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Abstract

This is Paper 5 of series of 7 self-contained papers which together
prove the Melnyk-Knopf-Smith phase transition conjecture for 5-point
energy minimization. (Paper 0 has the main argument.) This paper
deals with symmetrization in the critical region of moduli space.

1 Introduction

1.1 Context

During the past decade I have written several versions of a proof that rig-
orously verifies the phase-transition for 5 point energy minimization first
observed in [MKS], in 1977, by T. W. Melnyk, O, Knop, and W. R. Smith.
See [S0] for the latest version. This work implies and extends my solution
[S1] of Thomson’s 1904 5-electron problem [Th]. Unfortunately, after a
number of attempts I have not been able to publish my work on this. Even
though I have taken great pains to make the proof modular and checkable,
the monograph still gives the impression of being too difficult to referee.

Now I am taking a new approach. I have broken down the proof into
a series of 7 independent papers, each of which may be checked without
any reference to the others. The longest of the papers is 23 pages. The
drawback of this approach is twofold. First, there will necessarily be some
redundancy in these papers. Second, none of the papers has a blockbuster
result in itself. To help offset the second drawback, I will state the main
result in full in each paper, and I will try to explain how the small result
proved in each paper relates to the overall goal.
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1.2 The Phase Transition Result

Let S2 be the unit sphere in R3. Given a configuration {pi} ⊂ S2 of N
distinct points and a function F : (0, 2]→ R, define

EF (P ) =
∑

1≤i<j≤N
F (‖pi − pj‖). (1)

This quantity is commonly called the F -potential or the F -energy of P .
A configuration P is a minimizer for F if EF (P ) ≤ EF (P ′) for all other
N -point configurations P ′.

We are interested in the Riesz potentials:

Rs(d) = d−s, s > 0. (2)

Rs is also called a power law potential , and R1 is specially called the Coulomb
potential or the electrostatic potential . The question of finding the N -point
minimizers for R1 is commonly called Thomson’s problem.

We consider the case N = 5. The Triangular Bi-Pyramid (TBP) is the
5 point configuration having one point at the north pole, one point at the
south pole, and 3 points arranged in an equilateral triangle on the equator.
A Four Pyramid (FP) is a 5-point configuration having one point at the
north pole and 4 points arranged in a square equidistant from the north
pole.

Define

15+ = 15 +
25

512
. (3)

Theorem 1.1 (Phase Transition) There exists ש ∈ (15, 15+) such that:

1. For s ∈ (0, (ש the TBP is the unique minimizer for Rs.

2. For s = ש the TBP and some FP are the two minimizers for Rs.

3. For each s ∈ ,ש) 15+) some FP is the unique minimizer for Rs.

The proof has many moving parts. The largest part involves eliminat-
ing all the configurations and energy exponents outside a set of the form
Υ× [13, 15+] using a computer-assisted divide-and-conquer algorithm. This
paper discusses the region Υ× [12,∞). This region, which looks somewhat
contrived, contains those FPs which compete with the TPB for energy ex-
ponents s reasonably near .ש
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1.3 First Result

Let K4 denote the set of configurations which have 4-fold dihedral symme-
try. In this paper, we will introduce a retraction Υ → K4 which decreases
the Rs-potential on Υ −K4 for all s ≥ 12. This result establishes the fol-
lowing fact: If some configuration in Υ has less or equal Rs energy than the
TPB for some s ≥ 12 then so does a configuration in K4. In order to state
the precise result proved here, I first need to introduce some background
information.

Stereographic Projection: Let S2 ⊂ R3 be the unit 2-sphere. Stere-
ographic projection is the map Σ : S2 → R2 ∪ ∞ given by the following
formula.

Σ(x, y, z) =

(
x

1− z
,

y

1− z

)
. (4)

Here is the inverse map:

Σ−1(x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
. (5)

Σ−1 maps circles in R2 to circles in S2 and Σ−1(∞) = (0, 0, 1).

Avatars: Stereographic projection gives us a correspondence between 5-
point configurations on S2 having (0, 0, 1) as the last point and planar con-
figurations:

p̂0, p̂1, p̂2, p̂3, (0, 0, 1) ∈ S2 ⇐⇒ p0, p1, p2, p3 ∈ R2, p̂k = Σ−1(pk). (6)

We call the planar configuration the avatar of the corresponding configura-
tion in S2. By a slight abuse of notation we write EF (p1, p2, p3, p4) when we
mean the F -potential of the corresponding 5-point configuration.

Figure 1 shows the two possible avatars (up to rotations) of the triangular
bi-pyramid, first separately and then superimposed. We call the one on the
left the even avatar , and the one in the middle the odd avatar . The points
for the even avatar are (±1, 0) and (0,±

√
3/3). When we superimpose the

two avatars we see some extra geometric structure that is not relevant for
our proof but worth mentioning. The two circles respectively have radii 1/2
and 1 and the 6 segments shown are tangent to the inner one.
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Figure 1: Even and odd avatars of the TBP.

The Special Domain: We let Υ ⊂ (R2)4 denote those avatars p0, p1, p2, p3
such that

1. ‖p0‖ ≥ ‖pk‖ for k = 1, 2, 3.

2. 512p0 ∈ [433, 498]× [0, 0]. (That is, p0 ∈ [433/512, 498/512]× {0}.)

3. 512p1 ∈ [−16, 16]× [−464,−349].

4. 512p2 ∈ [−498,−400]× [0, 24].

5. 512p3 ∈ [−16, 16]× [349, 464].

As we discussed above, Υ contains the avatars that compete with the TBP
near the exponent .ש

p0

p1

p2

p3

Figure 2: The sets defining Υ compared with two TBP avatars.
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Symmetrization: Let (p0, p1, p2, p3) be an avatar with p0 6= p2. We define

d02 = 2‖p0 − p2‖, d13 = 2‖π02(p1 − p3)‖. (7)

Here π02 is the projection onto the subspace perpendicular to the vector
p0 − p2. Finally, we define

p∗0 = (d02, 0), p∗1 = (0,−d13), p∗2 = (−d02, 0), p∗3 = (0, d13). (8)

The avatar (p∗1, p
∗
2, p
∗
3, p
∗
4) lies in K4.

Here is the first result of this paper.

Theorem 1.2 (Symmetrization I) Let s ≥ 12 and (p0, p1, p2, p3) ∈ Υ.
Then

ERs(p
∗
0, p
∗
1, p
∗
2, p
∗
3) ≤ ERs(p0, p1, p2, p3)

with equality if and only if the two avatars are equal.

The Symmetrization Theorem I is called Lemma B in the monograph.

1.4 The Second Result

We also consider a second symmetrization operation defined on an even
smaller domain and for an even smaller set of exponents.

A Second Domain: Let Ψ]
4 denote the set of avatars (p1, p2, p3, p4) ∈K4

having the form

(x, 0), (0,−y), (−x, 0), (0, y), 512(x, y) ∈ [440, 448]. (9)

This domain contains the avatar representing the FP which ties with the
TBP at s = .ש

A Second Symmetrization: We define

σ(x, y) = (z, z), z =
x+ y + (x− y)2

2
. (10)

Theorem 1.3 (Symmetrization II) If s ∈ [14, 16] and p ∈ Ψ]
4 then we

have Es(σ(p)) ≤ Es(p) with equality if and only if σ(p) = p.

The Symmetrization Theorem II is called Lemma C1 in the monograph.
The operation σ is extremely delicate. If we take the exponent s = 13, the
operation actually seems to increase the energy. The magic only kicks in
around exponent 13.53.
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1.5 Discussion

Symmetrization operations like those above will in general surely fail, due to
the vast range of possible configurations. However, certain operations might
work well in very specific parts of the configuration space and for limited
ranges of exponents. Fortunately, we only need to consider such operations
on the small sets Υ and Ψ]

4 and for exponents fairly near .ש I testes various
symmetrization schemes experimentally until I found good ones.

Proving that the first symmetrization lowers the energy seems to involve
studying what happens on the tiny but still 7-dimensional moduli space Υ.
The secret to the proof is that, within Υ, the symmetrization operation is
so good that it reduces the energy in pieces. What I mean is that the 10
term sum for the energy can be written as

e1 + ....+ e10 = (e1 + e2) + (e3 + e4) + (e5 + e6 + e7) + (e8 + e9 + e10)

so that the symmetrization operation decreases each bracketed sum sepa-
rately. This replaces one big verification by a bunch of smaller ones, con-
ducted over lower dimensional configuration spaces.

Proving tht the second symmetrization lowers energy is just a 2-dimensional
problem, but the result is extremely delicate, as I mentioned above. The
proof relies on an algebraic miracle that I discovered experimentally.

Some experts in this problem might get excited that the Symmetrization
Theorem I works for all exponents s ≥ 12. Might this shed light on high
energy minimizers? Alas, no. When s is very large, the domain Υ does not
contain the candidate minimizers. It is known that the candidate minimiz-
ers converge to 5 of the 6 points of the regular octahedron. The limiting
configuration would be represented by the avatar whose points are the 4th
roots of unity – the highlighted points on the unit circle in Figure 2. I guess
that my symmetrization result would hold in better adapted domains as
s→∞ but I don’t know how to do the analysis.

1.6 Paper Organization

In §2 I will present some computational tools which will help with the anal-
ysis. In §3 I will reduce the Symmetrization Theorem to four Lemmas,
Lemma B1–B4. In subsequent chapters I will prove these lemmas in turn.
Following this, I will prove he Symmetrization Theorem II.

The proofs in this paper are computer-assisted. All calculations are all
done using exact arithmetic in Mathematica. The reader can download and
inspect the files I wrote for this.
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2 Preliminaries

In this chapter we introduce some tools which we use for the proof of the
Symmetrization Theorem.

2.1 Exponential Sums

We begin with two easy and well-known lemmas about exponential sums.

Lemma 2.1 (Convexity) Suppose that α, β, γ ≥ 0 have the property that
α+ β ≥ 2γ. Then αs + βs ≥ 2γs for all s > 1, with equality iff α = β = γ.

Proof: This is an exercise with Lagrange multipliers. ♠

Before our next result we discuss Descartes’ Rule of Signs. Given a real
single-variable polynomial f(x), the number of positive roots of f (counted
with multiplicity) is at most the number of changes in the signs of the
coefficients. This is a slight simplification; the full rule also says that the
number of roots (counted with multiplicity) has the same parity as the
number of sign changes. One proof goes through induction on the degree,
and differentiation.

Lemma 2.2 (Descartes) Let 0 < r1 ≤ r1... ≤ rn < 1 be a sequence of
positive numbers. Let c1, ..., cn be a sequence of nonzero numbers and let
σ1, ..., σn be the corresponding sequence of signs of these numbers. Define

E(s) =
n∑
i=1

ci r
s
i . (11)

Let K denote the number of sign changes in the sign sequence. Then E
changes sign at most K times on R.

Proof: Suppose we have a counterexample. By continuity, perturbation,
and taking mth roots, it suffices to consider a counterexample of the form∑
cit

ei where t = rs and r ∈ (0, 1) and e1 > ... > en ∈N . As s ranges in r,
the variable t ranges in (0,∞). But P (t) changes sign at most K times on
(0,∞) by Descartes’ Rule of Signs. This gives us a contradiction. ♠
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2.2 Positive Dominance

Our main tool is what we call Positive Dominance. This is a positivity
certificate for polynomials on the unit cube. The works [S2] and [S3] give
more details about this criterion. I developed the Positive Dominance crite-
rion myself, though I would not be surprised to learn that it has turned up
elsewhere in the vast field of computational algebra.

Let G ∈ R[x1, ..., xn] be a multivariable polynomial:

G =
∑
I

cIX
I , XI =

n∏
i=1

xIii . (12)

Given two multi-indices I and J , we write I � J if Ii ≤ Ji for all i. Define

GJ =
∑
I�J

cI , G∞ =
∑
I

cI . (13)

We call G weak positive dominant (WPD) if GJ ≥ 0 for all J and G∞ > 0.
We call G positive dominant if GJ > 0 for all J .

Lemma 2.3 (Weak Positive Dominance) If G is weak positive domi-
nant then G > 0 on (0, 1]n. If G is positive dominant then G > 0 on [0, 1]n.

Proof: We prove the first statement. The second one has almost the same
proof. Suppose n = 1. Let P (x) = a0 + a1x + .... Let Ai = a0 + ... + ai.
The proof goes by induction on the degree of P . The case deg(P ) = 0 is
obvious. Let x ∈ (0, 1]. We have

P (x) = a0 + a1x+ x2x
2 + · · ·+ anx

n ≥

x(A1 + a2x+ a3x
2 + · · · anxn−1) = xQ(x) > 0

Here Q(x) is WPD and has degree n− 1.
Now we consider the general case. We write

P = f0 + f1xk + ...+ fmx
m
k , fj ∈ R[x1, ..., xn−1]. (14)

Since P is WBP so are the functions Pj = f0 + ...+ fj . By induction on the
number of variables, Pj > 0 on (0, 1]n−1. But then, when we arbitrarily set
the first n− 1 variables to values in (0, 1), the resulting polynomial in xn is
WPD. By the n = 1 case, this polynomial is positive for all xn ∈ (0, 1]. ♠
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2.3 Operations on Polynomials and Rational Functions

Here are two more operations we perform on polynomials and rational func-
tions.

Polynomial Subdivision: Let P ∈ R[x1, ..., xn] as above. For any xj
and k ∈ {0, 1} we define

Sxj ,k(P )(x1, ..., xn) = P (x1, ..., xj−1, x
∗
j , xj+1, ..., xn), x∗j =

k

2
+
xj
2
. (15)

If Sxj ,k(P ) > 0 on (0, 1]n for k = 0, 1 then we also have P > 0 on (0, 1]n.

Positive Numerator Selection: If f = f1/f2 is a bounded rational func-
tion on [0, 1]n, written in so that f1, f2 have no common factors, we always
choose f2 so that f2(1, ..., 1) > 0. If we then show, one way or another, that
f1 > 0 on (0, 1]n we can conclude that f2 > 0 on (0, 1]n as well. The point
is that f2 cannot change sign because then f blows up. But then we can
conclude that f > 0 on (0, 1]n. We write num+(f) = f1.
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3 The Symmetrization Theorem I

In this chapter we reduce the Symmetrization Theorem I to smaller steps.
Recall that the domain Υ is defined in §1.3 and shown in Figure 1. Let
X = (p1, p2, p3, p4) be an avatar in Υ. We will perform successive operations
on X to arrive at X ′ = (p′1, p

′
2, p
′
3, p
′
4) and X ′′ = (p′′1, ...), etc.

We let X ′ be the planar configuration which is obtained by rotating X
about the origin so that p′0 and p′2 lie on the same horizontal line, with
p′0 lying on the right. We call this operation rotation. Let Υ′ denote the
domain of avatars X ′ such that

1. ‖p′0‖ ≥ ‖p′k‖ for k = 1, 2, 3.

2. 512p′0 ∈ [432, 498]× [−16, 16]. (Compare [433, 498]× [0, 0].)

3. 512p′1 ∈ [−32, 32]× [−465,−348]. (Compare [−16, 16]× [−464,−349].)

4. 512p′2 ∈ [−498,−400]× [−16, 16]. (Compare [−498,−400]× [0, 24].)

5. 512p′3 ∈ [−32, 32]× [348, 465]. (Compare [−16, 16]× [349, 464].)

6. p′02 = p′22. (Compare p02 = 0.)

The comparisons are with Υ. In the next chapter we prove:

Lemma 3.1 (B1) If X ∈ Υ then X ′ ∈ Υ′.

Given an avatar X ′ ∈ Υ′, there is a unique configuration X ′′, invariant
under under reflection in the y-axis, such that p′j and p′′j lie on the same
horizontal line for j = 0, 1, 2, 3 and ‖p′′0 − p′′2‖ = ‖p′0 − p′2‖. We call this
horizontal symmetrization. In a straightforward way we see that horizontal
symmetrization maps Υ′ into Υ′′, the set of avatars p′′0, p

′′
1, p
′′
2, p
′′
3 such that

1. 512p′′0 ∈ [416, 498]× [−16, 16] and (p′′21, p
′′
22) = (−p′′01, p′′02).

2. −512p1, 512p′′3 ∈ [0, 0]× [348, 465].

Let K4 denote the set of configurations invariant under reflections in
the coordinate axes. Given a configuration X ′′ ∈ Υ′′ there is a unique con-
figuration X ′′ ∈ K4 such that p′′j and p′′′j lie on the same vertical line for
j = 0, 1, 2, 3. We call this operation vertical symmetrization. The configu-
ration X ′′′ coincides with the configuration X∗ defined in Lemma B.
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In summary (and using obvious abbreviations) we have

Υ
−→
Rot Υ′

−→
HS Υ′′

−→
VS K4.

Symmetrization, as an operation on Υ′, is the composition of vertical and
horizontal symmetrization.

Each avatar corresponds to a 5-point configuration on S2 via stereo-
graphic projection. The energy of the 5 point configuration involves 10
pairs of points. A typical term is:

Rs(pi, pj) =
1

‖Σ−1(pi)− Σ−1(pj)‖s
. (16)

Given a list L of pairs of points in the set {0, 1, 2, 3, 4} we define Es(P,L) to
be the sum of the Rs-potentials just over the pairs in L. Thus, for instance

L = {(0, 2), (0, 4), (2, 4)} =⇒ Es(P,L) = Rs(p0, p2)+Rs(p0, p4)+Rs(p2, p4).

We call the subset L good for the parameter s, and with respect to one
of the operations, if the operation does not increase the value of Es(P,L).
We call L great if the operation strictly lower Es(P,L) unless the operation
fixes P . When we make this definition we mean to take the appropriate
domains.

Lemma 3.2 (B2) The lists {(0, 2), (0, 4), (2, 4)} and {(1, 3), (1, 4), (3, 4)}
are both great for all s ≥ 2 and with respect to symmetrization.

Lemma 3.3 (B3) The lists {(0, 1), (1, 2)} and {(0, 3), (3, 2)} are both good
for all s ≥ 2 and with respect to horizontal symmetrization.

Lemma 3.4 (B4) The lists {(0, 1), (0, 3)} and {(2, 1), (2, 3)} are both good
for all s ≥ 12 and with respect to vertical symmetrization.

The Symmetrization Theorem I follows immediately from Lemmas B1,
B2, B3, and B4. We prove these results in subsequent chapters.
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4 Proof of Lemma B1

We want to prove that if X ∈ Υ then X ′ ∈ Υ′. Rotation about the origin
does not change the norms, so X ′ satisfies Condition 1. Moreover, Condition
6 holds by construction. We must check Conditions 2,3,4,5. This is a tedious
exercise in trigonometry.

Let ρθ denote the counterclockwise rotation through the angle θ. Since
p0 lies on the x axis and p2 lies on or above it, we have to rotate by a small
amount counterclockwise to get p′0 and p′2 on the same horizontal line. That
is, the rotation moves the right point up and the left one down. Hence
θ ≥ 0. This angle is maximized when p0 is an endpoint of its segment of
constraint and p2 is one of the two upper vertices of rectangle of constaint.
Not thinking too hard which of the 4 possibilities actually realizes the max,
we check for all 4 pairs (p0, p2) that the second coordinate of ρ1/34(p0) is
larger than the second coordinate of ρ1/34(p0). From this we conclude that
θ < 1/34. This yields

512 cos(θ) ∈ [0, 1], 512 sin(θ) ∈ [0, 16]. (17)

From Equation 17, the map 512p0 → 512p′0 changes the first coordinate
by 512δ01 ∈ [0, 16] and 512δ02 ∈ [−1, 0]. This gives (something stronger
than) Condition 2 for Υ′. At the same time, we have p′21 = p′01 and the
change 512p2 → 512p′2 changes the second coordinate by 512δ21 ∈ [0, 1].
This gives Condition 4 for Υ′ once we observe that |p′21| ≤ |p′01|.

For Condition 3 we just have to check (using the same notation) that
512δ11 ∈ [0, 16] and 512δ12 ∈ [−1, 1]. The first bound comes from the
inequality 512 sin(θ) < 16. For the second bound we note that the angle
that p1 makes with the y-axis is maximized when p1 is at the corners of its
constraints in Υ. That is,

p1 =

(
±16

512
,
349

512

)
.

Since tan(1/21) > 16/349 we conclude that this angle is at most 1/21. Hence

|512δ12| ≤ max
|x|≤1/21

∣∣∣∣ cos

(
x+

1

34

)
− cos(x)

∣∣∣∣ < 1.

This gives Condition 3. The same argument gives Condition 5.
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5 Proof of Lemma B2

5.1 A More General Result

The significance of the number

s3 =

√
3

3
. (18)

is that inverse stereographic projection maps the triangle with vertices (±s3, 0)
and ∞ to an equilateral triangle on S2 having a vertex at (0, 0, 1).

Let (u, v) stand for either (0, 2) or (1, 3). For the points associated with
{(u, v), (u, 4), (v, 4)}. We make the following definitions for au, av, bu, bv > 0.

1. Start with pu, pv so that ‖pu‖, ‖pv‖ < 1 and let au = av be such that

‖pu − pv‖/2 = s3 + au = s3 + av.

Let qu = (−s3 − au, 0) and qv = (s3 + av, 0).

2. Choose bu, bv with bu ≤ au and bv ≤ av. Let

ru = (−s3 − bu, 0), rv = (s3 + bv, 0).

Note that ‖ru − rv‖ ≤ ‖qu − qv‖.

3. Let p∗u, p
∗
v be images of ru, rv under any rotation about the origin.

We start with (p1, p2, p3, p4) ∈ Υ. This guarantees that au, bu, av, bv > 0.
For the points (pu, pv) our symmetrization operation is a special case of the
map

(pu, pv)→ (p∗u, p
∗
v),

for suitable choice of constants and a suitable rotation.
Recall that p̂ is the image of p under inverse stereographic projection.

Lemma B2 is implied by:

‖r̂u − r̂v‖−s + ‖r̂u − (0, 0, 1)‖−s + ‖r̂v − (0, 0, 1)‖−s ≤

‖p̂u − p̂v‖−s + ‖p̂u − (0, 0, 1)‖−s + ‖p̂v − (0, 0, 1)‖−s (19)

for all s ≥ 2, with equality iff (ru, rv) = (pu, pv) up to rotation about the
origin. The rest of this chapter establishes Equation 19.
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5.2 The Main Arguments

We will establish Equation 19 in two steps.

Lemma 5.1 (B21) Let s ≥ 2 and

As = ‖p̂u − p̂v‖−s − ‖q̂u − q̂v‖−s,

Bs = ‖p̂u − (0, 0, 1)‖−s + ‖p̂v − (0, 0, 1)‖−s − ‖q̂u − (0, 0, 1)‖−s − ‖q̂v − (0, 0, 1)‖−s.

Then As, Bs ≥ 0, with equality iff pu = qu and pv = qv up to a rotation.

Proof: Note that if A2 > 0 then As > 0 for all s > 0. If B2 > 0 then the
Convexity Lemma implies that Bs > 0 for all s > 2. So, it suffices to prove
that A2, B2 > 0. We rotate so that

pu = (−x+ h, y), pv = (x+ h, y), qu = (−x, 0), qv = (x, 0). (20)

We compute

A2 =
h4 + y2(2 + 2x2 + y2) + 2h2(1− x2 + y2)

16x2
, B2 =

y2 + h2

2
. (21)

Since x ∈ (0, 1) we have A2, B2 > 0 unless h = y = 0. ♠

Define

Fs(au, av) = ‖q̂u − q̂v‖−s + ‖q̂u − (0, 0, 1)‖−s + ‖q̂v − (0, 0, 1)‖−s, (22)

Likewise define Fs(bu, bv). Finally, define

E(s) = Fs(au, av)− Fs(bu, bv). (23)

Lemma 5.2 (B22) E(s) ≥ 0 with equality iff bu = au and bv = av.

Proof: It suffices to prove this result in the intermediate case when au = bu
or av = bv because then we can apply the intermediate result twice to get
the general case. Without loss of generality we consider the case when
av = bv and bu < au. With the file LemmaB22.m – see below – we compute
that ∂F2/∂au and −∂F−2/∂au are both rational functions of au, av with all
positive coefficients. Hence E(2) > 0 and E(−2) < 0.

Consider the sign sequence for E(s). When au = bu, the expression
E(s) is an exponential sum with 4 terms. When au = av = 0 the points
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ζ̂u, ζ̂v and (0, 0, 1) make an equilateral triangle on a great circle. Hence,
when au, av, bu, bv > 0 the point ζ̂u is closer to (0, 0, 1) than it is to ζ̂v
both in its old location and in its new location. The inward motion of
the point ζu increases the shorter (corresponding spherical) distance and
decreases the longer (corresponding spherical) distance. More to the point,
our move decreases the longer inverse-distance and increases the shorter
inverse-distance. Thus the sign sequence (§2.1) for E(s) is +,−.−,+.

By Descartes’ Lemma, E(s) changes sign at most twice and also E(s) > 0
when |s| is sufficiently large. Since E(−2) < 0 as see that E changes sign
on (−∞,−2). If E has a root in (2,∞) then in fact E has at least 2 roots
(counted with multiplicity) because it starts and ends positive on this in-
terval. But then E has at least 3 roots, counting multiplicity. This is
contradiction. Hence E(s) > 0 for s ≥ 2. ♠
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6 Proof of Lemma B3

6.1 Setting up the Calculations

The domain Υ′ is symmetric with respect to reflection in the X-axis. Thanks
to this symmetry, it suffices to prove Lemma B3 for the list {(0, 1), (1, 2)}.
We set qj = p′j and q′j = p′′j .

We introduce the notation q1 = (q10, q11), etc. The horizontal sym-
metrization operation is given by

(q0, q1, q2)→ (q′0, q
′
1, q
′
2),

where

q′0 =

(
q01 − q21

2
, q02

)
, q′1 = (0, q21), q′2 =

(
q21 − q01

2
, q22

)
,

(24)
Note that ‖q′0 − q′1‖ = ‖q′2 − q′1‖. This means that the kind of inequality we
are trying to establish has the form 2As ≤ Bs + Cs for choices of A,B,C
which depend on the points involved. Therefore, by the Convexity Lemma,
it suffices to prove that {(0, 1), (1, 2)} is good for the parameter s = 2.

Let D denote the set of triples of points (q0, q1, q2) ∈ (R2)3 such that
there is some q3 such that q0, q1, q2, q3 ∈ Υ′. Most of our proof involves find-
ing a concrete parametrization of a subset of R6 that contains D. Note that
D is really a 5 dimensional set, because q21 = q01. We will use parameters
a, b, c, d, e to parametrize a subset of R6 that contains D.

We define
[u, v]t = u(1− t) + vt. (25)

The map t→ [u, v]t maps [0, 1] to [u, v].
For all 4 choices of signs we define φ±,± : [0, 1]5 → (R2)3 as follows:

φ±,±(a, b, c, d, e) = q0(a, d,±b), q1(±e, c), q2(a, d,±b), (26)

where
512q0(a, d,±b) = ([416, 498]a+ 49e,±16b).

512q1(±d, c) = (±32d, [348 + 465]c)

512q2(a, d,±b) = ([−416,−498]a+ 49e,±16b).

In these coordinates, horizontal symmetrization is the map

(a, b, c, d, e)→ (a, b, c, 0, 0). (27)

We have two steps we need to take. First we really need to show that we
have parametrized a superset of D. Second, we need to calculate the energy
change as a function of a, b, c, d, e and check at it decreases.
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6.2 Checking the Parametrization

We first show how to parametrize a superset of D.

Lemma 6.1 (B31) We have

D ⊂ φ+,+([0, 1]5) ∪ φ+,−([0, 1]5) ∪ φ−,+([0, 1]5) ∪ φ−.−([0, 1]5).

Proof: Recall that qi = (qi1, qi2). Let Dij denote the set of possible coor-
dinates qij that can arise for points in D. Thus, for instance

D01 = [−16, 16]/512.

Let D∗ij denote the set of possible coordinates qij that can arise from the
union of our parametrizations. By construction Di2 ⊂ D∗i2 for i = 0, 1, 2 and
D11 ⊂ D∗11.

Remembering that we have q01 ≥ |q21|, we see that the set of pairs
(q01, q21) satisfying all the conditions for inclusion in D lies in the triangle
∆ with vertices (498,−498) and (498,−400) and (432,−400). At the same
time, the set of pairs (512)(p∗01, p

∗
21) that we can reach with our parametriza-

tion is the rectangle ∆∗ with vertices

(498,−498), (416,−416), (498,−498)+(49, 49), (416,−416)+(49, 49).

We have ∆ ⊂ ∆∗ because

(432,−400) = (416,−416)+(16, 16), (498,−400) = (449,−449)+(49, 49).

This completes the proof. ♠

6.3 Checking the Energy Decrease

Using our coordinates above, we define

F±,±(a, b, c, d, e) = ‖q̂0 − q̂1‖−2 + ‖q̂2 − q̂1‖−2,

Φ±,±(a, b, c, d, e) = num+(F±,±(a, b, c, d, e)− F±,±(a, b, c, 0, 0)). (28)

Here q0, q1, q2 are the points which correspond to (a, b, c, d, e) under our map
φ±,± and q̂0, q̂1, q̂2 are their images under inverse stereographic projection.
To finish our proof, we just have to show that Φ±,±(a, b, c, d, e) ≥ 0 on [0, 1]5.
The following lemma, and continuity, gives us this result.
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Lemma 6.2 (B32) For any sign choice, Φ±,± > 0 on (0, 1)5.

Proof: We let Φa = ∂Φ/∂a, and likewise for the other variables. Iterating
this notation, we let Φaa, etc., denote the second partials.

Let Φ be any of the 4 polynomials. The file LemmaB32.m – see below –
computes that

1. Φ and Φd and Φe are zero when d = e = 0.

2. Φdd and Φee are weak positive dominant, hence nonnegative on [0, 1]5.

3. Φd + 2Φe is weak positive dominant, hence nonnegative on [0, 1]5.

Let Qd ⊂ [0, 1]5 be the sub-cube where d = 0. We fix (a, b, c) and consider
the single variable function φ(d) = Φ(a, b, c, d, 0). From Items 1 and 2 above,
φ(0) = φ′(0) = 0 and φ′′(d) ≥ 0. Hence φ(d) ≥ 0 for d ≥ 0. Hence Φ ≥ 0 on
Qd. A similar argument shows that likewise Φ ≥ 0 on Qe.

Any point in (0, 1)5 can be joined to a point in Qd ∪ Qe by a line seg-
ment L which is parallel to the vector (0, 0, 0, 1, 2). From Item 3 above, Φ
increases along such a line segment as we move out of Qd∪Qe. Hence Φ ≥ 0
on [0, 1]5. ♠
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7 Proof of Lemma B4

7.1 Setting up the Calculation

The set Υ′′ is symmetric with respect to reflections in both coordinate axes.
Thanks to these symmeties, it suffices to prove that {(0, 1), (0, 3)} is good
for all s ≥ 12, and it suffices to consider the case when p′′02 ≥ 0. That is, the
point p0 lies on or above the X-axis. For ease of notation set qk = p′′k and
q′k = p′′′k . We are considering the case when q02 ≥ 0.

Let D be the set of configurations (q0, q1, q3) such that q02 ≥ 0 and
(q0, q1, q2, q3) ∈ Υ′′ when q2 is the reflection of q0 in the Y -axis. Let D± ⊂ D
denote those configurations with ±(q12+q32) ≥ 0. Obviously D = D+∪D−.

The sets D± are 4-dimensional subsets of (R2)3. We parametrize a
superset of D± in a manner similar to what we did in the proof of Lemma
B3. As in Equation 25, let [u, v]t = u(1− t) + vt. We define

φ±(a, b, c, d) = (q0(b, d), q1(a, c), q3(a, c)),

512q0(b, d) = ([416, 498]b, 16d).

512q1(a, c) = (0,−[348, 465]a± 59c).

512q3(a, c) = (0,+[348, 465]a± 59c).

In these coordinates, the symmetrization operation is (a, b, c, d)→ (a, b, 0, 0).

7.2 The Main Calculations

Lemma 7.1 (B41) D± ⊂ φ±([0, 1]4).

Proof: This is just like the proof of Lemma B31. The only non-obvious
point is why every pair (p12, p32) is reached by the map φ±. The essential
point is that for configurations in D± we have 512|p12 + p32| ≤ 2× 59. ♠

Following the same idea as in the proof of Lemma B3, we define

Fs,±(a, b, c, d) = ‖Σ−1(q0)− Σ−1(q1)‖−s + ‖Σ−1(q0)− Σ−1(q3)‖−s, (29)

Φs,±(a, b, c, d) = num+(Fs,±(a, b, c, d)− Fs,±(a, b, 0, 0)). (30)

The points on the right side of Equation 29 are coordinatized by the map
φ±. We can finish the proof by showing that φ2,+ ≥ 0 and φ12,− ≥ 0 on
[0, 1]4. The Convexity Lemma then takes care of all exponents greater than
2 on D+ and all exponents greater than 12 on D−. Notice the asymmetry
in the calculation. The (+) side is much less delicate.
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Lemma 7.2 (B42) Φ2,+ ≥ 0 on [0, 1]4.

Proof: Let Φ = Φ2,+. Let Φ|c=0 denote the polynomial we get by setting
c = 0. Etc. Let Φc = ∂Φ/∂c, etc. The Mathematica file LemmaB42.m com-
putes that Φ|c=0 and Φ|d=0 and Φc+ Φd are weak positive dominant. Hence
Φ ≥ 0 when c = 0 or d = 0 and the directional derivative of Φ in the direc-
tion (0, 0, 1, 1) is non-negative. This suffices to show that Φ ≥ 0 on [0, 1]4. ♠

Lemma 7.3 (B43) Φ12,− ≥ 0 on [0, 1]4.

Proof: The file LemmaB43.m has the calculations. Let Φ = Φ12,−. This
monster has 102218 terms.

Step 1: Let M denote the maximum coefficient of Φ. We let Φ∗ be the
polynomial we get by taking each coefficient of c of Φ and replacing it with
floor(1010c/M). Note that if Φ∗ is nonnegative on [0, 1]4 then so is Φ.

Step 2: Now Φ∗ has 37760 monomials in which the coefficient is −1. We
check that each such monomial is divisible by one of c2 or d2 or cd. Let

Ψ = Φ∗∗ − 37760(c2 + d2 + cd),

where Φ∗∗ is obtained from Φ∗ by setting all the (−1) monomials to 0. We
have Ψ ≤ Φ∗ on [0, 1]4. Hence, if Ψ is non-negative on [0, 1]4 then so is Φ∗.
The polynomial Ψ has 5743 terms.

Step 3: We check that Ψaaa is WPD and hence non-negative on [0, 1]4.
This massive calculation reduces us to showing that the restrictions Ψ|a=0

and Ψa|a=0 and Ψaa|a=0 are all non-negative on [0, 1]3. Consider

f |c=0, f |d=0 4fc + fd, (31)

We show that all three functions are WPD when either f = Ψa|a=0 or
f = Ψaa|a=0. This shows that Ψa|a=0 and Ψaa|a=0 are non-negative on
[0, 1]3. Also, we show that the first two functions are WPD when f = Ψ|a=0.

Step 4: Let g = 4fc + fd ≥ 0 on [0, 1]3 when f = Ψ|a=0. We check that gd
is WPD and hence non-negative on [0, 1]3. This reduces us to showing that
h = g|d=0 is non-negative on [0, 1]2. here h is a 2-variable polynomial in
b, c. Referring to the operation in §2.3, we check that the two subdivisions
Sb,0(h) and Sb,1(h) are WPD. This proves h ≥ 0 on [0, 1]2. ♠
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8 The Symmetrization Theorem II

We use the notation from §1.4. We write

Es(x, y) = Gs(x, y) +Hs(x, y),

Gs(x, y) = ‖p̂0, p̂2‖−s + ‖p̂1, p̂3‖−s,

Hs(x, y) = 2‖p̂0, (0, 0, 1)‖−s + 2‖p̂1, (0, 0, 1)‖−s + 4‖p̂0, p̂1‖−s. (32)

The Symmetrization Lemma II is an immediate consequence of Lemmas C1
and C2 proved below.

Lemma 8.1 (C1) Gs(x, y) ≥ Gs(z, z) for s ≥ 2 and (x, y) ∈ Ψ]
4. When

s > 2 we get equality if and only if x = y.

Proof: By the Convexity Lemma from §2.1 it suffices for us to prove that
G2(x, y) ≥ G2(z, z) for all x, y ∈ Ψ4. Let φ : [0, 1]2 → Ψ]

4 be the affine
isomorphism whose linear part is a positive diagonal matrix. Define

Φ = num+(G2 ◦ φ−G2 ◦ σ ◦ φ). (33)

The file LemmaC1.m computes that Φ(a, b) = (a − b)2Φ∗, where Φ∗ is weak
positive dominant. Hence Φ∗ > 0 on (0, 1)2. This does it. ♠

Lemma 8.2 (C2) Hs(x, y) ≥ Hs(z, z) for s ∈ [14, 16] and (x, y) ∈ Ψ]
4.

Proof: We fix an arbitrary point (x, y) ∈ Ψ]
4 with x 6= y and make all

definitions relative to this point. We let h(s) = Hs(x, y)−Hs(z, z).
For integers k = 2, 14, 16 define

Φk = num+(Hk ◦ φ−Hk ◦ σ ◦ φ). (34)

An algebraic miracle happens. The file LemmaC21.m computes that

1. −Φ2(x, y) = (x− y)2Φ∗2(x, y) and Φ∗2 is weak positive dominant.

2. Φ14(x, y) = (x− y)2Φ∗14(x, y) and Φ∗14 is weak positive dominant.

3. Φ16(x, y) = (x− y)2Φ∗16(x, y) and Φ∗16 is weak positive dominant.
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We conclude that h(2) < 0 and h(14) > 0 and h(16) > 0. Hence h has a
root in (2, 14). If h(s0) < 0 for some s0 ∈ (14, 16) then h has at least 3 roots
in (2, 16). We conclude from the Descartes Lemma that the sign sequence
for h changes sign at least 3 times. Moreover, if the sign sequence for h
changes sign exactly 3 times then h(s) > 0 on (16,∞).

We contradict this situation. Let (p0, p1, p2, p3) and (p′0, p
′
1, p
′
2, p
′
3) re-

spectively be the configurations corresponding to (x, y) and (z, z). We have

h(s) = +2rs0 − 4(r′0)
s + 2rs1 + 4rs01 − 4(r′01)

s, (35)

where

1. r01 = ‖Σ−1(p0)− Σ−1(p1)‖−1.

2. r0 = ‖Σ−1(p0)− (0, 0, 1)‖−1 and r1 = ‖Σ−1(p1)− (0, 0, 1)‖−1.

3. r′01 = ‖Σ−1(p′0)− Σ−1(p′1)‖−1.

4. r′0 = ‖Σ−1(p′0)− (0, 0, 1)‖−1 = ‖Σ−1(p′1)− (0, 0, 1)‖−1.

Assuming that

r0, r1, r
′
0 < 1/

√
2 < r01, r

′
01, r01 < r′01, (36)

the sign sequence has at most 3 sign changes. Also, the final inequality says
that h(s) < 0 for s large. This is a contradiction. To finish our proof, we
establish Equation 36.

We have x, y, z ∈ (0, 1). We compute

(1/2)−r20 =
1− x2

4
> 0, (1/2)−r21 =

1− y2

4
> 0, (1/2)−(r′0)2 =

1− z2

4
> 0,

(r01)2 − (1/2) =
(1− x2)(1− y2)

4(x2 + y2)
> 0, (r′01)2 − (1/2) =

(1− z2)2

8z2
> 0.

This proves the first string of inequalities in Equation 36. For the second
inequality, we define J = ‖p̂0− p̂1‖−2 = r201 and then define Φ in terms of J
just as in Equation 34. The file LemmaC22.m computes that

Φ(a, b) = −(a− b)2Φ∗(a, b)

where Φ∗ is weak positive dominant. Hence Φ∗ > 0 on (0, 1)2. Hence Φ < 0
on (0, 1)2. Hence J(z, z) > J(x, y). But this implies that r01 < r′01. This
establishes Equation 36. ♠

Remark: A further analysis of h would show that terms in Equation 35
are correctly ordered with respect to the size of the exponent, provided that
(x, y) is chosen so that r0 < r1.
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