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Abstract

This is Paper 4 of series of 7 self-contained papers which together
prove the Melnyk-Knopf-Smith phase transition conjecture for 5-point
energy minimization. (Paper 0 has the main argument.) This paper
deals with a construction closely related to Hermite Interpolation.

1 Introduction

1.1 Context

Let S2 be the unit sphere in R3. Given a configuration {pi} ⊂ S2 of N
distinct points and a function F : (0, 2]→ R, define

EF (P ) =
∑

1≤i<j≤N
F (‖pi − pj‖). (1)

This quantity is commonly called the F -potential or the F -energy of P . A
configuration P is a minimizer for F if EF (P ) ≤ EF (P ′) for all other N -
point configurations P ′. The question of finding energy minimizers has a
long literature; the classic case goes back to Thomsom [Th] in 1904.

We are interested in the case N = 5 and the Riesz potential F = Rs,
where

Rs(d) = d−s, s > 0. (2)

The Triangular Bi-Pyramid (TBP) is the 5 point configuration having one
point at the north pole, one point at the south pole, and 3 points arranged
in an equilateral triangle on the equator. A Four Pyramid (FP) is a 5-point
configuration having one point at the north pole and 4 points arranged in a
square equidistant from the north pole.

Define

15+ = 15 +
25

512
. (3)
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My monograph [S0] proves the following result.

Theorem 1.1 (Phase Transition) There exists ש ∈ (15, 15+) such that:

1. For s ∈ (0, (ש the TBP is the unique minimizer for Rs.

2. For s = ש the TBP and some FP are the two minimizers for Rs.

3. For each s ∈ ,ש) 15+) some FP is the unique minimizer for Rs.

This result verifies the phase-transition for 5 point energy minimization
first observed in [MKS], in 1977, by T. W. Melnyk, O, Knop, and W. R.
Smith. This work implies and extends my solution [S1] of Thomson’s 1904
5-electron problem [Th]. To make [S0] easier to referee, I have broken down
the proof into a series of 7 independent papers, each of which may be checked
without any reference to the others.

1.2 The Result of This Paper

This paper deals with a technique closely related to Hermite Interpolation.
Compare [CK]. Define

Gk(r) = (4− r2)k. (4)

G[
5 = G5− 25G1, G]]

10 = G10 + 28G5 + 102G2, G]
10 = G10 + 13G5 + 68G2

(5)

Theorem 1.2 (Interpolation) Let T0 be the TBP. Then

1. Suppose s ∈ (0, 13] and T is any 5-point configuration. If we have

F (T0) < F (T ) for all F = G4, G5, G6, G
]]
10 then ERs(T0) < ERs(T ).

2. Suppose s ∈ [13, 15+] and T is any 5-point configuration. If we have

F (T0) < F (T ) for all F = G[
5, G

]
10 then ERs(T0) < ERs(T ).

Here is a discussion of the motivation for the Interpolation Theorem.
In [T], A. Tumanov observes that if the TBP is the unique minimizer for
G2, G3 and G5, then the TBP is the unique minimizer for Rs provided that
s ∈ (0, 2]. This inspired me to look for other such results, and I built a
graphical user interface to find them.

For the purpose of giving results about the Riesz potentials, the functions
Gk lose their usefulness at k = 7 because the TBP is not a minimizer for
G7, G8, ... At the same time, the general method requires Gk for k large
in order to extend all the way to the phase transition, a phenomenon that
occurs at ש = 15.04...
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My program explores combinations of the form
∑
ckGk and checks whether

various lists of these energy hybrids produce the desired results. The com-
puter program takes a quadruple of hybrids, Γ1,Γ2,Γ3,Γ4, and then solves
a linear algebra problem to find a linear combination

Λs = a0 +

4∑
i=1

ai(s)Γi (6)

which matches the values of Rs at the values
√

2,
√

3,
√

4, the distances
involved in the TBP. (I will usually write 2 as

√
4 because then the distances

involved in the TBP are easier to remember.)
Concerning Equation 6, what we need for the quadruple to “work” on the

interval (s0, s1) is that the functions a1(s), a2(s), a3(s), a4(s) are nonnegative
for s ∈ (s0, s1) and that simultaneously the comparison function 1−(Λs/Rs)
is positive on (0, 2) − {

√
2,
√

3,
√

4}. So, my computer program lets you
manipulate the coefficients defining the energy hybrids and then see plots of
the functions just mentioned.

At the same time as this, my program computes the energy hybrid eval-
uated on the space of FPs to see how it compares to the value on the TBP.
I call this the TBP/FP competition. On intervals (s0, s1) ⊂ (0, (ש we want
the TBP to win the competition, as judged by the given energy hybrids.
Repeatedly running these competitions and looking at the plots of the co-
efficients and the comparison function, I eventually arrived at the energy
hybrids mentioned in the Interpolation Theorem.
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2 Proof of the Interpolation Theorem

2.1 Reduction to Smaller Results

Recall that 15+ = 15 + 25
512 . Referring to Equations 4 and 5, we define

P1 = (G4, G6), P2 = (G5, G
]]
10), P3 = (G[

5, G
]
10), (7)

I1 = (0, 6], I2 = [6, 13], I3 = [13, 15+]. (8)

We say that a pair (Γ3,Γ4) of functions forces the interval I if the follow-
ing is true: If T is another 5-point configuration such that Γk(T0) < Γk(T )
for k = 3, 4 then Es(T0) < Es(T ) for all s ∈ I.

The following result implies the Interpolation Theorem.

Lemma 2.1 (A2) The following is true.

1. The pair (G4, G6) forces (0, 6].

2. The pair (G5, G
]]
10) forces [6, 13].

3. The pair (G[
5, G

]
10) forces [13, 15+].

We use this notation to keep consistent with the monograph.
Let Rs be the Riesz s-potential. We say that a pair of functions (Γ3,Γ4)

specially forces s ∈ R − {0} if there are constants a0, ..., a4 (depending on
s) such that

Λs = a0 + a1G1 + a2G2 + a3Γ3 + a4Γ4, (9)

1. Λs(x) = Rs(x) for x =
√

2,
√

3,
√

4.

2. a1, a2, a3, a4 > 0.

3. Λs(x) ≤ Rs(x) for all x ∈ (0, 2].

We say that (Γ3,Γ4) specially forces the interval I if this pair specially forces
all s ∈ I.

Lemma 2.2 (A21) If (Γ3,Γ4) specially forces I then Γ forces I.

Proof: Let T0 be the TBP and let T be some other 5-point configuration.
We simplify the notation and write F (T ) = EF (T ). We assume

Γj(T0) < Γj(T )
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for j = 3, 4 and we want to show that that Rs(T0) < Rs(T ) for all s ∈ I. It
is well known that Γ1(T0) ≤ Γ1(T ) and, by Tumanov’s result [T], Γ2(T0) ≤
Γ2(T ). Let aj = aj(s) for s ∈ I. The quantities

√
2,
√

3,
√

4 are the distances
which appear between pairs of points in T0. Therefore Λs(T0) = Rs(T0). But
then

Rs(T ) ≥ Λs(T ) = a0 +
4∑

j=1

ajΓj(T ) > a0 +
4∑

j=1

ajΓj(T0) = Λs(T0) = Rs(T0).

This completes the proof. ♠

Lemma 2.3 (A22) For each i = 1, 2, 3 the pair Pi specially forces Ii.

Lemma A2 is an immediate consequence of Lemma A21 and Lemma
A22.

2.2 Proof of Lemma A22

Referring to Equation 9 we solve the equations

Λs(
√
m) = Rs(

√
m), m = 2, 3, 4, Λ′s(

√
m) = R′s(

√
m), m = 2, 3.

(10)
Here f ′ denotes the derivative of f , a function defined on (0, 2]. We don’t
need to constrain f ′(2). For each s this gives us a linear system with 5
variables and 5 equations. In all cases, our solutions have the following
structure

(a0, a1, a2, a3, a4) = M(2−s/2, 3−s/2, 4−s/2, s2−s/2, s3−s/2) (11)

We will list M below for each of the 3 cases.

Lemma 2.4 (A221) For each i = 1, 2, 3 the following is true. When M is
defined relative to the pair Pi then the coefficients a1, a2, a3, a4 are positive
functions on the interval Ii.

We want to see that the function

Hs = 1− Λs

Rs
. (12)

takes its minima at r =
√

2,
√

3 on (0, 2]. Differentiating with respect to
r ∈ (0, 2] we have

H ′s(r) = rs−1(sΛs(r) + rΛ′s(r)). (13)

5



Using the general equation rG′k(r) = 2kGk(r)− 8kGk−1(r), we see that

ψs = sΛs(r) + rΛ′s(r) (14)

is a polynomial in t = 4− r2.

Lemma 2.5 (A222) For each choice Pj and each s ∈ Ij the following is
true. The function ψs has 4 simple roots in [0, 4]. Two of the roots are 1
and 2 and the other two respectively lie in (0, 1) and (1, 2).

Let us deduce Lemma A2. Our construction and Lemma A221 immedi-
ately take care of Conditions 1 and 2 of special forcing. Condition 3: The
roots of ψs in [0, 4) are in bijection with the roots of H ′s in (0, 2] and their
nature (min, max, simple) is preserved under the bijection. We check for
one parameter in each of the three cases that the roots 1 and 2 correspond
to local minima and the other two roots correspond to local maxima. Since
these roots remain simple for all s in the relevant interval, the nature of the
roots cannot change as s varies. Hence Hs has exactly 2 local minima in
(0, 2], at r =

√
2,
√

3. But then Hs ≥ 0 on (0, 2]. This completes the proof.

2.3 A Positivity Algorithm

In our proofs of Lemmas A221 and A222 we need to deal with expressions
of the following form:

F (s) =
∑

cis
tib

s/2
i , (15)

where bi, ci ∈ Q and ti ∈ Z and bi > 0. Here we explain how we deal with
such expressions.

For each summand we compute a floating point value, xi. We then con-
sider the floor and ceiling of 232xi and divide by 232. This gives us rational
numbers xi0 and xi1 such that xi0 ≤ xi ≤ xi1. Since we don’t want to trust
floating point operations without proof, we formally check these inequalities
with what we call the expanding out method .

Expanding Out Method: Suppose we want to establish an inequality

like (ab )
p
q < c

d , where every number involved is a positive integer. This
inequality is true iff bpcq−apdq > 0. We check this using exact integer arith-
metic. The same idea works with (>) in place of (<).

To check the positivity of F on some interval [s0, s1] we produce, for each
term, the 4 rationals xi00, xi10, xi01, xi01. Where xijk is the approximation
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computed with respect to sk. We then let yi be the minimum of these
expressions. The sum

∑
yi is a lower bound for Equation 15 for all s ∈

[s0, s1]. On any interval exponent I where we want to show that Equation
15 is positive, we pick the smallest dyadic interval [0, 2k] that contains I and
then run the following subdivision algorithm.

1. Start with a list L of intervals. Initially L = {[0, 2k]}.

2. If L is empty, then HALT. Otherwise let Q be the last member of L.

3. If either Q ∩ I = ∅ or the method above shows that Equation 15 is
positive on Q we delete Q from L and go to Step 2.

4. Otherwise we delete Q from L and append to L the 2 intervals obtained
by cutting Q in half. Then we ago to to Step 2.

If this algorithm halts then it constitutes a proof that F (s) > 0 for all s ∈ I.

2.4 Proof of Lemma A221 and part of Lemma A222

Referring to Equation 11 we first list out the matrices in all 3 cases. For P1

we get

792M =


0 0 792 0 0

792 1152 −1944 −54 −288
−1254 −96 1350 87 376

528 −312 −216 −39 −98
−66 48 18 6 10

 (16)

For P2 and P3 we list 368536M in each case.
0 0 268536 0 0

88440 503040 −591480 −4254 −65728
−77586 −249648 327234 2361 65896
41808 −19440 −22368 −2430 −9076
−402 264 138 33 68

 (17)


0 0 268536 0 0 0

982890 116040 −1098930 −52629 −267128 0
−91254 −240672 331926 3483 68208 0
35778 −15480 −20298 −1935 −8056 0
−402 264 138 33 68 0

 (18)

Now we turn to the analysis of the coefficients. For Cases 2 and 3
(meaning j = 2, 3) we get Lemma A22 by running the positivity algorithm
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for a1, a2, a3, a4 on the intervals Ij . The algorithm halts and we are done.
For j = 1 the situation is trickier because these coefficients vanish at the
endpoint s = 0 of the interval I1 = (0, 6].

Before we launch into Case 1, we add two quantities we test, namely
ψs(0) and ψs(4). We have

11ψs(0) =


−88
−128
+216
+6
+32
+11

 ·


2−s/2

3−s/2

4−s/2

s2−s/2

s3−s/2

s4−s/2

 ,
11

s
ψs(4) =


−2112
+1664
+459
+219
288
0

 ·


2−s/2

3−s/2

4−s/2

s2−s/2

s3−s/2

s4−s/2


In other words, these quantities have the same form as the functions aj(s) for
j = 1, 2, 3, 4. We run the positivity algorithm and show that all 6 quantities
are positive on [1/4, 6].

Now we deal with the interval (0, 1/4]. Note that

sup
m=2,3,4

sup
s∈[0,1]

∣∣∣∣ ∂6∂s6m−s/2
∣∣∣∣ < 1

8
. (19)

All our (scaled) expressions have the form Y · V (s),

V (s) = (2−s/2, 3−s/2, 4−s/2, s2−s/2, s3−s/2, s4−s/2).

For an integer vector Y . Moreover the sum of the absolute values of the
coefficients in each of the Y vectors is at most 5000. This means that, when
we take the 5th order Taylor series expansion for Y · V (s), the error term is
at most

5000× 1

8
× 1

6!
< 1.

We compute each Taylor series, set all non-leading positive terms to 0, and
crudely round down the other terms:

792a1(s) : 98s− 69s2 + 0s3 − 6s4 + 0s5 − 1s6

792a2(s) : 14s− 3s2 − 2s3 + 0s4 − 1s5 − 1s6.

792a3(s) : 1s+ 0s2 − 1s3 + 0s4 + 0s5 − 1s6.

792a4(s) : .03s+ 0s2 + 0s3 − .01s4 + 0s5 − 1s6.

11ψs(0) : .08s+ 0s2 − .02s3 + 0s4 − .01s5 − 1s6.

(11/s)ψs(4) : 11 + 0s+ 0s2 − 1s3 − 1s4 + 0s5 − 1s6.

These under-approximations are all easily seen to be positive on (0, 1/4]. My
computer code does these calculations rigorously with interval arithmetic,
but it hardly seems necessary.
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2.5 Proof of Lemma A222

Case 1: In Case 1 we compute that

ψs(t) = t6 − 48

12 + s
t5 + ... (20)

We don’t care about the other terms. Since ψs has degree 6 we conclude
that ψs has at most N = 6 roots, counting multiplicity. By construction
Hs(
√
m) = H ′s(

√
m) = 0 for m = 2, 3 and Hs(

√
4) = 0. This means that

Hs has extrema at r2 =
√

2 and r3 =
√

3 and at points r23 ∈ (
√

2,
√

3)
and r34 ∈ (

√
3,
√

4). Correspondingly ψs has roots t1 = 1 and t2 = 2 and
t01 ∈ (0, 1) and t12 ∈ (1, 2). The sum of all the roots of ψs is 48/(12+s) < 4.
Since t1 + t2 + t01 + t12 > 4 we see that not all roots can be positive. Hence
N < 6. Since ψs is positive at t = 0, 4 we see that N is even. Hence N = 4.
This means that the only roots of ψs in (0, 4) are the 4 roots we already
know about. Since these roots are distinct, they are simple roots.

Cases 2 and 3: First of all, the functions Hs are the same in Cases 2 and
3. This is not just a computational accident. In both cases we are building
Hs from the functions G1, G2, G5, G10. So, we combine Cases 2 and 3 by
proving that the common polynomial ψs just has 4 roots for each s ∈ [6, 16].
I will describe a proof which took me quite a lot of experimentation to find.
One tool I will use is positive dominance. Here I will just explain the easy
case we need in this section: A real polynomial a0 + a1t+ ...ant

n is positive
on [0, 1] provided that the sums a0, a0 + a1, a0 + a1 + a2, ..., a0 + ...+ an are
all positive.

The same analysis as in Case 1 shows that ψs has roots at 1, 2, and in
(0, 1) and in (1, 2). We just want to see that there are no other roots.

We can factor ψs as (t− 1)(t− 2)βs where βs is a degree 8 polynomial.
Taking derivatives with respect to t, we notice that

1. γs = 268536× 12s/2 × (β′′s − β′s) is positive for s× t ∈ [6, 16]× [0, 4].

2. −β′s(0) > 0 for all s ∈ [6, 16].

3. β′s(4) > 0 for all s ∈ [6, 16].

Statement 1 shows in particular that β′s never has a double root. This
combines with Statements 2 and 3 to show that the number of roots of β′s
in [0, 4] is independent of s ∈ [6, 16]. We check explicitly that β′6 has only
one root in [0, 4]. Hence β′s always has just one root. But this means that
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βs has at most 2 roots in [0, 4]. This, in turn, means that ψs has at most 4
roots in [0, 4]. This completes the proof modulo the 3 statements.

Now we establish the 3 statements. We first give a formula for γs. Define
matrices M3,M4,M6 respectively as:

−546840 −1800480 99720 −397440 −234600 −33120 173880 −22080
18366 17112 80766 24288 18630 11592 4830 −1104

0 0 0 0 0 0 0 0


 −345600 −1576320 −509760 −760320 −448800 −63360 332640 −42240

−199296 −698784 75216 −149376 −79960 5856 94920 −12992
7104 8432 33960 11968 9180 5712 2380 −544


 892440 3376800 410040 1157760 683400 96480 −506520 64320

−73350 −246888 −228942 −165792 −110370 −41688 27510 −2064
1473 4092 10557 5808 4455 2772 1155 −264


Define 3 polynomials P3, P4, P6 by the formula:

Pk(s, t) = (1, s, s2) ·Mk · (1, ..., t7) =
2∑

i=0

7∑
j=0

(Mk)ijs
itj , k = 3, 4, 6. (21)

We have
γ = P33

s/2 + P44
s/2 + P66

s/2. (22)

To check the positivity of γs we check that each of the 16 functions

γs(v/4 + 1/4) = av,0 + av,1t+ ...av,7t
7 (23)

satisfies the following condition: Av,k = av,0 + ... + av,k is positive for all
k = 0, ..., 7 and all s ∈ [6, 16]. This shows that the corresponding polynomial
is positive on [0, 1].

For each v = 0, ..., 15 and each k = 0, ...., 7 we have a 3×3 integer matrix
µv,k such that

Av,k = (1, s, s2) · µv,t · (3s/2, 4s/2, 6s,2). (24)

This gives 128 matrices to check. We get two more such matrices from the
conditions −β′s(0) > 0 and β′s(4) > 0. All in all, we have to check that 130
expressions of the form in Equation 24 are positive for s ∈ [6, 16]. These
expressions are all special cases of Equation 15, and we use the method
discussed above to show positivity in all 130 cases. The program runs in
several hours.
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