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Abstract

This is Paper 1 of series of 7 self-contained papers which together
prove the Melnyk-Knopf-Smith phase transition conjecture for 5-point
energy minimization. (Paper 0 has the main argument.) This paper
presents a general energy estimate which allows us to bound from below
the energy of a continuum of configurations from a finite calculation.

1 Introduction

1.1 Context

Let S2 be the unit sphere in R3. Given a configuration {pi} ⊂ S2 of N
distinct points and a function F : (0, 2]→ R, define

EF (P ) =
∑

1≤i<j≤N
F (‖pi − pj‖). (1)

This quantity is commonly called the F -potential or the F -energy of P . A
configuration P is a minimizer for F if EF (P ) ≤ EF (P ′) for all other N -
point configurations P ′. The question of finding energy minimizers has a
long literature; the classic case goes back to Thomsom [Th] in 1904.

We are interested in the case N = 5 and the Riesz potential F = Rs,
where

Rs(d) = d−s, s > 0. (2)

The Triangular Bi-Pyramid (TBP) is the 5 point configuration having one
point at the north pole, one point at the south pole, and 3 points arranged
in an equilateral triangle on the equator. A Four Pyramid (FP) is a 5-point
configuration having one point at the north pole and 4 points arranged in a
square equidistant from the north pole.
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Define

15+ = 15 +
25

512
. (3)

My monograph [S0] proves the following result.

Theorem 1.1 (Phase Transition) There exists ש ∈ (15, 15+) such that:

1. For s ∈ (0, (ש the TBP is the unique minimizer for Rs.

2. For s = ש the TBP and some FP are the two minimizers for Rs.

3. For each s ∈ ,ש) 15+) some FP is the unique minimizer for Rs.

This result verifies the phase-transition for 5 point energy minimization
first observed in [MKS], in 1977, by T. W. Melnyk, O, Knop, and W. R.
Smith. This work implies and extends my solution [S1] of Thomson’s 1904
5-electron problem [Th]. To make [S0] easier to referee, I have broken down
the proof into a series of 7 independent papers, each of which may be checked
without any reference to the others.

1.2 The Result of This Paper

The bulk of the Phase Transition Theorem uses a divide-and-conquer algo-
rithm to analyze the configuration space. The paper establishes the energy
bound that underpins this divide-and-conquer approach. In §2 we introduce
the needed background concepts and then state our main result, the Energy
Lemma. in §3-4 we prove the Energy Lemma.

2 Description of the Energy Computation

2.1 Background Definitions

Stereographic Projection: Let S2 ⊂ R3 be the unit 2-sphere. Stere-
ographic projection is the map Σ : S2 → R2 ∪ ∞ given by the following
formula.

Σ(x, y, z) =

(
x

1− z
,

y

1− z

)
. (4)

Here is the inverse map:

Σ−1(x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
. (5)
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Σ−1 maps circles in R2 to circles in S2 and Σ−1(∞) = (0, 0, 1).

Avatars: Stereographic projection gives us a correspondence between 5-
point configurations on S2 having (0, 0, 1) as the last point and planar con-
figurations:

p̂0, p̂1, p̂2, p̂3, (0, 0, 1) ∈ S2 ⇐⇒ p0, p1, p2, p3 ∈ R2, p̂k = Σ−1(pk). (6)

We call the planar configuration the avatar of the corresponding configura-
tion in S2. By a slight abuse of notation we write EF (p0, p1, p2, p3) when we
mean the F -potential of the corresponding 5-point configuration.

Energy Hybrids: We introduce the energy potential

Gk(r) = (4− r2)k. (7)

These functions turn out to be related to the Riesz potentials in the sense
that certain linear combinations of them interpolate various Riesz potentials
in the sense of [CK]. We will work with Gk rather than Rs in this paper.

We say that an energy hybrid is a potential of the form

F =
m∑
k=1

ckGk, Gk(r) = (4− r2)k, c1 ∈ Q, c2, ..., ck ∈ Q+. (8)

We normalize our avatars so that p0 lies on the positive X-axis. In this way,
and by stringing out the coordinates, we identify an avatar with a point in
R7 = R × (R2)3. Thus we think of the potential EF as a function on R7.
It will turn out that we only need to consider points in the cube �3/2 where

�r := [0, r]× [−r, r]r × [−r, r]r × [−r, r]2. (9)

Dyadic Subdivision: The dyadic subdivision of a D-dimensional cube is
the list of 2D cubes obtained by cutting the cube in half in all directions. We
sometimes blur this terminology and say that any one of these 2D smaller
cubes is a dyadic subdivision of the big cube.

Blocks: We define a block to be a product of the form

B = Q0 ×Q1 ×Q2 ×Q3 ⊂ �3/2, (10)

where Q0 is a segment and Q1, Q2, Q3 are squares, each obtained by iterated
dyadic subdivision respectively of [0, 2] and [−2, 2]2.

We call B acceptable if Q0 has length at most 1 and Q1, Q2, Q3 have
sidelength at most 2. When B is acceptable, each Qk is contained in a
quadrant of R2.
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2.2 The Main Result

We let Q denote the set of components of acceptable blocks. The elements
of Q are either dyadic seqments in [0, 3/2] or dyadic squares in [−3/2, 3/2]2.
Thanks to the subdivision process, each of these squares lies on one of the
quadrants of the plane - it does not cross the coordinate axes. We also let
{∞} be a member of Q.

We first define 4 basic measurements we take of members in Q.

0. The Flat Approximation: Given Q ∈ Q we define

Q• = Convex Hull(Σ−1(v(Q)). (11)

Q• is either the point (0, 0, 1), a chord of S2 or else a convex planar quadri-
lateral with vertices in S2 that is inscribed in a circle. We let d• be the
diameter of Q•. The quantity d2• is a rational function of the vertices of Q.

1. The Hull Approximation Constant: We think of Q• as the lin-
ear approximation to

Q̂ = Σ−1(Q). (12)

The constant we define here turns out to measure the distance between Q̂
and Q•. When Q = {∞} we define δ(Q) = 0. Otherwise, let

χ(D, d) =
d2

4D
+

(d2)2

4D3
. (13)

This wierd function turns out to be an upper bound to a more geometrically
meaningful non-rational function that computes the distance between an
chord of length d of a circle of radius D and the arc of the circle it subtends.

When Q is a dyadic segment we define

δ(Q) = χ(2, ‖q̂1 − q̂2‖). (14)

Here q1, q2 are the endpoints of Q. When Q is a dyadic square we define

δ(Q) = max(s0, s2) + max(s1, s3), sj = χ(1, ‖qj − qj+1‖). (15)

Here q1, q2, q3, q4 are the vertices of Q and the indices are taken cyclically.
These are rational computations because χ(2, d) is a polynomial in d2.

2. The Dot Product Estimator: By way of motivation, we point out
that if V1, V2 ∈ S2 then

Gk(‖V1 − V2‖) = (2 + 2V1 · V2)k.
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Now suppose that Q1 and Q2 are two dyadic squares. We set δj = δ(Qj).
Given any p ∈ R2 ∪∞ let p̂ = Σ−1(p). Define

Q1 ·Q2 = max
i,j

(q̂1i · q̂2j) + (τ)× (δ1 + δ2 + δ1δ2). (16)

Here {q1i} and {q2j} respectively are the vertices ofQ1 andQ2. The constant
τ is 0 if one of Q1 or Q2 is {∞} and otherwise τ = 1. Finally, we define

T (Q1, Q2) = 2 + 2(Q1 ·Q2). (17)

3. The Local Error Term: For Q1, Q2 ∈ Q and k ≥ 1 we define

εk(Q1, Q2) =
1

2
k(k − 1)T k−2d21 + 2kT k−1δ1, (18)

where
d1 = d•(Q1), δ1 = δ(Q1), T = T (Q1, Q2).

One of the terms in the error estimate comes from the analysis of the flat
approximation and the second term comes from the analysis of the difference
between the flat approximation and the actual subset of the sphere. The
quantity is not symmetric in the arguments and εk({∞}, Q2) = 0.

4. The Global Error Estimate: Given a block Q0 × Q1 × Q2 × Q3

we define

ERRk(B) =

N∑
i=0

ERRk(B, i), ERRk(B, i) =
∑
j 6=i

ε(Qi, Qj). (19)

More generally, when F =
∑
ckGk is as in Equation 8, we define

ERRF (B) =

N∑
k=0

ERRF (B, i), ERRF (B, i) =
∑
|ck| ERRk(B, i)

(20)
For the most part we only care about the (+) case of the lemma. We

only need the (−) case when we deal with the potential G5 − 25G1.

Lemma 2.1 (E) Let B be a acceptable block. Let F = Gk for any k ≥ 1
or F = −G1. Then

min
p∈B
EF (v) ≥ min

p∈v(B)
Ek(v)−ERRk(B)
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3 Proof of Lemma E

3.1 Guide to the Proof

Our proof of Lemma E splits into two halves, an algebraic part and a geo-
metric part. The algebraic part, which we do in this chapter, simply pro-
motes a “local” result to a “global result”. The geometric part, done in the
next chapter, explains the meaning of the local error term εk(Q1, Q2) for
Q1, Q2 ∈ Q. Here Q is the space of components of good blocks, and also
the point ∞.

The algebraic part involves what we call an averaging system. For the
purpose of giving a uniform treatment, we treat every member of Q as a
quadrilateral by the trick of repeating vertices. Thus, if we have a dyadic
segment with vertices q1, q2 we will list them as q1, q1, q2, q2. For the point
{∞} we will list the single vertex q1 = ∞ as q1, q1, q1, q1. We say that an
averaging system for a member of Q is a collection of maps λ1, λ2, λ3, λ4 :
Q→ [0, 1] such that

4∑
i=1

λi(z) = 1, ∀ z ∈ Q.

The functions need not vary continuously. In case Q is a segment, we would
have λ1 = λ2 and λ3 = λ4. In case Q = {∞} we would have λj = 1/4 for
j = 1, 2, 3, 4.

We say that an averaging system for Q is a choice of averaging system
for each member Q of Q. The averaging systems for different members need
not have anything to do with each other. In this chapter we will posit some
additional properties of an averaging system and then prove Lemma E under
the assumption such such an averaging system exists. In the next chapter
we will prove the existence of the desired averaging system.

3.2 Reduction to a Local Result

We fix the function F = Gk for some k ≥ 1 or else F = −G1. We write
E = EF . We let ε = εk, as in Equation 18. Our algebraic argument would
work for any choice of F , but we need to use the choices above to actually
get the averaging system we need. Let q1,1, q1,2, q1,3, q1,4 be the vertices of
Q1.

Lemma 3.1 (E1) There exists an averaging system on Q with the following
property: Let Q1, Q2 be distinct members of Q. Given any z1 ∈ Q1 and
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z2 ∈ Q2 we have

4∑
i=1

λi(z1)F (‖q̂1,i − ẑ2‖)− F (‖ẑ1 − ẑ2‖) ≤ ε(Q1, Q2). (21)

See §4 for the proof.
We are interested in 5-point configurations but we will work more gen-

erally so as to elucidate the general structure of the argument. We suppose
that we have the good dyadic block B = Q0 × ... × QN . The vertices of B
are indexed by a multi-index

I = (i0, ..., in) ∈ {1, 2, 3, 4}N+1.

Given such a multi-index, which amounts to a choice of vertex of in each
component member of the block. We define (as always, via inverse stereo-
graphic projection) the energy of the corresponding vertex configuration:

E(I) = E(q0,i0 , ..., qN,iN ) (22)

Here is one more piece of notation. Given z = (z0, ..., zn) ∈ B and a
multi-index I we define

λI(z) =
N∏
i=0

λij (zj). (23)

Here λij is defined relative to the averaging system on Qj .
Now we are ready to state our main global result. The global result uses

the existence of an efficient averaging system. That is, it relies on Lemma
E1.

Lemma 3.2 (E2) Let z = (z0, ..., zN ) ∈ B. Then

∑
I

λI(z)E(I)− E(z) ≤
N∑
i=0

N∑
j=0

ε(Qi, Qj). (24)

The lefthand sum is taken over all multi-indices. In the righthand sum, we
set ε(Qi, Qi) = 0 for all i.

Now let us deduce Lemma E from Lemma E2. Notice that

∑
I

λI(z) =

N∏
j=0

( 4∑
a=1

λa(zj)

)
= 1. (25)
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Choose some (z1, ..., zN ) ∈ B which minimizes E . We have

0 ≤ min
p∈v(B)

E(v)−min
v∈B
E(v) = min

p∈v(B)
E(v)− E(z) ≤∗

∑
I

λI(z)E(I)− E(z) ≤
N∑
i=0

N∑
j=0

ε(Qi, Qj). (26)

The starred inequality comes from the fact that a minimum is less or equal
to a convex average. The last expression is ERR(B) when N = 4 and
Q4 =∞.

3.3 From Local to Global

Now we deduce the global Lemma E2 from the local Lemma E1.

Lemma 3.3 (E21) Lemma E2 holds when N = 1.

Proof: In this case, we have a block B = Q0 ×Q1. Setting εij = ε(Qi, Qj),
Lemma E1 gives us

F (‖z0 − z1‖) ≥
4∑

α=1

λα(z0)F (‖q0α − z1‖)− ε01. (27)

Applying Lemma E1 to the pair of points (z1, q0α) ∈ Q1 ×Q0 we have

F (‖z1 − q0α‖) ≥
4∑

β=1

λβ(z1)F (‖q1β − q0α‖)− ε10. (28)

Plugging the second equation into the first and using
∑
λα(z0) = 1, we have

F (‖z0 − z1‖) ≥
∑
α,β

λα(z0)[λβ(z1)F (‖q1β − q0α‖)− ε10]− ε01 =

∑
α,β

λα(z0)λβ(z1)F (‖q1β − q0α‖)− (ε10 + ε01). (29)

Equation 29 is equivalent to Equation 24 when N = 1. ♠

Now we do the general case.

Lemma 3.4 (E22) Lemma E2 holds when N ≥ 2.

8



Proof: We rewrite Equation 29 as follows:

F (‖z0 − z1‖) ≥
∑
A

λA0(z0)λA1(z1) F (‖q0A0 − q1A1‖)− (ε01 + ε10). (30)

The sum is taken over multi-indices A of length 2.
We also observe that∑

I′

λI′(z
′) = 1, z′ = (z2, ..., zN ). (31)

The sum is taken over all multi-indices I ′ = (i2, ..., iN ). Therefore, if we
hold A = (A0, A1) fixed, we have

λA0(z0)λA1(z1) =
∑
I′′

λI′′(z). (32)

The sum is taken over all multi-indices of length N + 1 which have I0 = A0

and I1 = A1. Combining these equations, we have

F (‖z0 − z1‖) ≥
∑
I

λI(z)F (‖q0I0 − q1I1‖)− (ε01 + ε10). (33)

The same argument works for other pairs of indices, giving

F (‖zi − zj‖) ≥
∑
I

λI(z)F (‖qiIi − qjIj‖)− (εij + εji). (34)

Let us restate this as Xij − Yij ≥ Zij , where

Xij =
∑
I

λI(z)F (‖qiIi − qjIj‖), Yij = F (‖zi − zj‖), Zij = εij + εji.

When we sum Yij over all i < j we get the second term in Equation 24.
When we sum Zij over all i < j we get the third term in Equation 24.
When we sum Xij over all i < j we get∑

i<j

(∑
I

ΛI(z)F (‖qiIi − qjIj‖)
)

=
∑
I

∑
i<j

ΛI(z) F (‖qiIi − qjIj‖) =

∑
I

ΛI(z)

(∑
i<j

F (‖qiIi − qjIj‖)

)
=
∑
I

λI(z)E(I).

This is the first term in Equation 24. This proves Lemma E2. ♠
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4 Proof of Lemma E1

4.1 The Efficient Averaging System

Lemma E1 posits the existence of what we call an efficient averaging system.
Here we define it. Recall that Q• is the convex hull of the vertices q̂1, q̂2, q̂3, q̂4
of Q̂ = Σ−1(Q). What we want from the system is that for any z• ∈ Q•

z• =
4∑
i=1

λi(z
•)q̂i. (35)

If z• lies in the convex hull of q̂1, q̂2, q̂3, then we let λ1(z
•), λ2(z

•), λ3(z
•) be

barycentric coordinates on this triangle and we set λ4(z
•) = 0. If z• lies in

the convex hull of q̂1, q̂2, q̂4, then we let λ1(z
•), λ2(z

•), λ4(z
•) be barycentric

coordinates on this triangle and we set λ3(z
•) = 0. This definition agrees

on the overlap, which is the line segment joining q̂3 to q̂4.
To get our averaging system on Q ∈ Q we define

λj(z) = λj(z
•), (36)

where z• is some choice of point in Q• which is closest to ẑ. If there are
several closest points we pick the one (say) which has the smallest first
coordinate. We prove Lemma E1 with respect to the averaging system we
have just defined.

4.2 Reduction to Simpler Statements

Let F be either Gk for some k ≥ 1 or else F = −G1. For convenience we
expand out the statement of Lemma E1.

Lemma 4.1 (E1) The efficient averaging system on Q has the following
property. Let Q1, Q2 be distinct members of Q. Given any z1 ∈ Q1 and
z2 ∈ Q2 we have

4∑
i=1

λi(z1)F (‖q̂1,i− ẑ2‖)−F (‖ẑ1− ẑ2‖) ≤
1

2
k(k−1)T k−2d21+2kT k−1δ1. (37)

Here δ1 and d1 respectively are the Hull Approximation constant and diam-
eter of Q1, and

T = 2+2(Q1 ·Q1), Q1 ·Q2 = max
i,j

(q̂1,i · q̂2,j)+(τ)×(δ1+δ2+δ1δ2). (38)
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τ = 0 or τ = 1 depending on whether one of Q1, Q2 is {∞}. We are
maximizing over the dot product of the vertices and then either adding an
error term or not.

Define

X• = F (z•1 − ẑ2) = (2 + 2z•1 · ẑ2)k or − 2− 2z•1 · ẑ2. (39)

Lemma E1 is an immediate consequence of the following two results.

Lemma 4.2 (E11)
∑4

i=1 λi(z1)F (‖q̂1,i − ẑ2‖)−X• ≤ 1
2k(k − 1)T k−2• d21.

Lemma 4.3 (E12) X• − F (‖ẑ1 − ẑ2‖) ≤ 2kT k−1δ.

4.3 Proof of Lemma E11

Suppose first F = −G1. We hold ẑ2 fixed and define

L(q̂) = F (‖q̂ − ẑ2‖) = −2− 2q̂ · ẑ2.

Lemma E2, in this special case, says that

4∑
i=1

λi(z1)L(q̂1,i)− L(z•1) = 0.

But this follows from Equation 36 and the (bi) linearity of the dot product.
Now we deal with the case where F = Gk for k ≥ 1. We prove the

following two lemmas at the end of the chapter.

Lemma 4.4 (E111) For j = 1, 2 let γj be a point on a line segment con-

necting a point of Q̂j to a closest point on Q•j . Then γ1 · γ2 ≤ Q1 ·Q2.

Lemma 4.5 (E112) Let M ≥ 2 and k = 1, 2, 3.... Suppose

• 0 ≤ x1 ≤ ... ≤ xM

•
∑M

i=1 λi = 1 and λi ≥ 0 for all i.

Then

0 ≤
M∑
i=1

λix
k
i −

( M∑
I=1

λixi

)k
≤ 1

8
k(k − 1)xk−2M (xM − x1)2. (40)
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Recall that q1,1, q1,2, q1,3, q1,4 are the vertices of Q1. Let λi = λi(z1). We
set

xi = 4− ‖q̂1,i − ẑ2‖2 = 2 + 2q̂1,i · ẑ2, i = 1, 2, 3, 4. (41)

Note that xi ≥ 0 for all i. We order so that x1 ≤ x2 ≤ x3 ≤ x4. We have

4∑
i=1

λi(z)F (‖q1,i − z2‖) =
4∑
i=1

λix
k
i , (42)

X• = (2 + 2z•1 · ẑ2)k =

( 4∑
i=1

λi × (2 + q̂i · ẑ2)
)k

=

( 4∑
i=1

λixi

)k
. (43)

By Equation 42, Equation 43, and the case M = 4 of Lemma E112, we
have

4∑
i=1

λi(z)F (‖q1,i− z2‖)−X• =
4∑

i=1

λix
k
i −

(
4∑

i=1

λixi

)k

≤ 1

8
k(k− 1)xk−2

4 (x4−x1)2. (44)

By Lemma E111
x4 = 2 + 2(q̂4 · ẑ2) ≤ T. (45)

Since d1 is the diameter of Q•1, and ẑ2 is a unit vector,

x4 − x1 = 2ẑ2 · (q̂4 − q̂1) ≤ 2‖q̂4 − q̂1‖ ≤ 2d1 (46)

Plugging Equations 45 and 46 into Equation 44, we get Lemma E12.

4.4 Proof of Lemma E12

Let δ(Q) be the hull approximation constant for Q ∈ Q, as defined (depend-
ing on Q) in Equation 14 or Equation 15.

Lemma 4.6 (E121) Let Q be any good dyadic square or segment. Then
every point of Q̂ is within δ(Q) of the quadrilateral Q•.

Lemma E121 implies that ‖ẑ1 − z•1‖ < δ(Q). Let γ1 denote the unit
speed line segment connecting z•1 to ẑ1. The length L of γ1 is at most δ1, by
Lemma E11. So, γ1(0) = z•1 and γ1(L) = ẑ1. Define

f(t) =

(
2 + 2ẑ2 · γ1(t)

)k
or − 2− 2ẑ2 · γ1(t), (47)

depending on the case. The argument we give works equally well more
generally when we use F = ±Gk.
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We have f(0) = X• and f(L) = F (‖ẑ1 − ẑ2‖). Hence

X• − F (‖ẑ1 − ẑ2‖) = f(0)− f(L), L ≤ δ1. (48)

Combining the Chain Rule, the Cauchy-Schwarz inequality, and Lemma
E111, we have

|f ′(t)| =
∣∣∣∣(2ẑ2 · γ′1(t))× k(2 + 2ẑ2 · γ1(t)

)k−1∣∣∣∣ ≤
2k

∣∣∣∣(2 + 2ẑ2 · γ1(t))
∣∣∣∣k−1 ≤ 2k(2 + 2(Q1 ·Q2))

k−1 = 2kT k−1.

In short
|f ′(t)| ≤ 2kT k−1. (49)

Lemma E13 follows Equation 49, Equation 48, and integration.

4.5 Proof of Lemma E111

See Equation 38 for the definition of Q1 ·Q2. We first treat the case τ = 1,
meaning that neither Q1 nor Q1 is {∞}. Since the dot product is bilinear,

q•1 · q•2 ≤ max
i,j

(q̂1i · q̂2j). (50)

By Lemma E11, and by hypothesis, we can find points z•1 and z•2 such that

γj = z•1 + h1, γ2 = z•2 + h2, ‖hj‖ ≤ δj .

But then by the triangle inequality and the Cauchy-Schwarz inequality

|(γ1 · γ2)− (z•1 · z•2)| ≤ |z•1 · h2|+ |z•2 · h1|+ |h1 · h2| ≤ δ1 + δ2 + δ1δ2.

This combines with Equation 50 to complete the proof when τ = 1.
Suppose τ = 0. Without loss of generality assume that Q2 = {∞}. The

maximum of q̂1 · (0, 0, 1), for q1 ∈ Q1, is achieved when q1 is vertex of Q1.
At the same time, the maximum of q•1 ·(0, 0, 1), for q•1 ∈ Q•1 is achieved when
q•1 is a vertex of Q•1. But then our lemma is true for the endpoints of the
segment containing γ. Since the dot product with (0, 0, 1) varies linearly
along this line segment, the same result is true for all points on the line
segment.

13



4.6 Proof of Lemma E112

Lemma 4.7 (E1121) Suppose a, x ∈ [0, 1] and k ≥ 2. Then f(x) ≤ g(x),
where

f(x) = (axk + 1− a)− (ax+ 1− a)k; g(x) =
1

8
k(k − 1)(1− x)2. (51)

Proof: Since f(1) = g(1) = f ′(1) = g′(1) = 0 the Cauchy Mean Value
Theorem (applied twice) tells us that for any x ∈ (0, 1) there are values
y < z ∈ [x, 1] such that

f(x)

g(x)
=
f ′(y)

g′(y)
=
f ′′(z)

g′′(z)
= 4azk−2

[
1− a

(
a+

1− a
z

)k−2]
≤ 4a(1− a) ≤ 1.

(52)
This completes the proof. ♠

Remark: The above proof, suggested by an anonymous referee of [S4], is
better than my original proof.

Now we prove the main inequality The lower bound is a trivial conse-
quence of convexity, and both bounds are trivial when k = 1. So, we take
k = 2, 3, 4, ... and prove the upper bound. Suppose first that M ≥ 3. We
have one degree of freedom when we keep

∑
λixi constant and try to vary

{λj} so as to maximize the left hand side of the inequality. The right hand
side does not change when we do this, and the left hand side varies linearly.
Hence, the left hand size is maximized when λi = 0 for some i. But then
any counterexample to the lemma for M ≥ 3 gives rise to a counter example
for M − 1. Hence, it suffices to prove the inequality when M = 2.

In the case M = 2, we set a = λ1. Both sides of the inequality in Lemma
E112 are homogeneous of degree k, so it suffices to consider the case when
x2 = 1. We set x = x1. Our inequality then becomes exactly the one treated
in Lemma E1121. This completes the proof.

4.7 Proof of Lemma E121

We remind the reader of the wierd function χ(D) and we introduce a more
geometrically meaningfun function

χ(D, d) =
d2

4D
+

d4

4D3
, χ∗(D, d) =

1

2
(D −

√
D2 − d2). (53)

Lemma 4.8 (E1211) χ∗(D, d) ≤ χ(D, d) for all d ∈ [0, D].
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Proof: By homogeneity, it suffices to prove the result when D = 1. To
simpify the algebra we define A = 2χ(1, d)− 1 and A∗ = 2χ∗(1, d)− 1. We
compute 4A2− 4(A∗)2 = d4(d− 1)(d+ 1)(d2 + 3). Hence, the sign of A−A∗
does not change on (0, 1). We check that A > A∗ when d = 1/2. Hence
A > A∗ on (0, 1). This implies the inequality. ♠

Segment Case: Let Q be dyadic segment. Here Q̂ is the arc of a great
circle and Q• is the chord of the arc joining the endpoints of this arc. Let
d be the length of Q•. The point of Q̂ farthest from Q• is the midpoint of
this Q̂. Let x be the distance between the midpoint of Q̂ and the midpoint
of Q•. From elementary geometry, x(D−x) = (d/2)2. Solving for x we find
that x = χ∗(2, d). Lemma E1211 finishes the proof.

Square Case: Let Q be a dyadic square and let z ∈ Q be a point. Let L be
the vertical line through x and let z01, z23 be the endpoints of the segment
L ∩ Q. We label the vertices of Q (in cyclic order) so that z01 lies on the
edge joining q0 to q1 and z23 lies on the edge joining q2 to q3.

If M is a horizontal line intersecting Q then the circle Σ−1(M ∪∞) has
diameter at least 1. The point is that this circle contains (0, 0, 1) and also
Σ−1(0, y) for some |y| ≤ 3/2. In fact the diameter is at least 4/

√
13. The

same goes for vertical lines intersecting Q.
Define dj = ‖p̂j − p̂j+1‖ with the indices taken cyclically. The length of

the segment σ joining the endpoints of Σ−1(L∩Q) varies monotonically with
the position of L. Hence, σ has length at most max(d1, d3). At the same
time, Σ−1(L ∩ Q) is contained in a circle of diameter at least 1. The same
argument as in the segment case now shows that there is a point z∗ ∈ σ
which is within t13 = max(χ(1, d1), χ(1, d3)) of ẑ.

The endpoints of σ respectively are on the spherical arcs obtained by
mapping the top and bottom edge of Q onto S2 via Σ−1. Hence, one
endpoint of σ is within χ(1, d0) of a point on the corresponding edge of
∂Q• and the other endpoint of σ is within χ(1, d2) of a point on the op-
posite edge of ∂Q•. But that means that either endpoint of σ is within
t02 = max(χ(1, d0), χ(1, d2)) of a point in Q•. But then every point of the
segment σ is within t02 of some point of the line segment joining these two
points of Q•. In particular, there is a point z• ∈ Q• which is within t of z∗.
The triangle inequality completes the proof of Lemma E121.
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