ∞ symbols. In [3]
it is proved that if C(0) has convex lobes then so does C(t) for all t ∈ (0, T ).

Let C+(t) denote the righthand lobe of C(t). We define κ(θ, t) > 0 to be the
curvature of C+(t) at the point where the tangent line makes an angle θ with the x-
axis. We measure this angle in such a way that the top half of C+(t) is parametrized
by θ ∈ (−α(t), π/2], where α(t) is the tangent angle at the origin. Let κθ = ∂κ/∂θ,
etc. Computing the time evolution of κ, we have

κt = κ2(κ+ κθθ). (1)

See [10] and [11] for a proof. See also [2] and [4]. We note that the curve satisfying
κ(θ) = sin(θ), for θ ∈ (0, π) is a stationary solution for Equation 1. Up to rota-
tions, this curve the Grim Reaper Soliton. It evolves by translation under the curve
shortening flow.
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Definition: C(0) is monotone if

• C(0) is real analytic.

• C(0) has 4-fold dihedral symmetry.

• C(0) has convex lobes.

• κθ(θ, 0) > 0 for θ ∈ (−α(0), π/2).

The first condition is not much of a restriction because the curve shortening flow
instantly turns curves real analytic. Define

F (θ, t) =
κ(θ, t)

κ(π/2, t)
. (2)

here F is a rescaled version of κ. In this paper we prove the following result.

Theorem 1.1 (Grim Reaper). Assume that C(0) is monotone. Let J ⊂ (0, π) be an
arbitrary closed interval. Let ε > 0 be given. For t sufficiently close to T , we have

sup
θ∈J
|F (θ)− sin(θ)| < ε, sup

θ∈J
|Fθ(θ)− cos(θ)| < ε.

The Grim Reaper Theorem is the analogue of Theorem D in [2]. In [2], S. An-
genent also makes versions of the monotonicity assumption. The result implies that
a suitably rescaled copy of the arc of C(t) corresponding to θ ∈ (0, π) converges to
the Grim Reaper curve. The arc in question is the one between the two dots in
Figure 1. Our proof departs from that in [2] because we are not working with locally
convex curves as in [2].

Definition: Let ψ = κ+ κθθ. C(0) is cincinnous if

• C(0) is monotone

• ψ(π/2, 0) > 0.

• ψ(∗, 0) vanishes exactly once, and to first order, in the interval (−α(0), π/2).

The Lemniscate of Bernoulli is an example of a concinnous figure 8. Also, for any
monotone figure 8 curve, ψ attains both positive and negative values. The concinnous
condition says that this happens in the simplest possible way.

The bounding box of a compact set in the plane is the smallest rectangle, with
sides parallel to the coordinate axes, that contains the set. The main goal of the
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paper is to understand the limit of the sequence {Lt(C(t)} where Lt is the positive
diagonal matrix such that Lt(C(t)) has the square [−1, 1]2 for a bounding box. Even
though affine transformations do not interact in a nice way with the curve shortening
flow, nothing stops us from looking at a solution and applying affine transformations
afterwards.

The bowtie is the quadrilateral whose vertices are

(−1,−1), (1, 1), (1,−1), (−1, 1)

in this cyclic order. It is shaped like this: on. The Hausdorff distance between two
compact subsets of the plane is the smallest ε such that each set is contained in the
ε-neighborhood of the other. This distance makes the set of compact planar subsets
into a metric space. The curves Lt(C(t)) move around within a compact set of shapes
in this metric space, so it is natural to ask about a limit. Our numerical experiments
pointed towards the bowtie.

Figure 1 shows a picture of a numerical simulation of the curve shortening flow.
The curve on the left is L0(C(0)) where C(0) is the Leminscate of Bernoulli. The
black curve on the right is Lt(C(t)) for some later time t. The blue curve on the right
is Γ(t) = C(t)/X(t), the rescaled version of C(t) whose bounding box has width 2.
The black and white dots correspond to where θ = 0 and θ = π respectively. Figure
1 shows some hints of the bowtie forming.

Figure 1: Hints of the bowtie.

Conjecture 1.2 (Bowtie). Suppose that C(0) is concinnous. As t→ T , the sequence
Lt(C(t)) converges in the Hausdorff metric to the bowtie.
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An earlier version of our paper claimed to have proved this result, but the proof
had a gap. Here we will present some partial progress.

Define the top point of Lt(C(t)) to be the point of the form (xt, 1). This is the
point in the positive quadrant where Lt(C(t)) intersects the top of the bounding box.
Here is the first of our results.

Theorem 1.3 (Migration). The top point of Lt(C(t)) converges to (1, 1) as t→ T .
Therefore, the two vertical sides of the bowtie are limits of Lt(C(t)).

Our next result shows that the set of possible limiting shapes is, in some sense,
near the bowtie.

Theorem 1.4 (Fat Bowtie). Suppose that C(0) is concinnous. Let S ⊂ [−1, 1]2

denote the set of accumulation points of Lt(Ct) as t→∞. If (x, y) ∈ S and |x| < 1
then |x| ≤ |y| ≤ 2|x| − x2.

Figure 2: The fat bowtie

Figure 2 shows the region of limit points allowed by the Fat Bowtie Theorem,
The bowtie is the portion of the boundary made from straight line segments. The
other arcs in the boundary are parts of parabolas.

Here is an outline of the paper. In §2 we prove that the curve shortening flow
preserves monotone figure 8 curves, and also preserves concinnous figure 8 curves.
In §3 we prove the Grim Reaper Theorem. In §4 we prove the Migration Theorem.
In §5 we prove the Fat Bowtie Theorem.

Acknowledgements: We thank Peter Doyle and Mike Gage for some helpful con-
versations. We thank Brown University and the National Science Foundation for
their support. The second author thanks the Simons Foundation, in the form of a
Simons Sabbatical Fellowship, and the Institute for Advanced Study for a year-long
membership funded by a grant from the Ambrose Monell Foundation.
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2 Preservation of the Curvature Conditions

In this chapter we prove that the curve shortening flow preserves monotone figure 8
curves and also concinnous figure 8 curves. That is, if C(0) is monotone (respectively
concinnous) then C(t) is monotone (respectively concinnous) for all t < T .

2.1 Strictly Parabolic Equations

We begin with a discussion of strictly parabolic equations and two of their basic
properties. We follow the notation in [8] and [2].

Let U be an open interval containing [x0, x1]. We suppose that u : U × [0, τ ]
satisfies the equation

ut = a(x, t)uxx + b(x, t)ux + c(x, t)u. (3)

This equation is called strictly parabolic if and only if a(x, t), b(x, t), and c(x, t) are
smooth and a(x, t) > 0. We assume that u satisfies a strictly parabolic PDE. Here
is the well-known Maximum Principle.

Theorem 2.1 (The Maximum Principle). Suppose that u 6= 0 on {x0, x1} × [0, τ ]
and also nonzero on [x0, x1]× {0}. Then u is nonzero on [x0, x1]× [0, τ ].

Geometrically we are looking at the behavior of u on a rectangle. If we know
that u is nonzero on a certain 3 sides of ∂R then we know u is nonzero on all of R.
The side [x0, x1]× {0} is the bottom side of R and the side [x0, x1]× {τ} is the top.
Here we are picturing time as running vertically and space as running horizontally.

Here is the well-known Sturmian Principle;

Theorem 2.2 (The Sturmian Principle). Suppose u is nonzero on {x0, x1} × [0, τ ].
Then the number Nt of times u(∗, t) vanishes on (x0, x1) is non-increasing with time.
Moreover, if u(∗, t) vanishes to second order somewhere on (x0, x1) then Nt′ < Nt

for all t′ ∈ (t, τ ].

C. Sturm discovered this principle in 1836. See [15]. The proof of the above
version of the Sturmian Principle may be found in [3]. For more references about
these theorems, see [8] or [3]. Note that if u, v solve the same strictly parabolic
equation then so does w = u− v. This yields the following corollary.

Corollary 2.3. Suppose w is nonzero on {x0, x1} × [0, τ ]. Then the number Nt of
zeroes for w(∗, t) on (x1, x2) is finite and non-increasing. Moreover, at any time t
when w(∗, t) vanishes to second order, we have Nt′ < Nt for all t′ > (t, τ ].

6



Curvilinear Domains: Corollary 2.3 is too restrictive for one of our purposes.
The same principle works when the rectangle in question is replaced by a piecewise
analytic quadrilateral Q with the following two properties:

1. The top and bottom sides are line segments, with the bottom one corresponding
to time 0 and the top one corresponding to time τ .

2. The function w does not vanish on the other two sides.

The other two sides play the role of {x0} × [0, τ ] and {x1} × [0, τ ]. The main issue
is that the non-horizontal sides prevent zeros from “leaking in or out”.

Figure 3: The Curvilinear case

Let us explain why the rectilinear principle implies the curvilinear principle. Sup-
pose we have a situation where w has m zeros on the bottom of Q and n > m on the
top of Q. Let I be the set of times where w has more than m zeros. Let t = inf I.
The zeros of w at times converging to t cannot converge to the non-horizontal sides
of the domain. Hence at least two of them must coalesce. But then we can find
a small rectangle R ⊂ Q which surrounds these coalescing points. See the small
shaded rectangle in Figure 3. (If more points coalesce, the picture would look more
complicated.) This gives a contradiction to the rectilinear principle.

For what it is worth, the curvilinear domains we consider (in the proof of the
Sine Lemma below) have only one non-straight side, and this side is the graph of a
function x = g(y). See Figure 2.

2.2 Evolution Equations

There are 4 equations we need to consider:

1. The equation for κ.

2. The equation for u = κθ.
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3. The equation for ψ = κ+ κθθ.

4. The equation for the signed curvature as a function of the x-coordinate.

The equation for κ is given in Equation 1. Here it is again:

κt = (κ2)κθθ + (0)κθ = (κ2)κ (4)

The equation for u is
ut = (κ2)uθθ + (2κu)uθ + (3κ2)u (5)

Let v = −κθθ. The equation for v is

vt = κ2vθθ + 4κuvθ − 2κv2 + 2u2v + 3κ2v − 6κu2.

We observe that v = κ also satisfies the same equation:

κt = κ2κθθ + 4κuκθ − 2κκ2 + 2u2κ+ 3κ2κ− 6κu2 =

κ2κθθ + (4κu2 + 2κu2 − 6κu2) + (−2κ3 + 3κ3) = κ2κθθ + κ3.

Taking the difference of these equations and noting that ψ = κ− v, we get

ψt = (κ2)ψθθ + (−4κu)ψθ + (−2κv + 2u2 + κ2)ψ. (6)

These equations are all valid on the domain

D =
⋃
t∈[0,t)

(−α(t), π + α(t))× {t}. (7)

Now we get to the final equation. We let k denote the signed curvature, which we
think of as a function of x and t. Thus k(x, y) is the curvature at the point p = (x, y)
at time t. Note that the domain for x is shrinking to a point. Let y(x, t) be the
evolution of the height of the (un-rescaled) curve C(t). The equation for µ = kx is

µt = (ζ)µxx + (−2yxyxxζ
2)µx + (3k2)µ, ζ =

1

1 + y2x
. (8)

One can derive this equation by differentiating the evolution equation for k (as
a function of x). The evolution equation for k is worked out in [9] and [12]. The
equation for kx is valid away from places where our curve has vertical tangents. In
particular on any time range [0, t] for t < T it is valid on each strand in a fixed
neighborhood of the double point.

We have written things so that Equations 4, 5, 6, 8 are clearly strictly parabolic.
We never need to know anything about Equations 5, 6, 8 aside from their strict
parabolicity, and we only need to consider these 3 equations in this chapter.
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2.3 Monotonicity

We first explain why it suffices to consider the case when kx(0, 0) > 0. If we are ever
treating an initial curve having kx(0, 0) = 0, then kx(∗, 0) vanishes to order o0 ≥ 2
because it is an even function. But then we can apply the Sturmian principle to a
small rectangle of the form [−ε, ε]× [0, ε] to conclude that kx(0, ε) vanishes to order
at most o0 − 1. (In fact we get o0 − 2 because kx is an even function.) Iterating, we
see that for any ε > 0 we have kx(0, ε) > 0.

We have κ(π/2, t) = 0 by symmetry. Hence κθ(π/2, t) vanishes to at least first
order for all t. Using the Sturmian Principle as in the previous paragraph, we reduce
to the case when κθ(∗, 0) does not vanish to second order at π/2.

Lemma 2.4. kx(0, t) > 0.

Proof. We treat the case of kx. If the statement about kx fails, there is some first
time t such that kx(0, t) = 0. But kx(∗, t) is analytic for t ∈ [0, T ) and hence its zeros
are isolated. We can then apply the Maximum Principle to a rectangle of the form
[−ε, ε]× [0, t] and we get a contradiction.

Lemma 2.5. Suppose that κθ(θ, t) > 0 for all θ ∈ (0, π/2) and all t ≤ t0. Then
κθ(∗, t0) vanishes to first order at π/2.

Proof. This is an application of the Sturmian Principle to a rectangle of the form
R = [π/2− ε, π/2 + ε]× [0, t0]. The point is that κθ does not vanish on the vertical
sides of R, by symmetry.

Lemma 2.6. If κθ(∗, 0) > 0 on (−α(0), π/2) then κθ(∗, t) > 0 on (−α(t), π/2).

Proof. Recall that u = κθ. All that is left to show is that u(θ, t) > 0 on the domain
D. Suppose this fails. Let I denote the set of times t′ for which u(∗, t′) vanishes
somewhere. Let t = inf I. There are several cases to consider.

Suppose first that t ∈ I. Then there is some (θ, t) ∈ D such that u(θ, t) = 0 but
u(∗, t′) > 0 for all t′ ∈ [0, t). In this case we get a contradiction by applying the
Maximum principle to u on a rectangle

[θ − ε, θ + ε]× [t− ε, t].

For sufficiently small ε this rectangle belongs to D. Since u(∗, t) is analytic we can
further choose ε so that u(θ± ε, t) > 0. We now contradict the Maximum Principle.
Hence t 6∈ I.

Let (θn, tn) be a sequence of points in D such that u(θn, tn) = 0 and tn → t.
Since t 6∈ I, we must have (after using symmetry and passing to a subsequence)

9



either θn → −α(t) or θn → π/2. Intuitively, what we are saying is that the zeros
must leak in from the left or the right boundary component. We consider the cases
in turn.

• Suppose θn → −α(t). By the Chain rule, kx(xn, tn) = 0 for a sequence xn → 0.
But then kx(0, t) = 0 by continuity. This contradicts the fact that kx(0, t) > 0.

• Suppose θn → π/2. Since we are now in the interior of the domain D and u is
a smooth function, we have

κθθ(π/2, t) = lim
n→∞

u(π/2, tn)− u(θn, tn)

π/2− θn
= 0.

This means that κθ(∗, t) vanishes to second order, contradicting Lemma 2.5.

This completes the proof.

These lemmas combine to show that curve shortening preserves the monotonicity
property.

2.4 Two Integral Formulas

To help analyze the concinnity condition we establish an integral formula for the
curvature This formula is essentially the same as the one that appears in the proof of
Lemma 8.2 in [2]. Even though we won’t need it until later chapters, we also deduce
a second integral formula.

Lemma 2.7.

κ(θ, t) = κ(π/2, t) sin(θ) +

∫ π/2

θ

sin(φ− θ)
(
κθθ(φ, t) + κ(φ, t)

)
dφ. (9)

Proof. We set c(·) = cos(·) and s(·) = sin(·). We have:

∂

∂θ

(
s(θ)κθ(θ, t)− c(θ)κ(θ, t)

)
= s(θ)(κθθ(θ, t) + κ(θ, t)).

∂

∂θ

(
c(θ)κθ(θ, t) + s(θ)κ(θ, t)

)
= c(θ)(κθθ(θ, t) + κ(θ, t)).

Setting ψ = π/2 and integrating these identities from θ to ψ, we compute:∫ ψ

θ

s(φ− θ)
(
κθθ(φ, t) + κ(φ, t)

)
dφ =
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c(θ)

∫ ψ

θ

s(φ)
(
κθθ(φ, t) + κ(φ, t)

)
dφ− s(θ)

∫ ψ

θ

c(φ)
(
κθθ(φ, t) + κ(φ, t)

)
dφ =

c(θ)s(ψ)κθ(ψ, t)− c(θ)c(ψ)κ(ψ, t)− c(θ)s(θ)κθ(θ, t) + c(θ)c(θ)κ(θ, t)

−s(θ)c(ψ)κθ(ψ, t)− s(θ)s(ψ)κ(ψ, t) + s(θ)c(θ)κθ(θ, t) + s(θ)s(θ)κ(θ, t) =

κ(θ, t)− s(θ)κ(θ, t).

We repeatedly use cos(ψ) = 0 and sin(ψ) = 1. The last equality uses the fact
that κθ(ψ, t) = 0.

Here is our second integral formula.

Lemma 2.8.

cos(θ)κ(θ, t)− sin(θ)κθ(θ, t) =

∫ π/2

θ

sin(φ)(κθθ(φ, t) + κ(φ, t))dφ. (10)

Proof. Differentiating Equation 9 with respect to θ we have

κθ(θ, t) = κ(π/2, t) cos(θ)−
∫ π/2

θ

cos(φ− θ)
(
κθθ(φ, t) + κ(φ, t)

)
dφ. (11)

Now we multiply Equation 9 by cos(θ) and Equation 11 by sin(θ) and subtract.
This tells us that the left hand side of Equation 10 equals∫ π/2

θ

Σ(θ, φ)
(
κθθ(φ, t) + κ(φ, t)

)
dφ,

where
Σ(θ, φ) = sin(φ− θ) cos(θ) + cos(φ− θ) sin(θ) = sin(φ).

The last equality is the angle addition formula for the sine function. This gives us
the right side of Equation 10.

2.5 Concinnity

In this section we show that if C(0) is concinnous then so is C(t) for all t ∈ (0, T ).

Lemma 2.9. ψ(π/2) > 0 for all t ∈ (0, T ].
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Proof. Suppose this is false. Let I be the set of times t′ where ψ(π/2, t′) = 0. Since
π/2 is in the interior of the domain where ψ(∗, t) is defined, the set I contains its
infimim: There is some t such that ψ(π/2, t) = 0 but ψ(π/2, t′) > 0 for all t′ < t.

This situation contradicts the Sturmian principle unless we can find a sequence
tn → t, from below, with the property that θn → π/2. Here θn is the point such that
ψ(θn, tn) = 0. But then, taking a limit, we see that ψ(∗, t) ≤ 0 on all of [0, π/2].
This contradicts our first integral formula:

κ(0, t) =

∫ π/2

0

sin(φ)ψ(φ, t)dφ > 0

This completes the proof.

Lemma 2.10. ψ(∗, t) vanishes at least once in (−α(t), π/2).

Proof. It suffices to show that ψ takes both signs on this interval. Here is the
argument for positivity: Our integral formula

κ(0, t) =

∫ π/2

0

sin(φ)ψ(φ, t)dφ > 0

shows that ψ(∗, t) > 0 somewhere on (0, π/2).
Here is the argument for negativity: Let θ′, θ < 0 be any two parameters, and

let s′, s be the corresponding arc-length parameters. We normalize so that s′ = 0
corresponds to θ = −α(t). We have∫ s

s′

κs
κ
ds =

∫ s

s′

d

ds
log(κs)ds = log

κ(s, t)

κ(s′, t)
.

In the last equation we are thinking of κ as a function of arc length. Letting s′ → 0
we can make the right hand side of this equation as large as we like. Hence κθ = κs/κ
is unboundely positive on the angle interval

Iθ = (−α(t), θ).

This can only happen if κθθ is unboundedly negative on Iθ. This is true for any
θ > −α(t). We now pick θ so small that κ(∗, t) < 1 on Iθ. But now we have shown
that ψ is unboundedly negative on Iθ.

Lemma 2.11. There does not exist a time t such that C(t) is not concinnous but
C(t′) is concinnous for all t′ < t.
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Proof. If t′ is sufficiently close to t we can choose a rectangle R, contained entirely
in the domain for the flow, with the following properties.

• ψ is defined in a neighborhood of R.

• The top edge of R corresponds to t.

• ψ vanishes at least twice (counted with multiplicity) on the top edge of R.

• The bottom edge corresponds to t′.

• ψ does not vanish on the vertical edges of R.

Since ψ vanishes at most once on the bottom edge of R we contradict the Sturmian
Principle.

If C(t) is not always concinnous then, given the previous lemma, there is a se-
quence of times tn → t (from above) such that ψ(∗, tn) vanishes at least twice count-
ing multiplicity. If there are two distinct values θn,1 and θn,2 where ψ(∗, tn) vanishes,
then at least one of the sequence {θn,1} or {θn,2} has a subsequence which converges
to −α(t). Otherwise we could take a limit and see that ψ(∗, t) vanishes at least
twice with multiplicity. The same argument works if there is just one value θn where
ψ(∗, tn) vanishes (with multiplicity greater than 1).

We extract a subsequence {θn} converging to −α(t). Again, ψ(θn, tn) = 0. To
analyze this situation we treat curvature as a function of arc-length. We let k(s, t)
denote the curvature at the arc length parameter s and at time t. We normalize so
that s = 0 correponds to the double point.

We have the change of variables formula derived in [9].

ks = κκθ, kss = κκ2θ + κ2κθθ. (12)

Let sn be the arc length parameter corresponding to θn. Note that kss(0, t) = 0
because k is an odd function. Since kss(0, t) = 0, the second equation in Equation
12 combines with the fact that

κθθ(θn, tn) = −κ(θn, tn)

to imply:

lim
n→∞

(
κ(θn, tn)κ2θ(θn, tn)− κ3(θn, tn)

)
= 0

At the same time,
lim
n→∞

κ3(θn, tn) = 0.
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Therefore,
lim
n→∞

κ(θn, tn)κ2θ(θn, tn) = 0 (13)

By definition and by Equation 12 we have

κθ(θn, tn) =
ks(sn, tn)

k(sn, tn)
. (14)

Combining this information with Equation 13 we have

lim
n→∞

k
2

s(sn, tn)

k(sn, tn)
= 0. (15)

But we also have

lim
n→∞

k(sn, tn) = k(0, t) = 0, lim
n→∞

ks(sn, tn) = ks(0, t) = kx(0, t)×
dx

ds
> 0. (16)

The last equality comes from Lemma 2.4. Equation 16 implies that the limit in
Equation 15 is actually ∞ rather than 0, and we have a contradiction.

3 The Grim Reaper Theorem

In this chapter we prove the Grim Reaper Theorem. Recall that F (θ, t) = κ(θ, t)/κ(π/2, t).
Here is the theorem again:

Theorem 3.1 (Grim Reaper). Assume that C(0) is monotone. Let J ⊂ (0, π) be an
arbitrary closed interval. Let ε > 0 be given. For t sufficiently close to T , we have

sup
θ∈J
|F (θ)− sin(θ)| < ε, sup

θ∈J
|Fθ(θ)− cos(θ)| < ε.

3.1 The Evolution of the Bounding Box

Let [−X(t), X(t)]× [−Y (t), Y (t)] be the bounding box of C(t).

Lemma 3.2 (Bounding Box). limt→T Y (t)/X(t) = 0.

Proof. The perimeter of C(t) and the area of the region bounded by C(t) are respec-
tively within a factor of 2 of the perimeter and area of the bounding box of C(t).
Thus, Grayson’s isoperimetric result tells us that the aspect ratio of the bounding
box tends to 0. This means that either Y (t)/X(t)→ 0 or Y (t)/X(t)→∞ as t→ T .
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We establish in §2.3 that C(t) is concinnous for all t ∈ (0, T ). We assume that
result here. Since Xt(t) = −κ(π/2, t) and Yt(t) = −κ(0, t), we have

Y (t) =

∫ T

t

κ(0, u) du <

∫ T

t

κ(π/2, u) du = X(t).

This rules out the second option above.

3.2 Some Asymptotics

The lemmas in this section rely on Lemma 3.2 and the Tait-Kneser Theorem.

Theorem 3.3 (Tait-Kneser). Suppose γ is a curve of strictly monotone increasing
curvature. Then the osculating disks of γ are strictly nested. The largest one is at
the initial endpoint and the smallest one is at the final endpoint.

Here are the applications.

Lemma 3.4. limt→∞ κ(θ, t) =∞ for any θ ∈ (0, π/2].

Proof. Let Γ(t) = C(t)/X(t). This is a rescaled version of C(t) whose bounding
box has width 2. The height of the bounding box tends to 0 by Lemma 3.2. Let
K(θ, t) = X(t)κ(θ, t) be the curvature of Γ(t) at the point where the tangent angle is
θ. Since limt→T X(t) = 0, it suffices to prove that there is some constant a = aθ > 0
such that K(θ, t) > a for all t sufficiently close to T .

Suppose that this result is false. Let D(θ, t) be the osculating disk to Γ(t) at θ.
Let H be the horizontal line connecting the point Γ(θ, t) to the y-axis. The circle
∂D makes an angle of θ with H at the right endpoint of H. By the Tait-Kneser
Theorem, ∂D(θ, t) crosses H at a second point. The second crossing angle is also θ.
Since the length of H is at most 1 unit, we see from trigonometry that the radius of
D(θ, t) is at most 1/(2 sin(θ)). Hence the curvature of Γ(t) is at least 2 sin(θ). This
is to say that

κ(θ, t)X(t) ≥ 2 sin(θ). (17)

Since X(t)→ 0 as t→ T we see that κ(θ, t)→∞.

Lemma 3.5. limt→∞ α(t) = 0.

Proof. Let Γ(t) be as in the previous lemma. Suppose that there is a sequence of
times tn → T such that α(tn) > δ > 0 for some constant δ. Let L be the line through
the origin which makes an angle of δ/2 with the x-axis. By Lemma 3.2, the height
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of the bounding box β(t) for Γ(t) tends to 0 as t→ T . Hence, L hits the top of β(t)
at a point whose distance to the origin tends to 0 as t→ T .

By construction Γ(tn) starts out from the origin lying to the left of L. Since
Γ(tn) ⊂ β(tn), we see that Γ(tn) crosses L at some point pn such that ‖pn‖ → 0. The
total variation of the tangent angle of Γ(t) along the arc connecting (0, 0) to pn is,
by convexity, at least δ/2. Since the length of this arc tends to 0, some point qn on
this arc has curvature at least 4. By construction ‖qn‖ → 0.

By the Tait-Kneser Theorem the arc of Γ(t) connecting qn to (1, 0) is trapped in
a disk of radius 1/4 which contains qn in its boundary. This is a contradiction.

3.3 Counting Zeros

Our final lemma has nothing to do with the flow. A very similar principle is used in
[2]. Let J ⊂ R be some interval. Call a function g : J → R small if

sup
J
g2 + (g′)2 < 1. (18)

Call J small if it has length at most π. Every small interval is contained in a closed
interval of length π. Closed intervals of length π count as being small.

Lemma 3.6. If g is a small function and J is a small interval then the difference
w(x) = g(x)− sin(x) vanishes at most twice on J , counting multiplicity.

Proof. Let f(x) = sin(x). We note the crucial property that

f 2 + (f ′)2 = 1 > g2 + (g′)2.

Let F and G respectively denote the graphs of F and G. These graphs must be
transverse wherever they intersect. Otherwise we would have g2 + (g′)2 = 1 at an
intersection point. This is impossible. We show that f = g at most twice. Given
the transversality just mentioned, this is equivalent to the statement that w = g− f
vanishes at most twice on J , counting multiplicity.

As usual in calculus, say that x ∈ J is an extreme point if f ′(x) = 0. The only
way that J can contain two extreme points is if J has length π, and the endpoints
are the two extreme points, and |f | = 1 at these endpoints. In this case f 6= g at
the endpoints because |g| < 1. So, even in this case, we can replace J by a smaller
interval which contains all the points where f = g. Thus, we can assume without
loss of generality that J contains at most one extreme point.

Suppose first that J has no extreme points. Then f is either monotone increasing
on J or monotone decreasing. Consider the case when f is monotone increasing.
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Suppose it happens that there are two consecutive points x1, x2 ∈ J where f and g
agree. The portion of G between (x1, g(x1)) and (x2, g(x2)) either lies above F or
below. In the first case we have g′(x1) > f ′(x1), which is a contradiction. In the
second case we have g′(x2) > f ′(x2) and we have the same contradiction. Hence
f(x) = g(x) for at most one point x ∈ J . The same argument works when f is
monotone decreasing on J .

Now consider the case when J has exactly one extreme point. In this case we can
write J = J1 ∪ J2 where f is monotone on each Ji. In this case, the same argument
above, applied to each of these sub-intervals, shows that they each have at most one
point where f = g. Hence J has at most 2 such points.

3.4 The Sine Lemma

Here is the crucial step in the proof of the Grim Reaper Theorem. This section is
devoted to proving the following result.

Lemma 3.7 (Sine). Let J be any closed interval contained in (0, π). Let ε > 0 are
given. If t is sufficiently close to T then∣∣∣∣κθ(θ, t)κ(θ, t)

− cos(θ)

sin(θ)

∣∣∣∣ < ε,

for all θ ∈ J .

We will assume for the sake of contradiction that there is a sequence of times
tn → T and a sequence {θn} ∈ J such that∣∣∣∣κθ(θn, tn)

κ(θn, tn)
− cos(θn)

sin(θn)

∣∣∣∣ > ε. (19)

Passing to a subsequence we can assume that θn → θ0 ∈ J . By compactness of J we
can choose a constant We choose a constant Σ = Σ(J, ε) > 0 so that∣∣∣∣cos(φ+ θn)

sin(φ+ θn)
− cos(θn)

sin(θn)

∣∣∣∣ > ε =⇒ |φ| > Σ, (20)

as long as φ+ θn ∈ (0, π).
Call the non-horizontal sides of our domains the sidewalls . Thanks to Lemma

3.5 we can omit the initial portion of our evolution and arrange that

sup
t∈[0,T )

α(t) < 10−100Σ. (21)

17



We are making the horizontal displacement of the sidewalls of D extremely small
in comparison to the other relevant quantities that arise below. We don’t need the
factor of 10−100; we add it for emphasis.

Let

C = sup
θ∈[0,π]

κ2(θ, 0) + κ2θ(θ, 0), Bn = κ2(θn, tn) + κ2θ(θn, tn). (22)

By Lemma 3.4 there is some n such that Bn > C. Our notivation for taking Bn > C
is the following corollary of Lemma 3.6.

Corollary 3.8. Suppose

sup
θ∈J

κ2(θ, 0) + κ2θ(θ, 0) ≤ C.

Let S(θ) =
√
B sin(φ+ θ) for any value φ. If B > C then w(∗) = κ(∗, 0) − S(∗)

vanishes at most twice on J , counting multiplicity.

Proof. This follows from Lemma 3.6 by symmetry and scaling.

We fix n for which Bn > C. We set B = Bn and t = tn. There is some angle φ
such that

κθ(θn, t)

κ(θn, t)
=

cos(φ+ θn)

sin(φ+ θn)
.

For this choice of φ we have

S(θn) =
√
B sin(φ+ θn) = κ(θn, t), Sθ(θn) =

√
B cos(φ+ θn) = κθ(θn, t). (23)

Our function S determines a unique interval I of length π such that S > 0 on the
interior of I and θn ∈ I. Note also that S = 0 on ∂I. Let Ω = I × [0, t]. This is
exactly the domain considered in [2], but now our proof departs from [2].

Lemma 3.9. One sidewall of Ω is disjoint from the closure of D and the other
sidewall of Ω lies in D.

Proof. The properties of S imply the following:∣∣∣∣cos(φ+ θ0)

sin(φ+ θ0)
− cos(θ0)

sin(θ0)

∣∣∣∣ =

∣∣∣∣κθ(θ0, t)κ(θ0, t)
− cos(θ0)

sin(θ0)

∣∣∣∣ > ε. (24)

By equation 20, we have |φ| > Σ.
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If we had φ = 0 we would have I = [0, π]. As it is, we have |φ| > Σ. This shifts
I and Ω by at least Σ to the left or to the right. Given our bound on the horizontal
displacement of the sidewalls of D, this shift causes one sidewall or the other to stick
out completely. See Figure 2 below. At least one point of I lies in (0, π) and the
total width of I is π. Hence I cannot both contain points less than 0 and greater
than π. This means that the other sidewall lies inside D.

We now create a new domain Q by intersecting Ω with D and pushing in the
curvilinear sidewall a bit. We treat the case when Ω sticks out on the left. The other
case is essentially the same.

S
=
0

Figure 2: The new domain Q, shaded.

Define
w(θ, t) = κ(θ, t)− S(θ). (25)

The function S is a stationary solution to Equation 1, meaning that St = 0. This
means that w is exactly the sort of difference of solutions to which the Sturmian
Principle applies. Let us examine the behavior of w on the boundary of Q.

Left: Since κ limits to 0 on the sidewalls of D and S > 0 on the left sidewall
of D, we can by compactness make the perturbation small enough so that w < 0 on
the left sidewall of Q.

Right: The right sidewall of Q lies in D. Since S = 0 on the right sidewall of
Q and κ > 0 everywhere in D, we have w > 0 on the right sidewall of Q.

Bottom: Applying Corollary 3.8 to the bottom side J of Q, we see that w(∗, 0)
vanishes at most twice on J counting multiplicity. Since w has opposite signs on the
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sidewalls of Q the number of zeros of w on J is odd, counting multiplicity. Since this
number is at most 2, it must be exactly 1. In short, w vanishes exactly once on the
bottom side of Q, counting multiplicity.

Top: On the top side J ′ of Q we have arranged that w and wθ vanish at (θ0, t).
This means that w vanishes at least twice, counting multiplicity, on J ′. We have
shown this double point in Figure 2. Since w has opposite signs on the sidewalls of
Q the number of zeros of w on J ′ is odd, counting multiplicity. Since this number is
at least 2 it is actually at least 3. In short, w vanishes at least 3 times on the top
side of Q counting multiplicity.

The above properties violate the Sturmian Principle for (Equation 1, Q, w). This
completes the proof of the Sine Lemma.

3.5 The End of the Proof

In this section we prove the Grim Reaper Theorem.

Corollary 3.10. Let ε > 0 be given and let J ⊂ (0, π) be any closed interval. We
have

sup
θ∈J

∣∣∣∣Fθ(θ, t)F (θ, t)
− cos(θ)

sin(θ)

∣∣∣∣ < ε,

for t sufficiently close to T .

Proof. We can replace κ by F because for each time these functions are constant
multiples of each other.

Consider the new function

G(θ, t) =
F (θ, t)

sin(θ)
. (26)

Using Lemma 3.10 we have the following result:

|Gθ| =
|Fθ(θ, t) sin(θ)− F (θ, t) cos(θ)|

sin2(θ)
<
εF (θ, t) sin(θ)

sin2(θ)
= εG, (27)

This holds for all θ ∈ J provided that we take t sufficiently close to T . The last
calculation shows that the logarithmic derivative Gθ/G is nearly 0 on J . Hence G is
nearly constant on J . But G(π/2, t) = 1. Hence G is nearly 1 on J . This proves that
F (θ, t) converges uniformly to sin(θ) for t ∈ J . But this combines with Corollary
3.10 to show that Fθ(θ, t) converges uniformly to cos(θ) for t ∈ J . This completes
the proof of the Grim Reaper Theorem.
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4 The Migration Theorem

In this chapter we prove the Migration Theorem. Here it is again.

Theorem 4.1 (Migration). The top point of Lt(C(t)) converges to (1, 1) as t→ T .
Therefore, the two vertical sides of the bowtie are limits of Lt(C(t)).

4.1 The Geometric Part of Argument

Recall that the bounding box of C(t) is [−X(t), X(t)]×[−Y (t), Y (t)]. Let (x∗(t), Y (t))
denote the topmost point on the right lobe of C(t). The Migration Theorem is equiv-
alent to the statement that

lim
t→T

x∗(t)

X(t)
= 1. (28)

In this section we derive Equation 28 from the following asymptotic formula.

lim
t→T

Y (t)κ(π/2, t) = π/2. (29)

Following this section, we prove Equation 29.
Let H(t) = Y (t)/X(t). Let Γ(t) = C(t)/X(t).

Lemma 4.2. Let ε > 0 be given. If δ > 0 is sufficiently small, the arc connecting
Γ(π/2, t) to Γ(δ, t) has vertical displacement at least H(t)(1 − ε) provided that t is
sufficiently close to T .

Proof. We are going to rescale several times. The Grim Reaper Curve G = G(θ)
has the property that its maximum curvature is 1 at the point G(π/2) and its total
width is π. In other words, if we atart at the point of maximum curvature of the
Grim Reaper and travel outward, we gain a height of π/2. This means that if δ > 0
is sufficiently small, then the portion of G connecting G(π/2) to G(δ) has a vertical
displacement of at least π/2(1− ε).

Let H(t) be the curve we get by rescaling C(t) by a factor of (π/2)Y (t). By
Equation 29 and the Grim Reaper Theorem together, this curve converges uniformly
to the Grim Reaper (modulo translations) on every interval [δ, π − δ]. This means
that H(t) rises up to π/2(1− ε) before reaching H(δ), provided that δ is sufficiently
small. This is equivalent to saying that the portion of C(t) connecting C(π/2) to
C(δ) has vertical displacement at least Y (t)(1 − ε) provided that δ is sufficiently
small. This result is equivalent to the claim of the lemma, by scaling.
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Now we suppose that Equation 28 is false and we derive a contradiction. We
can find a sequence tn → T such that the distance from Γ(0, tn) to the vertical line
x = 1 is at least some fixed η > 0. At the same time, the distance from Γ(π/2, tn) to
Γ(δ, tn) is less than η/2 once n is sufficiently large. This is a consequence of the Tait-
Kneser Theorem and the fact that the curvature of Γ(tn) tends uniformly to ∞ on
the interval [δ, π/2]. We conclude from this that the arc of Γ(tn) connecting Γ(0, tn)
to Γ(δ, tn) has a horizontal displacement of at least δ/2 and a vertical displacement
of at most H(tn)ε.

Let D(tn) be the disk which osculates Γ(tn) at Γ(0, tn). Let ∂+D(tn) be the
portion of ∂D(tn) which connects Γ(0, tn) to the vertical line above Γ(δ, tn). Let
∂−D(tn) be the portion of ∂D(tn) which connects Γ(0, tn) to the y-axis – i.e., the
vertical line through the double point. The horizontal displacement of ∂+D(tn) is
at least η/2. The horizontal displacement of ∂−D(tn) is at most 1. This is true
independent of n. Hence, the vertical displacement of ∂+D(tn) is at most K times
the vertical displacement of ∂−D(tn) for some constant K that does not depend on
n. Let us write this as

v− < Kv+ (30)

By the Tait-Kneser Theorem, the curve connecting Γ(0, tn) to Γ(δ, tn) remains
below ∂+D(tn). Hence

v+ < H(tn)ε.

We choose δ so small that εK < 1. This means that

v− < H(tn),

By the Tait-Kneser Theorem, the portion of Γ(tn) connecting Γ(0, tn) to the origin
lies above ∂−D(tn). But this forces v− ≥ H(tn). We have a contradiction. This
establishes Equation 28 modulo the proof of Equation 29. The rest of the chapter is
devoted to proving Equation 29.

4.2 The Analytic Part of the Argument

It remains to establish Equation 29. This formula essentially follows from the Grim
Reaper Theorem, but we need an extra step to control a potentially unbounded
integral.

Lemma 4.3.

Y (t)κ(π/2, t) =

∫ π/2

0

sin(φ)

F (φ, t)
dφ. (31)
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Proof. Let s0 and s1 respectively denote the arc-length parameters that correspond
to θ0 = 0 and θ1 = π/2. On the level of 1-forms:

dy = −ds sin θ, κ(θ, t)ds = dθ.

(The minus sign appears because y decreases as s increases.)

Y (t) =

∫ Y (t)

0

dy = −
∫ s0

s1

sin(θ)ds =

∫ s1

s0

sin(θ)ds =

∫ π/2

0

sin(θ)

κ(θ, t)
dθ. (32)

Multiplying through by κ(π/2, t), we get Equation 31.

By the Grim Reaper Theorem, the integrand in Equation 31 is converging to 1 at
every point of (0, π/2). This would suggest that the total integral is π/2. However, we
don’t have much control over how F (θ, t)→ 0 as θ → 0. This is where the concinnity
condition comes in. In the next section we will prove the following estimate:

Lemma 4.4. For any δ ∈ (0, π/2) we have∫ δ

0

sin(θ)

κ(θ, t)
dφ <

δ2

κ(δ, t)
.

Multiplying through by κ(π/2, θ) we have∫ δ

0

sin(θ)

F (θ, t)
dφ <

δ2

F (δ, t)
< 2δ. (33)

The last inequality holds once t is sufficiently close to T . The “closeness” needed
depends on the choice of δ.

For each δ ∈ (0, π/2) the Grim Reaper Theorem gives

lim
t→T

Θδ = π/2− δ, Θδ =

∫ π/2

δ

sinφ

F (φ, t)
dφ. (34)

Hence, for t sufficiently close to T , we have

π/2− 2δ < Θδ < Y (t)κ(π/2, t) = Θδ +

∫ δ

0

sin(φ)

F (φ, t)
dφ < π/2 + 2δ. (35)

Since δ is arbitrary, we get Equation 29.
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4.3 The Crucial Estimate

In this section we finish the proof of the Migration Theorem by establishing Lemma
4.4. First we prove two preliminary results. Our concinnity assumption is that ψ(∗, t)
vanishes exactly once, at some value θ ≤ π/2. In view of Lemma 2.9, this means
that ψ < 0, then ψ vanishes, then ψ > 0. Introduce the quantity

I(θ1, θ2) =

∫ θ2

θ1

sin(φ)ψ(φ, t)dφ. (36)

Lemma 4.5. I(θ, π/2) > 0 for all θ ∈ [0, π/2).

Proof. This is obvious if θ ≤ 0. So, we may assume that θ ∈ (0, π/2]. The result
is again obvious if θ = 0 and if θ ≥ θ. Henceforth take θ ∈ (0, θ). Note that
−I(0, θ) ≥ 0. We have

I(θ, π/2) = I(0, π/2)− I(0, θ) ≥ I(0, π/2) = κ(0, π/2) > 0.

Lemma 4.6.
φκθ(φ, t)

κ(φ, t)
< 1.

Proof. Our second integral formula is:

cos(θ)κ(φ, t)− sin(θ)κθ(φ, t) = I(φ, t).

The right hand side is positive, by the previous lemma. Hence

cos(θ)κ(φ, t) > sin(θ)κθ(φ, t).

Hence
φκθ(φ, t)

κ(φ, t)
<

tan(φ)κθ(φ, t)

κ(φ, t)
=

sin(φ)κθ(φ, t)

cos(φ)κ(φ, t)
< 1.

This completes the proof.

Now we are in a position to prove Lemma 4.4. Call this integral Iδ. Since
sin(θ) < θ we have Iδ < Jδ, where

Jδ =

∫ δ

0

φ

κ(φ, t)
dφ. (37)
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Integrating by parts, we have

Jδ =
1

2

∫ δ

0

φ2κθ(φ, t)

κ2(φ, t)
dφ+

δ2

2κ(δ, t)
. (38)

Lemma 4.6 gives us

1

2

∫ δ

0

φ2κθ(φ, t)

κ2(φ, t)
dφ <

1

2

∫ δ

0

φ

κ(φ, t)
dφ =

1

2
Jδ. (39)

Combining this with Equation 38, we have

Jδ <
1

2
Jδ +

δ2

2κ(δ, t)
. (40)

Rearranging this equation gives us the result we seek.

5 The Fat Bowtie Theorem

In this chapter we prove the Fat Bowtie Theorem. Here it is again.

Theorem 5.1 (Fat Bowtie). Suppose that C(0) is concinnous. Let S ⊂ [−1, 1]2

denote the set of accumulation points of Lt(Ct) as t→∞. If (x, y) ∈ S and |x| < 1
then |x| ≤ |y| ≤ 2|x| − x2.

5.1 The Main Argument

Henceforth we assume that C(t) is concinnous for all t ∈ [0, T ). Let us explain the
geometric consequence of Equation 28. Let C+(t) be the positive lobe of C(t). We
write

C+(t) = D(t) ∪ V (t) ∪D(t), where (41)

• D(t) connects (0, 0) to (x∗(t), Y (t)).

• V (t) connects (x∗(t), Y (t)) to (x∗(t),−Y (t)).

• D(t) connects (x∗(t),−Y (t)) to (0, 0).

Figure 2 shows this decomposition.
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(X,0)

(x*,Y)

Figure 3: Decomposition of the right lobe.

The arc Lt(V (t)) is convex, and has endpoints which, by Equation 28, converge to
(1, 1) and (1,−1). Moreover (1, 0) is the midpoint of Lt(V (t)). From this structure,
we see that Lt(V (t)) converges in the Hausdorff metric to the line segment connecting
(1, 1) to (−1, 1). This is the right edge of the bowtie.

We say that a monotone arc is the graph G of a concave increasing function
g : [a, b] → R such that g′(b) = 0 and the unsigned curvature of G is strictly
increasing going from left to right. (The derivatives are one-sided at the endpoints.)
To G we associate the unique disk E(G) such that ∂E(G) contains the endpoints
of G and the endpoint (b, g(b)) is the topmost point of E(G). Figure 4 shows the
construction.

(b,g(b))

(a,g

Figure 4: G and E(G).

In the next section we prove the following result.

Lemma 5.2. G ⊂ E(G) whenever G is a monotone arc.

The arc D(t) is from the previous section is monotone. Hence D(t) ⊂ E(t) where
E(t) = E(D(t)). But then

Lt(D(t)) ⊂ Lt(E(t)). (42)

The set Lt(E(t)) is a solid ellipse whose boundary contains the points (0, 0) and whose
top point is (x∗(t)/X(t), 1). The latter point converges to (1, 1) as t→ T . Moreover,
by Lemma 3.2 the ratio of the vertical axis length of Lt(E(t)) to the horizontal axis
length of Lt(E(t)) converges to ∞ as t → T . The limit limt→T Lt(E(t)) must be
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the solid region under a downward pointing parabola whose boundary contains (0, 0)
and whose top point is (1, 1). There is only one region with this description: It is
given by the equation y ≤ 2x− x2.

This analysis shows that any accumulation point (x, y) of Lt(D(t)) has the form
x ≤ y ≤ 2x− x2. The Fat Bowtie Theorem now follows from symmetry.

We mention one other result that is proved using the same method.

Lemma 5.3 (Slope). For any ε > 0, the slope of Lt(D(t)) at (0, 0) lies in the interval
[1, 2 + ε] provided that t is sufficiently close to T .

Proof. The lower bound on the slope is just convexity of the lobes of C(t). Here
is the proof of the upper bound, The slope of ∂Lt(E(t)) at (0, 0) converges to 2.
Moreover, Lt(D(t)) starts at (0, 0) and lies beneath this boundary. Hence the slope
of Lt(D(t)) at (0, 0) is at most 2 + ε(t), where ε(t) is some function which tends to
0 as t→ T .

To put the Slope Lemma in perspective, the Bowtie Conjecture would say that
the slope of Lt(D(t)) converges to 1 as t → T . So, at least the Slope Lemma picks
out the same order of decay of the slope.

5.2 Proof of Lemma 5.2

We want to prove that G ⊂ E(G) whenever G is a monotone arc. Let E = E(G).
We suppose this result is false and derive a contradiction. If this result is false then
there is some arc δ of G whose endpoints p, q lie in ∂E but which is otherwise disjoint
from E. The arc δ lies above E. We order the points so that p lies to the left of q.
Let E∗ be the osculating disk of G at q. Let r be the right endpoint of G. Figures
4,5,6 show these objects. There are three cases.

Case 1: Suppose q = r. Since G is monotone, G and E are tangent at q. Since G
lies above q sufficiently close to q we see that the curvature of G at q is not more
than the curvature of E. But then E ⊂ E∗. The Tait-Kneser Theorem tells us that
G− {q} is disjoint from E∗. This is impossible because p ∈ E ⊂ E∗.

q=r

Figure 5: Case 1 of the argument.
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Case 2: Suppose that q 6= r, and that G is tangent to E at q. There are two
subcases. (A) If E ⊂ E∗ we get the same contradiction as in Case 1. (B) Otherwise
E∗ is a proper subset of E and the two disks are tangent at q. But then no point of
E∗ to the right of q intersects ∂E. But then the continuation of G to the right of q,
which lies in E∗ by the Tait-Kneser Theorem, cannot reach r ∈ ∂E.

q r

Figure 6: Case 2B of the argument.

Case 3: Suppose that q 6= r and that G and ∂E are transverse at q. Since δ lies
above E, we see that when we move rightward along ∂E∗ we cross into the interior
of E. Since δ lies above E, there must be some other point q′, between p and q on
E, where ∂E and G intersect. But two unequal circles can intersect at most twice.
This means that all points of E∗ to the right of q lie in the interior of E. Figure 6
shows the situation. This gives the same contradiction as in Case 2B.

q r

Figure 7: Case 3 of the argument.

This completes the proof
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