Five Point Energy Minimization 5: Symmetrization

Richard Evan Schwartz

November 23, 2024

Abstract

This is Paper 5 of series of 7 self-contained papers which together prove the Melnyk-Knopf-Smith phase transition conjecture for 5-point energy minimization. (Paper 0 has the main argument.) This paper deals with symmetrization in the critical region of moduli space.

1 Introduction

1.1 Context

Let S^2 be the unit sphere in \mathbb{R}^3 . Given a configuration $\{p_i\} \subset S^2$ of N distinct points and a function $F: (0, 2] \to \mathbb{R}$, define

$$\mathcal{E}_F(P) = \sum_{1 \le i < j \le N} F(\|p_i - p_j\|).$$
(1)

This quantity is commonly called the *F*-potential or the *F*-energy of *P*. A configuration *P* is a minimizer for *F* if $\mathcal{E}_F(P) \leq \mathcal{E}_F(P')$ for all other *N*-point configurations *P'*. The question of finding energy minimizers has a long literature; the classic case goes back to Thomsom **[Th]** in 1904.

We are interested in the case N = 5 and the *Riesz potential* $F = R_s$, where

$$R_s(d) = d^{-s}, \qquad s > 0.$$
 (2)

The *Triangular Bi-Pyramid* (TBP) is the 5 point configuration having one point at the north pole, one point at the south pole, and 3 points arranged in an equilateral triangle on the equator. A *Four Pyramid* (FP) is a 5-point configuration having one point at the north pole and 4 points arranged in a square equidistant from the north pole.

Define

$$15_{+} = 15 + \frac{25}{512}.\tag{3}$$

My monograph [S0] proves the following result.

Theorem 1.1 (Phase Transition) There exists $\mathbf{v} \in (15, 15_+)$ such that:

- 1. For $s \in (0, \mathbf{w})$ the TBP is the unique minimizer for R_s .
- 2. For $s = \mathbf{v}$ the TBP and some FP are the two minimizers for R_s .
- 3. For each $s \in (\mathbf{w}, 15_+)$ some FP is the unique minimizer for R_s .

This result verifies the phase-transition for 5 point energy minimization first observed in [**MKS**], in 1977, by T. W. Melnyk, O, Knop, and W. R. Smith. This work implies and extends my solution [**S1**] of Thomson's 1904 5-electron problem [**Th**]. To make [**S0**] easier to referee, I have broken down the proof into a series of 7 independent papers, each of which may be checked without any reference to the others.

1.2 Results

This paper discusses the region $\Upsilon \times [12, \infty)$, where Υ is the small region shown in Figure 1. This region, which looks somewhat contrived, contains those FPs which compete with the TPB for energy exponents *s* reasonably near \boldsymbol{u} . We begin with some background definitions.

Stereographic Projection: Let $S^2 \subset \mathbf{R}^3$ be the unit 2-sphere. Stereographic projection is the map $\Sigma : S^2 \to \mathbf{R}^2 \cup \infty$ given by the following formula.

$$\Sigma(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right).$$
(4)

Here is the inverse map:

$$\Sigma^{-1}(x,y) = \left(\frac{2x}{1+x^2+y^2}, \frac{2y}{1+x^2+y^2}, 1-\frac{2}{1+x^2+y^2}\right).$$
 (5)

 Σ^{-1} maps circles in \mathbb{R}^2 to circles in S^2 and $\Sigma^{-1}(\infty) = (0, 0, 1)$.

Avatars: Stereographic projection gives us a correspondence between 5point configurations on S^2 having (0, 0, 1) as the last point and planar configurations:

$$\hat{p}_0, \hat{p}_1, \hat{p}_2, \hat{p}_3, (0, 0, 1) \in S^2 \iff p_0, p_1, p_2, p_3 \in \mathbf{R}^2, \qquad \hat{p}_k = \Sigma^{-1}(p_k).$$
(6)

We call the planar configuration the *avatar* of the corresponding configuration in S^2 . By a slight abuse of notation we write $\mathcal{E}_F(p_0, p_1, p_2, p_3)$ when we mean the F-potential of the corresponding 5-point configuration.

First Domain: We let $\Upsilon \subset (\mathbf{R}^2)^4$ denote those avatars such that

- 1. $||p_0|| \ge ||p_k||$ for k = 1, 2, 3.
- 2. $512p_0 \in [433, 498] \times [0, 0]$. (That is, $p_0 \in [433/512, 498/512] \times \{0\}$.)
- 3. $512p_1 \in [-16, 16] \times [-464, -349].$
- 4. $512p_2 \in [-498, -400] \times [0, 24].$
- 5. $512p_3 \in [-16, 16] \times [349, 464].$

As we discussed above, Υ contains the avatars that compete with the TBP near the exponent \boldsymbol{w} . The two rhombi in Figure 1 indicate avatars associated to the TBP.

Figure 1: The sets defining Υ compared with two TBP avatars.

First Symmetrization: Let (p_0, p_1, p_2, p_3) be an avatar with $p_0 \neq p_2$. Define

$$-p_2^* = p_0^* = (x,0), \quad -p_1^* = p_3^* = (0,y), \quad x = \frac{\|p_0 - p_2\|}{2}, \quad y = \frac{\|\pi_{02}(p_1 - p_3)\|}{2}.$$
(7)

Here π_{02} is the projection onto the subspace perpendicular to $p_0 - p_2$. The avatar $(p_1^*, p_2^*, p_3^*, p_4^*)$ lies in \mathbf{K}_4 , the set of avatars which are invariant under reflections in the coordinate axes.

Theorem 1.2 (Symmetrization I) Let $s \ge 12$ and $(p_0, p_1, p_2, p_3) \in \Upsilon$. Then

 $\mathcal{E}_{R_s}(p_0^*, p_1^*, p_2^*, p_3^*) \le \mathcal{E}_{R_s}(p_0, p_1, p_2, p_3)$

with equality if and only if the two avatars are equal.

Second Domain: Let Ψ_4^{\sharp} denote the set $(p_0, p_1, p_2, p_3) \in \mathbf{K}_4$ with

$$-p_2 = p_0 = (x, 0), \qquad -p_1 = p_3 = (0, y), \qquad 512(x, y) \in [440, 448].$$
(8)

 Ψ_4^{\sharp} contains the avatar representing the FP which ties with the TBP at $s = \mathbf{v}$.

Second Symmetrization: We define

$$\sigma(x,y) = (z,z), \qquad z = \frac{x+y+(x-y)^2}{2}.$$
 (9)

Theorem 1.3 (Symmetrization II) If $s \in [14, 16]$ and $p \in \Psi_4^{\sharp}$ then we have $\mathcal{E}_s(\sigma(p)) \leq \mathcal{E}_s(p)$ with equality if and only if $\sigma(p) = p$.

Symmetrization operations like those above will *in general* surely fail, due to the vast range of possible configurations. However, certain operations might work well in very specific parts of the configuration space and for limited ranges of exponents. I found the operation that works after a ton of experimentation. Proving that the first symmetrization lowers the energy seems to involve studying what happens on the tiny but still 7-dimensional moduli space Υ . The secret to the proof is that, within Υ , the symmetrization operation is so good that it reduces the energy in pieces. What I mean is that the 10 term sum for the energy can be written as

$$e_1 + \dots + e_{10} = (e_1 + e_2) + (e_3 + e_4) + (e_5 + e_6 + e_7) + (e_8 + e_9 + e_{10})$$

so that the symmetrization operation decreases each bracketed sum separately. This reduces us to establishing some lower-dimensional inequalities. Proving that the second symmetrization lowers energy is a delicate 2-dimensional problem. The proof relies on an algebraic miracle.

1.3 Paper Organization

In §2 I will present some computational tools which will help with the analysis. In §3 I will prove the Symmetrization Theorem II, because this is shorter. In §4 I will prove the Symmetrization Theorem I. The proofs in this paper are computer-assisted. All calculations are done using exact arithmetic in Mathematica. The reader can download and inspect the files I wrote for this.

2 Preliminaries

2.1 Exponential Sums

We begin with two easy and well-known lemmas about exponential sums.

Lemma 2.1 (Convexity) Suppose that $\alpha, \beta, \gamma \ge 0$ have the property that $\alpha + \beta \ge 2\gamma$. Then $\alpha^s + \beta^s \ge 2\gamma^s$ for all s > 1, with equality iff $\alpha = \beta = \gamma$.

Proof: This is an exercise with Lagrange multipliers. \blacklozenge

Given a real single-variable polynomial f(x), the number of positive roots of f (counted with multiplicity) is at most the number of changes in the signs of the coefficients. This statement is included in a more precise result known as Descartes' Rule of Signs.

Lemma 2.2 (Descartes) Let $0 < r_1 \leq ... \leq r_n < 1$ be a sequence of positive numbers. Let $c_1, ..., c_n$ be a sequence of nonzero numbers and let $\sigma_1, ..., \sigma_n$ be the corresponding sequence of signs of these numbers. Define

$$E(s) = \sum_{i=1}^{n} c_i \ r_i^s.$$
 (10)

Let K denote the number of sign changes in the sign sequence. Then E changes sign at most K times on \mathbf{R} .

Proof: Suppose we have a counterexample. By continuity, perturbation, and taking *m*th roots, it suffices to consider a counterexample of the form $\sum c_i t^{e_i}$ where $t = r^s$ and $r \in (0, 1)$ and $e_1 > ... > e_n \in \mathbb{N}$. As *s* ranges in *r*, the variable *t* ranges in $(0, \infty)$. But P(t) changes sign at most *K* times on $(0, \infty)$ by Descartes' Rule of Signs. This gives us a contradiction.

2.2 Polynomial Operations

1. Positive Dominance: The works [S2] and [S3] give more details about positive dominance. Here I explain the basics. Let $G \in \mathbf{R}[x_1, ..., x_n]$ be a multivariable polynomial:

$$G = \sum_{I} c_{I} X^{I}, \qquad X^{I} = \prod_{i=1}^{n} x_{i}^{I_{i}}.$$
 (11)

Given two multi-indices I and J, we write $I \preceq J$ if $I_i \leq J_i$ for all i. Define

$$G_J = \sum_{I \leq J} c_I, \qquad G_\infty = \sum_I c_I. \tag{12}$$

We call G weak positive dominant (WPD) if $G_J \ge 0$ for all J and $G_{\infty} > 0$. We call G positive dominant if $G_J > 0$ for all J.

Lemma 2.3 (Weak Positive Dominance) If G is weak positive dominant then G > 0 on $(0,1]^n$. If G is positive dominant then G > 0 on $[0,1]^n$.

Proof: We prove the first statement. The second one has almost the same proof. Suppose n = 1. Let $P(x) = a_0 + a_1x + \dots$ Let $A_i = a_0 + \dots + a_i$. The proof goes by induction on the degree of P. The case $\deg(P) = 0$ is obvious. Let $x \in (0, 1]$. We have

$$P(x) = a_0 + a_1 x + x_2 x^2 + \dots + a_n x^n \ge$$
$$x(A_1 + a_2 x + a_3 x^2 + \dots + a_n x^{n-1}) = xQ(x) > 0$$

Here Q(x) is WPD and has degree n-1.

Now we consider the general case. We write

$$P = f_0 + f_1 x_k + \dots + f_m x_k^m, \qquad f_j \in \mathbf{R}[x_1, \dots, x_{n-1}].$$
(13)

Since P is WBP so are the functions $P_j = f_0 + ... + f_j$. By induction on the number of variables, $P_j > 0$ on $(0, 1]^{n-1}$. But then, when we arbitrarily set the first n-1 variables to values in (0, 1), the resulting polynomial in x_n is WPD. By the n = 1 case, this polynomial is positive for all $x_n \in (0, 1]$.

2. Subdivision: Let $P \in \mathbf{R}[x_1, ..., x_n]$ as above. For any x_j and $k \in \{0, 1\}$ we define

$$S_{x_j,k}(P)(x_1,...,x_n) = P(x_1,...,x_{j-1},x_j^*,x_{j+1},...,x_n), \qquad x_j^* = \frac{k}{2} + \frac{x_j}{2}.$$
 (14)

If $S_{x_i,k}(P) > 0$ on $(0,1]^n$ for k = 0,1 then we also have P > 0 on $(0,1]^n$.

3. Numerator selection: If $f = f_1/f_2$ is a bounded rational function on $[0, 1]^n$, written in so that f_1, f_2 have no common factors, we always choose f_2 so that $f_2(1, ..., 1) > 0$. If we then show, one way or another, that $f_1 > 0$ on $(0, 1]^n$ we can conclude that $f_2 > 0$ on $(0, 1]^n$ as well. The point is that f_2 cannot change sign because then f blows up. But then we can conclude that f > 0 on $(0, 1]^n$. We write $\operatorname{num}_+(f) = f_1$.

3 The Symmetrization Theorem II

Our symmetrization is the map σ from Equation 9, and we always write $(z, z) = \sigma(x, y)$. Let $\phi : [0, 1]^2 \to \Psi_4^{\sharp}$ be the affine isomorphism whose linear part is a positive diagonal matrix. We use variables $(a, b) \in [0, 1]^2$ so that $(x, y) = \phi(a, b) \in \Psi_4^{\sharp}$. For any rational function $F : \Psi_4^{\sharp} \to \mathbf{R}$ we define

$$N_F = \frac{\text{num}_+((F - F \circ \sigma) \circ \phi)}{q}, \qquad q(a, b) = (a - b)^2.$$
(15)

For all the choices of F we make, N_F will be a polynomial.

Recall that $\Sigma^{-1}(p_4) = (0, 0, 1)$, and define

$$r_{ij} = \frac{1}{\|\Sigma^{-1}(p'_i) - \Sigma^{-1}(p'_j)\|}.$$
(16)

We write $\mathcal{E}_s(x, y) = G_s(x, y) + H_s(x, y)$, where

$$G_s = r_{02}^s + r_{13}^s, \qquad H_s = 2p_{04}^s + 2p_{14}^s + 4p_{01}^s.$$
(17)

The file LemmaC1.m computes that N_{G_2} is a WPD polynomial. This combines with the Convexity Lemma to show $G_s - G_s \circ \sigma > 0$ on $\Psi_4^{\sharp} \times (2, \infty)$. To finish the proof, we need to show $H_s - H_s \circ \sigma \ge 0$ on $\Psi_4^{\sharp} \times [14, 16]$.

Suppose that there is some $(x, y) \in \Psi_4^{\sharp}$ and some $s \in [14, 16]$ such that $h(s) = H_s(x, y) - H_s(z, z) < 0$. The file LemmaC21.m computes that $-N_{H_2}$ and $N_{H_{14}}$ and $N_{H_{16}}$ are all WPD polynomials. Hence h(2) < 0 and h(14) > 0 and h(16) > 0. Hence h has at least 3 roots in [2, 16].

Let (p_0, p_1, p_2, p_3) and (p'_0, p'_1, p'_2, p'_3) respectively be the configurations corresponding to (x, y) and $(z, z) = \sigma(x, y)$. Without claiming to have the terms in order, we have

$$h(s) = +2r_{04}^s - 4(r_{04}')^s + 2r_{14}^s + 4r_{01}^s - 4(r_{01}')^s.$$
(18)

By Descartes Lemma, the sign sequence for h changes sign at least 3 times. Looking at the signs above (two minuses and three pluses) we see that there must be exactly 3 sign changes (when the terms are put in the correct order) and moreover the largest sign in the sequence must (+). Otherwise heventually goes negative and thus would have a large positive root. Noting that $x \in (0, 1)$ we compute

$$r_{01}^2 - r_{04}^2 = \frac{1 - x^4}{4(x^2 + y^2)} > 0$$

Hence $r_{04} < r_{01}$. Likewise $r_{14} < r_{01}$. We conclude that r_{01} must contribute the final (+) to the sign sequence. But the file LemmaC22.m computes that $-N_{r_{01}^2}$ is a WPD polynomial. Hence $r'_{01} \ge r_{01}$, a contradiction.

4 The Symmetrization Theorem I

4.1 Reduction to Four Lemmas

The domain Υ is defined in §1.2. Let $X = (p_0, p_1, p_2, p_3)$ be an avatar in Υ . We perform successive operations on X to arrive at $X' = (p'_0, p'_1, p'_2, p'_3)$ and $X'' = (p''_0, ...)$, etc. We write $I_r = [-r, r]$.

We let X' be the planar configuration which is obtained by rotating X about the origin so that p'_0 and p'_2 lie on the same horizontal line, with p'_0 lying on the right. Let Υ' denote the domain of avatars X' such that

- 1. $||p'_0|| \ge ||p'_k||$ for k = 1, 2, 3.
- 2. $512p'_0 \in [432, 498] \times I_{16}$. (Compare $[433, 498] \times I_0$.)
- 3. $512p'_1 \in I_{32} \times [-465, -348]$. (Compare $I_{16} \times [-464, -349]$.)
- 4. $512p'_2 \in [-498, -400] \times I_{16}$. (Compare $[-498, -400] \times [0, 24]$.)
- 5. $512p'_3 \in I_{32} \times [348, 465]$. (Compare $I_{16} \times [349, 464]$.)
- 6. $p'_{02} = p'_{22}$. (Compare $p_{02} = 0$.)

The comparisons are with Υ . In the next section we prove:

Lemma 4.1 (B1) If $X \in \Upsilon$ then $X' \in \Upsilon'$.

Given an avatar $X' \in \Upsilon'$, there is a unique configuration X'', invariant under under reflection in the *y*-axis, such that p'_j and p''_j lie on the same horizontal line for j = 0, 1, 2, 3 and $||p''_0 - p''_2|| = ||p'_0 - p'_2||$. We call this *horizontal symmetrization*. In a straightforward way we see that horizontal symmetrization maps Υ' into Υ'' , the set of avatars $p''_0, p''_1, p''_2, p''_3$ such that

- 1. $-512p_2'', 512p_0'' \in [416, 498] \times I_{16}$
- 2. $-512p_1'', 512p_3'' \in I_0 \times [348, 465].$
- 3. $p_{02}'' = p_{22}''$.

Let **K4** denote the set of configurations invariant under reflections in the coordinate axes. Given a configuration $X'' \in \Upsilon''$ there is a unique configuration $X'' \in \mathbf{K4}$ such that p''_j and p''_j lie on the same vertical line for j = 0, 1, 2, 3. We call this operation vertical symmetrization. The configuration X''' coincides with the configuration X^* defined in Lemma B. In summary (and using obvious abbreviations) we have

$$\Upsilon \stackrel{\longrightarrow}{\operatorname{Rot}} \Upsilon' \stackrel{\longrightarrow}{\operatorname{HS}} \Upsilon'' \stackrel{\longrightarrow}{\operatorname{VS}} \mathbf{K_4}$$

Symmetrization, as an operation on Υ' , is the composition of vertical and horizontal symmetrization.

Each avatar corresponds to a 5-point configuration on S^2 via stereographic projection. The energy of the 5 point configuration involves 10 pairs of points. Referring to Equation 16, a typical term is r_{ij}^s . Given a list L of pairs of points in the set $\{0, 1, 2, 3, 4\}$ we define $\mathcal{E}_s(P, L)$ to be the sum of the R_s -potentials just over the pairs in L. E.g. $L = \{(0, 2), (0, 4)\} = r_{02}^s + r_{04}^s$.

We call the subset L good for the parameter s, and with respect to one of the operations, if the operation does not increase the value of $\mathcal{E}_s(P, L)$. We call L great if the operation strictly lowers $\mathcal{E}_s(P, L)$ unless the operation fixes P. We mean to take the appropriate domains in all cases. The Symmetrization Theorem I follows immediately from Lemma B1 and from the 3 lemmas below.

Lemma 4.2 (B2) The lists $\{(0,2), (0,4), (2,4)\}$ and $\{(1,3), (1,4), (3,4)\}$ are both great for all $s \ge 2$ and with respect to symmetrization.

Lemma 4.3 (B3) The lists $\{(0,1), (1,2)\}$ and $\{(0,3), (3,2)\}$ are both good for all $s \ge 2$ and with respect to horizontal symmetrization.

Lemma 4.4 (B4) The lists $\{(0,1), (0,3)\}$ and $\{(2,1), (2,3)\}$ are both good for all $s \ge 12$ and with respect to vertical symmetrization.

4.2 Proof of Lemma B1

We want to prove that if $X \in \Upsilon$ then $X' \in \Upsilon'$. Rotation about the origin does not change the norms, so X' satisfies Condition 1. Moreover, Condition 6 holds by construction. We must check Conditions 2,3,4,5.

Let ρ_{θ} denote the counterclockwise rotation through the angle θ . Since p_0 lies on the x axis and p_2 lies on or above it, we have to rotate by a small amount counterclockwise to get p'_0 and p'_2 on the same horizontal line. That is, the rotation moves the right point up and the left one down. Hence $\theta \geq 0$. This angle is maximized when p_0 is an endpoint of its segment of constraint and p_2 is one of the two upper vertices of rectangle of constaint. Not thinking too hard which of the 4 possibilities actually realizes the max, we check for all 4 pairs (p_0, p_2) that the second coordinate of $\rho_{1/34}(p_0)$ is

larger than the second coordinate of $\rho_{1/34}(p_0)$. From this we conclude that $\theta < 1/34$. This yields

$$512\cos(\theta) \in [0,1], \qquad 512\sin(\theta) \in [0,16].$$
 (19)

From Equation 19, the map $512p_0 \rightarrow 512p'_0$ changes the first coordinate by $512\delta_{01} \in [0, 16]$ and $512\delta_{02} \in [-1, 0]$. This gives (something stronger than) Condition 2 for Υ' . At the same time, we have $p'_{21} = p'_{01}$ and the change $512p_2 \rightarrow 512p'_2$ changes the second coordinate by $512\delta_{21} \in [0, 1]$. This gives Condition 4 for Υ' once we observe that $|p'_{21}| \leq |p'_{01}|$.

For Condition 3 we just have to check (using the same notation) that $512\delta_{11} \in [0, 16]$ and $512\delta_{12} \in [-1, 1]$. The first bound comes from the inequality $512\sin(\theta) < 16$. For the second bound we note that the angle that p_1 makes with the *y*-axis is maximized when p_1 is at the corners of its constraints in Υ . That is,

$$p_1 = \left(\frac{\pm 16}{512}, \frac{349}{512}\right).$$

Since tan(1/21) > 16/349 we conclude that this angle is at most 1/21. Hence

$$|512\delta_{12}| \le \max_{|x|\le 1/21} \left| \cos\left(x + \frac{1}{34}\right) - \cos(x) \right| < 1.$$

This gives Condition 3. The same argument gives Condition 5.

4.3 Proof of Lemma B2

Let $s_3 = \sqrt{3}/3$. The significance of this number is that inverse stereographic projection maps the triangle with vertices $(\pm s_3, 0)$ and ∞ to an equilateral triangle on S^2 having a vertex at (0, 0, 1).

Let (u, v) stand for either (0, 2) or (1, 3). For the points associated with $\{(u, v), (u, 4), (v, 4)\}$. We make the following definitions for $a_u, a_v, b_u, b_v > 0$.

1. Start with p_u, p_v so that $||p_u||, ||p_v|| < 1$ and let $a_u = a_v$ be such that

$$||p_u - p_v||/2 = s_3 + a_u = s_3 + a_v.$$

Let $q_u = (-s_3 - a_u, 0)$ and $q_v = (s_3 + a_v, 0)$.

2. Choose b_u, b_v with $b_u \leq a_u$ and $b_v \leq a_v$. Let

$$r_u = (-s_3 - b_u, 0),$$
 $r_v = (s_3 + b_v, 0).$

Note that $||r_u - r_v|| \le ||q_u - q_v||$.

3. Let p_u^*, p_v^* be images of r_u, r_v under any rotation about the origin.

We start with $(p_1, p_2, p_3, p_4) \in \Upsilon$. This guarantees that $a_u, b_u, a_v, b_v > 0$. For the points (p_u, p_v) our symmetrization operation is a special case of the map

$$(p_u, p_v) \rightarrow (p_u^*, p_v^*),$$

for suitable choice of constants and a suitable rotation.

Recall that \hat{p} is the image of p under inverse stereographic projection. Lemma B2 is implied by:

$$\|\widehat{r}_{u} - \widehat{r}_{v}\|^{-s} + \|\widehat{r}_{u} - (0, 0, 1)\|^{-s} + \|\widehat{r}_{v} - (0, 0, 1)\|^{-s} \le \|\widehat{p}_{u} - \widehat{p}_{v}\|^{-s} + \|\widehat{p}_{u} - (0, 0, 1)\|^{-s} + \|\widehat{p}_{v} - (0, 0, 1)\|^{-s}$$
(20)

for all $s \geq 2$, with equality iff $(r_u, r_v) = (p_u, p_v)$ up to rotation about the origin.

We will establish Equation 20 in two steps.

Lemma 4.5 (B21) Let $s \ge 2$ and

$$A_{s} = \|\widehat{p}_{u} - \widehat{p}_{v}\|^{-s} - \|\widehat{q}_{u} - \widehat{q}_{v}\|^{-s},$$

$$B_{s} = \|\widehat{p}_{u} - (0,0,1)\|^{-s} + \|\widehat{p}_{v} - (0,0,1)\|^{-s} - \|\widehat{q}_{u} - (0,0,1)\|^{-s} - \|\widehat{q}_{v} - (0,0,1)\|^{-s}.$$

Then $A_{s}, B_{s} \ge 0$, with equality iff $p_{u} = q_{u}$ and $p_{v} = q_{v}$ up to a rotation.

Proof: Note that if $A_2 > 0$ then $A_s > 0$ for all s > 0. If $B_2 > 0$ then the Convexity Lemma implies that $B_s > 0$ for all s > 2. So, it suffices to prove that $A_2, B_2 > 0$. We rotate so that

$$p_u = (-x + h, y), \quad p_v = (x + h, y), \quad q_u = (-x, 0), \quad q_v = (x, 0).$$
 (21)

We compute

$$A_2 = \frac{h^4 + y^2(2 + 2x^2 + y^2) + 2h^2(1 - x^2 + y^2)}{16x^2}, \quad B_2 = \frac{y^2 + h^2}{2}.$$
 (22)

Since $x \in (0, 1)$ we have $A_2, B_2 > 0$ unless h = y = 0.

Define

$$F_s(a_u, a_v) = \|\widehat{q}_u - \widehat{q}_v\|^{-s} + \|\widehat{q}_u - (0, 0, 1)\|^{-s} + \|\widehat{q}_v - (0, 0, 1)\|^{-s}, \quad (23)$$

Likewise define $F_s(b_u, b_v)$. Finally, define

$$E(s) = F_s(a_u, a_v) - F_s(b_u, b_v).$$
 (24)

Lemma 4.6 (B22) $E(s) \ge 0$ with equality iff $b_u = a_u$ and $b_v = a_v$.

Proof: It suffices to prove this result in the intermediate case when $a_u = b_u$ or $a_v = b_v$ because then we can apply the intermediate result twice to get the general case. Without loss of generality we consider the case when $a_v = b_v$ and $b_u < a_u$. With the file LemmaB22.m – see below – we compute that $\partial F_2/\partial a_u$ and $-\partial F_{-2}/\partial a_u$ are both rational functions of a_u, a_v with all positive coefficients. Hence E(2) > 0 and E(-2) < 0.

Consider the sign sequence for E(s). When $a_u = b_u$, the expression E(s) is an exponential sum with 4 terms. When $a_u = a_v = 0$ the points $\hat{\zeta}_u, \hat{\zeta}_v$ and (0, 0, 1) make an equilateral triangle on a great circle. Hence, when $a_u, a_v, b_u, b_v > 0$ the point $\hat{\zeta}_u$ is closer to (0, 0, 1) than it is to $\hat{\zeta}_v$ both in its old location and in its new location. The inward motion of the point ζ_u increases the shorter (corresponding spherical) distance and decreases the longer (corresponding spherical) distance. More to the point, our move decreases the longer inverse-distance and increases the shorter inverse-distance. Thus the sign sequence (§2.1) for E(s) is +, -.-, +.

By Descartes' Lemma, E(s) changes sign at most twice and also E(s) > 0when |s| is sufficiently large. Since E(-2) < 0 as see that E changes sign on $(-\infty, -2)$. If E has a root in $(2, \infty)$ then in fact E has at least 2 roots (counted with multiplicity) because it starts and ends positive on this interval. But then E has at least 3 roots, counting multiplicity. This is contradiction. Hence E(s) > 0 for $s \ge 2$.

4.4 Proof of Lemma B3

The domain Υ' is symmetric with respect to reflection in the X-axis. Thanks to this symmetry, it suffices to prove Lemma B3 for the list $\{(0,1), (1,2)\}$. We set $q_j = p'_j$ and $q'_j = p''_j$.

We introduce the notation $q_1 = (q_{10}, q_{11})$, etc. The horizontal symmetrization operation is given by

$$(q_0, q_1, q_2) \to (q'_0, q'_1, q'_2),$$

where

$$q_0' = \left(\frac{q_{01} - q_{21}}{2}, q_{02}\right), \qquad q_1' = (0, q_{21}), \qquad q_2' = \left(\frac{q_{21} - q_{01}}{2}, q_{22}\right), \tag{25}$$

Note that $||q'_0 - q'_1|| = ||q'_2 - q'_1||$. This means that the kind of inequality we are trying to establish has the form $2A^s \leq B^s + C^s$ for choices of A, B, C which depend on the points involved. Therefore, by the Convexity Lemma, it suffices to prove that $\{(0, 1), (1, 2)\}$ is good for the parameter s = 2.

Let D denote the set of triples of points $(q_0, q_1, q_2) \in (\mathbf{R}^2)^3$ such that there is some q_3 such that $q_0, q_1, q_2, q_3 \in \Upsilon'$. Most of our proof involves finding a concrete parametrization of a subset of \mathbf{R}^6 that contains D. Note that D is really a 5 dimensional set, because $q_{22} = q_{02}$. We will use parameters a, b, c, d, e to parametrize a subset of \mathbf{R}^6 that contains D.

We define

$$[a, b, t] = \frac{a(1-t)}{512} + \frac{bt}{512}.$$
(26)

Here $F_{512}(a, b, \cdot)$ maps the interval [0, 1] onto the interval [a, b]/512. Given $(a, b, c, d, e) \in [0, 1]^5$ and $\sigma_1, \sigma_2 \in \{-, +\}$ we define

$$p0 = ([+416, +498, a] + [0, 49, e], [0, 16\sigma_1, b]);$$

$$p1 = ([0, 32\sigma_2, d], [348, 465, c]);$$

$$p2 = ([-416, -498, a] + [0, 49, e], [0, 16\sigma_1, b]);$$
(27)

We call this map ϕ_{σ_1,σ_2} . In these coordinates, horizontal symmetrization is the map

$$(a, b, c, d, e) \to (a, b, c, 0, 0).$$
 (28)

We have two steps we need to take. First we really need to show that we have parametrized a superset of D. Second, we need to calculate the energy change as a function of a, b, c, d, e and check at it decreases.

Lemma 4.7 (B31) We have

$$D \subset \phi_{+,+}([0,1]^5) \cup \phi_{+,-}([0,1]^5) \cup \phi_{-,+}([0,1]^5) \cup \phi_{-,-}([0,1]^5).$$

Proof: Recall that $q_i = (q_{i1}, q_{i2})$. Let D_{ij} denote the set of possible coordinates q_{ij} that can arise for points in D. Thus, for instance

$$D_{01} = [-16, 16]/512.$$

Let D_{ij}^* denote the set of possible coordinates q_{ij} that can arise from the union of our parametrizations. By construction $D_{i2} \subset D_{i2}^*$ for i = 0, 1, 2 and $D_{11} \subset D_{11}^*$.

Remembering that we have $q_{01} \ge |q_{21}|$, we see that the set of pairs $512(q_{01}, q_{21})$ satisfying all the conditions for inclusion in D lies in the triangle Δ with vertices

$$(498, -498), (498, -400), (432, -400).$$

At the same time, the set of pairs $(512)(p_{01}^*, p_{21}^*)$ that we can reach with our parametrization is the rectangle Δ^* with vertices

(498, -498), (416, -416), (498, -498) + (49, 49), (416, -416) + (49, 49).

One checks easily that hence $\Delta \subset \Delta^*$. Indeed, Δ is inscribed in Δ^* .

Using our coordinates above, we define

$$F_{\pm,\pm}(a,b,c,d,e) = \|\widehat{q}_0 - \widehat{q}_1\|^{-2} + \|\widehat{q}_2 - \widehat{q}_1\|^{-2},$$

 $\Phi_{\pm,\pm}(a,b,c,d,e) = \operatorname{num}_+(F_{\pm,\pm}(a,b,c,d,e) - F_{\pm,\pm}(a,b,c,0,0)).$ (29)

Here q_0, q_1, q_2 are the points which correspond to (a, b, c, d, e) under our map $\phi_{\pm,\pm}$ and $\hat{q}_0, \hat{q}_1, \hat{q}_2$ are their images under inverse stereographic projection. To finish our proof, we just have to show that $\Phi_{\pm,\pm}(a, b, c, d, e) \ge 0$ on $[0, 1]^5$. The following lemma, and continuity, gives us this result.

Lemma 4.8 (B32) For any sign choice, $\Phi_{\pm,\pm} > 0$ on $(0,1)^5$.

Proof: We let $\Phi_a = \partial \Phi / \partial a$, and likewise for the other variables. Iterating this notation, we let Φ_{aa} , etc., denote the second partials.

Let Φ be any of the 4 polynomials. The file LemmaB32.m – see below – computes that

- 1. Φ and Φ_d and Φ_e are zero when d = e = 0.
- 2. Φ_{dd} and Φ_{ee} are weak positive dominant, hence nonnegative on $[0, 1]^5$.
- 3. $\Phi_d + 2\Phi_e$ is weak positive dominant, hence nonnegative on $[0, 1]^5$.

Let $Q_d \subset [0,1]^5$ be the sub-cube where d = 0. We fix (a, b, c) and consider the single variable function $\phi(d) = \Phi(a, b, c, d, 0)$. From Items 1 and 2 above, $\phi(0) = \phi'(0) = 0$ and $\phi''(d) \ge 0$. Hence $\phi(d) \ge 0$ for $d \ge 0$. Hence $\Phi \ge 0$ on Q_d . A similar argument shows that likewise $\Phi \ge 0$ on Q_e .

Any point in $(0,1)^5$ can be joined to a point in $Q_d \cup Q_e$ by a line segment L which is parallel to the vector (0,0,0,1,2). From Item 3 above, Φ increases along such a line segment as we move out of $Q_d \cup Q_e$. Hence $\Phi \ge 0$ on $[0,1]^5$.

4.5 Proof of Lemma B4

The set Υ'' is symmetric with respect to reflections in both coordinate axes. Thanks to these symmetries, it suffices to prove that $\{(0,1), (0,3)\}$ is good for all $s \ge 12$, and it suffices to consider the case when $p''_{02} \ge 0$. That is, the point p_0 lies on or above the X-axis. For ease of notation set $q_k = p''_k$ and $q'_k = p''_k$. We are considering the case when $q_{02} \ge 0$.

Let D be the set of configurations (q_0, q_1, q_3) such that $q_{02} \ge 0$ and $(q_0, q_1, q_2, q_3) \in \Upsilon''$ when q_2 is the reflection of q_0 in the Y-axis. Let $D_{\pm} \subset D$ denote those configurations with $\pm (q_{12} + q_{32}) \ge 0$. Obviously $D = D_+ \cup D_-$.

The sets D_{\pm} are 4-dimensional subsets of $(\mathbf{R}^2)^3$. We parametrize a superset of D_{\pm} much as we did in the proof of Lemma B3. As in Equation 26 we define

$$[a,b,t] = \frac{(1-t)a}{512} + \frac{bt}{512}$$

Given $(a, b, c, d) \in [0, 1]^4$ and $\sigma \in \{+, -\}$ we define

$$p_0 = ([416, 498, b], [0, 16, d]);$$

$$p_1 = (0, -[348, 465, a] + [0, 59\sigma, c]);$$

$$p_3 = (0, +[348, 465, a] + [0, 59\sigma, c]);$$

(30)

We call this map ϕ_{σ} . In these coordinates, the symmetrization operation is $(a, b, c, d) \rightarrow (a, b, 0, 0)$.

Lemma 4.9 (B41) $D_{\pm} \subset \phi_{\pm}([0,1]^4)$.

Proof: This is just like the proof of Lemma B31. The only non-obvious point is why every pair (p_{12}, p_{32}) is reached by the map ϕ_{\pm} . The essential point is that for configurations in D_{\pm} we have $512|p_{12} + p_{32}| \le 2 \times 59$.

Following the same idea as in the proof of Lemma B3, we define

$$F_{s,\pm}(a,b,c,d) = \|\Sigma^{-1}(q_0) - \Sigma^{-1}(q_1)\|^{-s} + \|\Sigma^{-1}(q_0) - \Sigma^{-1}(q_3)\|^{-s}, \quad (31)$$

$$\Phi_{s,\pm}(a,b,c,d) = \operatorname{num}_+(F_{s,\pm}(a,b,c,d) - F_{s,\pm}(a,b,0,0)).$$
(32)

The points on the right side of Equation 31 are coordinatized by the map ϕ_{\pm} . We can finish the proof by showing that $\phi_{2,+} \geq 0$ and $\phi_{12,-} \geq 0$ on $[0,1]^4$. The Convexity Lemma then takes care of all exponents greater than 2 on D_+ and all exponents greater than 12 on D_- . Notice the asymmetry in the calculation. The (+) side is much less delicate.

Lemma 4.10 (B42) $\Phi_{2,+} \ge 0$ on $[0,1]^4$.

Proof: Let $\Phi = \Phi_{2,+}$. Let $\Phi|_{c=0}$ denote the polynomial we get by setting c = 0. Etc. Let $\Phi_c = \partial \Phi / \partial c$, etc. The Mathematica file LemmaB42.m computes that $\Phi|_{c=0}$ and $\Phi|_{d=0}$ and $\Phi_c + \Phi_d$ are weak positive dominant. Hence $\Phi \ge 0$ when c = 0 or d = 0 and the directional derivative of Φ in the direction (0, 0, 1, 1) is non-negative. This suffices to show that $\Phi \ge 0$ on $[0, 1]^4$.

Lemma 4.11 (B43) $\Phi_{12,-} \ge 0$ on $[0,1]^4$.

Proof: The file LemmaB43.m has the calculations. Let $\Phi = \Phi_{12,-}$. This monster has 102218 terms.

Step 1: Let M denote the maximum coefficient of Φ . We let Φ^* be the polynomial we get by taking each coefficient of c of Φ and replacing it with floor $(10^{10}c/M)$. Note that if Φ^* is nonnegative on $[0, 1]^4$ then so is Φ .

Step 2: Now Φ^* has 37760 monomials in which the coefficient is -1. We check that each such monomial is divisible by one of c^2 or d^2 or cd. Let

$$\Psi = \Phi^{**} - 37760(c^2 + d^2 + cd).$$

where Φ^{**} is obtained from Φ^* by setting all the (-1) monomials to 0. We have $\Psi \leq \Phi^*$ on $[0,1]^4$. Hence, if Ψ is non-negative on $[0,1]^4$ then so is Φ^* . The polynomial Ψ has 5743 terms.

Step 3: We check that Ψ_{aaa} is WPD and hence non-negative on $[0, 1]^4$. This massive calculation reduces us to showing that the restrictions $\Psi|_{a=0}$ and $\Psi_{a}|_{a=0}$ and $\Psi_{aa}|_{a=0}$ are all non-negative on $[0, 1]^3$. Consider

$$f|_{c=0}, \qquad f|_{d=0} \qquad 4f_c + f_d,$$
 (33)

We show that all three functions are WPD when either $f = \Psi_a|_{a=0}$ or $f = \Psi_{aa}|_{a=0}$. This shows that $\Psi_a|_{a=0}$ and $\Psi_{aa}|_{a=0}$ are non-negative on $[0,1]^3$. Also, we show that the first two functions are WPD when $f = \Psi|_{a=0}$.

Step 4: Let $g = 4f_c + f_d \ge 0$ on $[0,1]^3$ when $f = \Psi|_{a=0}$. We check that g_d is WPD and hence non-negative on $[0,1]^3$. This reduces us to showing that $h = g|_{d=0}$ is non-negative on $[0,1]^2$. here h is a 2-variable polynomial in b, c. Referring to the operation in §2.2, we check that the two subdivisions $S_{b,0}(h)$ and $S_{b,1}(h)$ are WPD. This proves $h \ge 0$ on $[0,1]^2$.

5 References

[CK] Henry Cohn and Abhinav Kumar, Universally Optimal Distributions of Points on Spheres, J.A.M.S. 20 (2007) 99-147

[MKS], T. W. Melnyk, O. Knop, W.R. Smith, *Extremal arrangements of point and and unit charges on the sphere: equilibrium configurations revisited*, Canadian Journal of Chemistry 55.10 (1977) pp 1745-1761

[S0] R. E. Schwartz, Divide and Conquer: A Distributed Approach to 5-Point Energy Minimization, Research Monograph (preprint, 2023)

[S1] R. E. Schwartz, *The 5 Electron Case of Thomson's Problem*, Experimental Math, 2013.

[**Th**] J. J. Thomson, On the Structure of the Atom: an Investigation of the Stability of the Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle with Application of the results to the Theory of Atomic Structure. Philosophical magazine, Series 6, Volume 7, Number 39, pp 237-265, March 1904.

[**T**] A. Tumanov, *Minimal Bi-Quadratic energy of 5 particles on 2-sphere*, Indiana Univ. Math Journal, **62** (2013) pp 1717-1731.

[W] S. Wolfram, *The Mathematica Book*,
4th ed. Wolfram Media/Cambridge
University Press, Champaign/Cambridge (1999)

See Paper 0 for an extended bibliography.