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Abstract

This is Paper 3 of series of 7 self-contained papers which together
prove the Melnyk-Knopf-Smith phase transition conjecture for 5-point
energy minimization. (Paper 0 has the main argument.) This paper
deals with a local analysis of configurations near the triangular bi-
pyramid.

1 Introduction

1.1 Context

During the past decade I have written several versions of a proof that rig-
orously verifies the phase-transition for 5 point energy minimization first
observed in [MKS], in 1977, by T. W. Melnyk, O, Knop, and W. R. Smith.
See [S0] for the latest version. This work implies and extends my solution
[S1] of Thomson’s 1904 5-electron problem [Th]. Unfortunately, after a
number of attempts I have not been able to publish my work on this. Even
though I have taken great pains to make the proof modular and checkable,
the monograph still gives the impression of being too difficult to referee.

Now I am taking a new approach. I have broken down the proof into
a series of 7 independent papers, each of which may be checked without
any reference to the others. The longest of the papers is 23 pages. The
drawback of this approach is twofold. First, there will necessarily be some
redundancy in these papers. Second, none of the papers has a blockbuster
result in itself. To help offset the second drawback, I will state the main
result in full in each paper, and I will try to explain how the small result
proved in each paper relates to the overall goal.
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1.2 The Phase Transition Result

Let S2 be the unit sphere in R3. Given a configuration {pi} ⊂ S2 of N
distinct points and a function F : (0, 2]→ R, define

EF (P ) =
∑

1≤i<j≤N
F (‖pi − pj‖). (1)

This quantity is commonly called the F -potential or the F -energy of P .
A configuration P is a minimizer for F if EF (P ) ≤ EF (P ′) for all other
N -point configurations P ′.

We are interested in the Riesz potentials:

Rs(d) = d−s, s > 0. (2)

Rs is also called a power law potential , and R1 is specially called the Coulomb
potential or the electrostatic potential . The question of finding the N -point
minimizers for R1 is commonly called Thomson’s problem.

We consider the case N = 5. The Triangular Bi-Pyramid (TBP) is the
5 point configuration having one point at the north pole, one point at the
south pole, and 3 points arranged in an equilateral triangle on the equator.
A Four Pyramid (FP) is a 5-point configuration having one point at the
north pole and 4 points arranged in a square equidistant from the north
pole.

Define

15+ = 15 +
25

512
. (3)

Theorem 1.1 (Phase Transition) There exists ש ∈ (15, 15+) such that:

1. For s ∈ (0, (ש the TBP is the unique minimizer for Rs.

2. For s = ש the TBP and some FP are the two minimizers for Rs.

3. For each s ∈ ,ש) 15+) some FP is the unique minimizer for Rs.

The proof has many moving parts. The largest part involves eliminating
most of the configurations using a divide-and-conquer algorithm. Since the
algorithm is based on a finite calculation, it would get irreparable bogged
down if it had to eliminate configurations arbitrarily near the TBP. In this
paper we do some local analysis which automatically eliminates all the con-
figurations in a definite, explicit neighborhood of the TBP.
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1.3 The Result of This Paper

We first give some background information.

Stereographic Projection: Let S2 ⊂ R3 be the unit 2-sphere. Stere-
ographic projection is the map Σ : S2 → R2 ∪ ∞ given by the following
formula.

Σ(x, y, z) =

(
x

1− z
,

y

1− z

)
. (4)

Here is the inverse map:

Σ−1(x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
. (5)

Σ−1 maps circles in R2 to circles in S2 and Σ−1(∞) = (0, 0, 1).

Avatars: Stereographic projection gives us a correspondence between 5-
point configurations on S2 having (0, 0, 1) as the last point and planar con-
figurations:

p̂0, p̂1, p̂2, p̂3, (0, 0, 1) ∈ S2 ⇐⇒ p0, p1, p2, p3 ∈ R2, p̂k = Σ−1(pk). (6)

We call the planar configuration the avatar of the corresponding configura-
tion in S2. By a slight abuse of notation we write EF (p1, p2, p3, p4) when we
mean the F -potential of the corresponding 5-point configuration.

Figure 1 shows the two possible avatars (up to rotations) of the triangular
bi-pyramid, first separately and then superimposed. We call the one on the
left the even avatar , and the one in the middle the odd avatar . The points
for the even avatar are (±1, 0) and (0,±

√
3/3). When we superimpose the

two avatars we see some extra geometric structure that is not relevant for
our proof but worth mentioning. The two circles respectively have radii 1/2
and 1 and the 6 segments shown are tangent to the inner one.
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even odd both

Figure 1: Even and odd avatars of the TBP.
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The Special Potentials: Rather than work with the Riesz potentials, we
work with potentials that have a more polynomial flavor.

Gk(r) = (4− r2)k. (7)

Also define
G[5 = G5 − 25G1,

G]]10 = G10 + 28G5 + 102G2,

G]10 = G10 + 13G5 + 68G2 (8)

These potentials are related to the Riesz potentials in a way that we discuss
below.

The Definite Neighborhood: We specially treat avatars very near the
TBP. When we string out the points of ξ0, we get (1, 0,−u,−1, 0, 0, u) where
u =

√
3/3. The space indicates that we do not record p02 = 0. We let Ω0

denote the cube of side-length 2−17 centered at ξ0. For all our choices of F ,
the function EF is a smooth function on R7. We check first of all that the
gradient of EF vanishes at ξ0. This probably follows from symmetry, but to
be sure we make a direct calculation in all cases.

Recall that the Hessian of a function is its matrix of second partial
derivatives. Here is the main result of this paper.

Theorem 1.2 (Local Convexity) For each F = G4, G6, G
[
5, G

]
10, the Hes-

sian of EF is positive definite at every point of Ω0.

Corollary 1.3 Let F be any of G4, G
[
5, G5, G6, G

]
10, G

]]
10. Then ξ0 is the

unique minimizer for EF inside Ω0.

Proof: Let F be any of the functions from the Local Convexity Theorem.
Let ξ ∈ Ω0 be other than ξ0. The Local Convexity Theorem combines with
the vanishing gradient to show that the restriction of EF to the line segment
γ joining ξ0 to ξ is convex and has 0 derivative at ξ0. Hence EF (ξ) > EF (ξ0).

It remains to deal with F = G5 and F = G]]10. As is well known, ξ0 is
a minimizer for G1. Since ξ0 is the unique minimizer for G[5 in Ω0, we see
that ξ0 is also the unique minimizer for G5 = G[5 + 25G1 in Ω0.

By the main result in [T], ξ0 is the unique global minimizer for G2. With
this in mind, we see that the same kind of argument we just gave for G5

also works for G]]10 = G]10 + 15G5 + 34G2. ♠
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The proofs in this paper are computer-assisted. All calculations are all
done using exact arithmetic in Mathematica. The reader can download and
inspect the files I wrote for this.

1.4 How this Fits In

Our result here combines with the main result in Paper 4, the Interpolation
Theorem, to show that the TBP is the unique minimizer, amongst config-
urations having avatars in Ω0, for all Rs with s ∈ (0, 15+]. Since we prefer
to use the potentials from Corollary 1.3, we do not directly use this result
for any purpose. We mention it just to show how it ties in with the Phase
Transition Theorem.

1.5 Discussion

Proving a result like the Local Convexity Theorem sets up a recursive prob-
lem. Consider the simpler situation where we would like to show that some
function f is positive on some interval I = [0, ε]. Let’s say that we have
free access to the values f(0), f ′(0), f ′′(0), ... and we can also look at the
explicit expressions for f and its derivatives. If we had some information
about maxI |f ′| we could combine it with information about f(0) to perhaps
complete the job. But how do we get information about maxI |f ′|? Well, if
we had information about maxI |f ′′| we could combine it with information
about f ′(0) to perhaps complete the job. And so on.

We can compute all the partial derivatives of EF at the TBP, though
these calculations eventually get expensive. However, no matter how many
derivatives we compute, it seems that we need to compute more of them to
get the bounds we need.

There is something that saves us: The error multiplier in Taylor’s The-
orem with Remainder. This multiplier is essentially εN/N !, a number that
becomes tiny as N increases. If we can get any kind of reasonable bounds
on high derivatives of our function, then we get pretty good bounds when
we multiply through by the tiny number. I eventually found a combinato-
rial trick for getting reasonable bounds on high dimensional derivative. The
magic formula is Equation 22.
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2 Proof of the Local Convexity Theorem

2.1 Reduction to Simpler Statements

We consider F to be any of the 4 functions

G4, G6, G[5 = G5 − 25G1, 2−5G]10 = 2−5(G10 + 13G5 + 68G2).

Scaling the last function by 2−5 makes our estimates more uniform.
Recall that Ω0 is the cube of side length 2−17 centered at the point

ξ0 =

(
1, 0,

−1√
3
,−1, 0, 0,

1√
3

)
∈ R7 (9)

In general, the point (x1, ..., x7) represents the avatar

p0 = (x1, 0), p1 = (x2, x3), p2 = (x4, x5), p3 = (x6, x7). (10)

The quantity EF (x1, ..., x7) is the F -potential of the 5-point configuration
associated to the avatar under inverse stereographic projection Σ−1.

EF (x1, ..., x7) =
∑
i<j

F (‖p̂i − p̂j‖), p̂ = Σ−1(p). (11)

Equation 5 gives the formula for Σ−1.
Let HEF be the Hessian of EF . The Local Convexity Theorem says HEF

is positive definite in Ω0. Let ∂JEF be the (iterated) partial derivative of
EF with respect to a multi-index J = (j1, ..., j7). Let |J | = j1 + ...+ j7. Let

MN = sup
|J |=N

MJ , MJ = sup
ξ∈Ω0

|∂JEF (ξ)|, (12)

Let λ(M) be the smallest eigenvalue of a real symmetric matrix M . Lemma
L is an immediate consequence of the following two lemmas.

Lemma 2.1 If M3(EF ) < 212λ(HEF (ξ0)) then λ(HEF (ξ)) > 0 for all
points ξ ∈ Ω0.

Lemma 2.2 M3(EF ) < 212λ(HEF (ξ0))) in all cases.

6



2.2 Proof of Lemma L1

Let
H0 = HEF (ξ0), H = HEF (ξ), ∆ = H −H0. (13)

For any real symmetric matrix X define the L2 matrix norm:

‖X‖2 =

√∑
ij

X2
ij = sup

‖v‖=1
‖Xv‖. (14)

Given a unit vector v ∈ R7 we have H0v · v ≥ λ. Hence

Hv · v = (H0v + ∆v) · v ≥ H0v · v − |∆v · v| ≥ λ− ‖∆v‖ ≥ λ− ‖∆‖2 > 0.

So, to prove Lemma L1 we just need to establish the implication

M3 < 212λ(H0) =⇒ ‖∆‖2 < λ(H0).

Let t → γ(t) be the unit speed parametrized line segment connecting p0

to p in Ω0. Note that γ has length L ≤
√

7×2−18. We write γ = (γ1, ..., γ7).
Let Ht denote the Hessian of EF evaluated at γ(t). Let Dt denote the
directional derivative along γ.

Now ‖Dt(Ht)‖2 is the speed of the path t→ Ht in R49, and ‖∆‖2 is the
Euclidean distance between the endpoints of this path. Therefore

‖∆‖2 ≤
∫ L

0
‖Dt(Ht)‖2 dt. (15)

Let (Ht)ij denote the ijth entry of Ht. From the definition of directional
derivatives, and from the Cauchy-Schwarz inequality, we have

(DtHt)
2
ij =

( 7∑
k=1

dγk
dt

∂Hij

∂k

)2

≤ 7M2
3 . ‖Dt(Ht)‖2 ≤ 73/2M3. (16)

The second inequality follows from summing the first one over all 72 pairs
(i, j) and taking the square root. Equation 15 now gives

‖∆‖2 ≤ L× 73/2M3 = 49× 2−18M3 < 2−12M3 < λ(H0). (17)

This completes the proof.
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2.3 Proof of Lemma 2.2

Let F be any of our functions. Let H0 = HEF (ξ0).

Lemma 2.3 λ(H0) > 39.

Proof: Let χ be the characteristic polynomial of H0. This turns out to
be a rational polynomial. We check in Mathematica that the signs of the
coefficients of χ(t + 39) alternate. Hence χ(t + 39) has no negative roots.
The file we use is LemmaL21.m. ♠

Recalling that ξ0 ∈ R7 is the point representing the TBP, we define

µN (EF ) = sup
|I|=N

|∂IEF (ξ0)|. (18)

Lemma 2.4 For any of our functions we have the bound

µ3 < 45893,
(7× 2−18)j

j!
µj+3 < 38, j = 1, 2, 3. (19)

Proof: We compute this in Mathematica. The file we use is LemmaL22.m. ♠

Lemma 2.5 For any of our functions we have the bound

(7× 2−18)4

4!
M7 < 2354.

Proof: We give this proof in the next section. ♠

Lemma 2.6 We have

M3 ≤ µ3 +

3∑
j=1

(7× 2−18)j

j!
µj+3 +

(7× 2−18)4

4!
M7 (20)

Proof: Choose any multi-index J with |J | = 3. Let γ be the line segment
connecting ξ0 to any ξ ∈ Ω. We parametrize γ by unit speed and furthermore
set γ(0) = ξ0. Let

f(t) = ∂JEF ◦ γ(t).
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The bound for |MJ | follows from Taylor’s Theorem with remainder once we
notice that

0 ≤ t ≤
√

7× 2−18,

∣∣∣∣∂nf(0)

∂tn

∣∣∣∣ ≤ (
√

7)nµn

∣∣∣∣∂nf∂tn

∣∣∣∣ ≤ (
√

7)nMn.

Since this works for all J with |J | = 3 we get the same bound for M3. ♠

The lemmas above and Equation 19 imply

M3 < 45893 + 3× 38 + 2354 ≤ 65536 = 216 ≤ 212λ(H0).

This completes the proof of Lemma 2.2.

2.4 Proof of Lemma 2.5

Now we come to the interesting part of the proof, the one place where we
need to go beyond specific evaluations of our functions. When r, s ≥ 0 and
r + s ≤ 2d we have

sup
(x,y)∈R2

xrys

(1 + x2 + y2)d
≤ (1/2)min(r,s). (21)

One can prove Equation 21 by factoring the expression into pieces with
quadratic denominators. Here is a more general version. Say that a function
φ : R4 → R is nice if it has the form∑
i

Cia
αibβicγidδi

(1 + a2 + b2)ui(1 + c2 + d2)vi
, αi, βi, γi, δi ≥ 0, αi+βi ≤ 2ui, γi+δi ≤ 2vi.

It follows from Equation 21 that

sup
R4

|φ| ≤ 〈φ〉, 〈φ〉 =
∑
i

|Ci|(1/2)min(αi,βi)+min(γi,δi). (22)

Equation 22 is useful to us because it allows us to bound certain kinds of
functions without having to evaluate then anywhere. We also note that if
φ is nice, then so is any iterated partial derivative of φ. Indeed, the nice
functions form a ring that is invariant under partial differentiation. This
fact makes it easy to identify nice functions.

For any φ : Rn → R we define

M7(ψ) = sup
|J |=7

MJ(ψ), MJ(ψ) = sup
ξ∈Rn

|∂J(φ)|. (23)
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We obviously have
M7(EF ) ≤M7(EF ). (24)

Recall that p̂ = Σ−1(p), the inverse stereographic image of p. Define

f(a, b) = 4− ‖(̂a, b)− (0, 0, 1)‖2 =
4(a2 + b2)

1 + a2 + b2
. (25)

g(a, b, c, d) = 4− ‖(̂a, b)− (̂c, d)‖2 =
4(1 + 2ac+ 2bd+ (a2 + b2)(c2 + d2))

(1 + a2 + b2)(1 + c2 + d2)
. (26)

Notice that g is nice. Hence gk is nice and ∂Ig
k is nice for any multi-index.

That means we can apply Equation 22 to ∂Ig
k.

EGk
is a 10-term expression involving 4 instances of fk and 6 of gk.

However, each variable appears in at most 4 terms. So, as soon as we take a
partial derivative, at least 6 of the terms vanish. Moreover, ∂If is a limiting
case of ∂Ig for any multi-index I. From these considerations, we see that

M7(EGk
) ≤ 4×M7(gk). (27)

The function ∂I(g
k) is nice in the sense of Equation 22. Therefore

4×M7(gk) ≤ 4×max
|I|=7

〈∂Igk〉. (28)

Using this estimate, and the Mathematica file LemmaL23.m, we get

max
k∈{1,2,3,4,5,6}

(7× 2−18)4

4!
× 4×M7(gk) ≤ 1

1000
.

2−5 × (7× 2−18)4

4!
× 4×M7(g10) ≤ 2353. (29)

The bounds in Lemma 2.5 follow directly from Equations 27 - 29 and from
the definitions of our functions.
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