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Abstract

This is Paper 4 of series of 7 self-contained papers which together
prove the Melnyk-Knopf-Smith phase transition conjecture for 5-point
energy minimization. (Paper 0 has the main argument.) This paper
deals with the end of the proof, which compares the relevant configu-
rations which have 4-fold dihedral symmetry.

1 Introduction

1.1 Context

During the past decade I have written several versions of a proof that rig-
orously verifies the phase-transition for 5 point energy minimization first
observed in [MKS], in 1977, by T. W. Melnyk, O, Knop, and W. R. Smith.
See [S0] for the latest version. This work implies and extends my solution
[S1] of Thomson’s 1904 5-electron problem [Th]. Unfortunately, after a
number of attempts I have not been able to publish my work on this. Even
though I have taken great pains to make the proof modular and checkable,
the monograph still gives the impression of being too difficult to referee.

Now I am taking a new approach. I have broken down the proof into
a series of 7 independent papers, each of which may be checked without
any reference to the others. The longest of the papers is 23 pages. The
drawback of this approach is twofold. First, there will necessarily be some
redundancy in these papers. Second, none of the papers has a blockbuster
result in itself. To help offset the second drawback, I will state the main
result in full in each paper, and I will try to explain how the small result
proved in each paper relates to the overall goal.
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1.2 The Phase Transition Result

Let S2 be the unit sphere in R3. Given a configuration {pi} ⊂ S2 of N
distinct points and a function F : (0, 2]→ R, define

EF (P ) =
∑

1≤i<j≤N
F (‖pi − pj‖). (1)

This quantity is commonly called the F -potential or the F -energy of P .
A configuration P is a minimizer for F if EF (P ) ≤ EF (P ′) for all other
N -point configurations P ′.

We are interested in the Riesz potentials:

Rs(d) = d−s, s > 0. (2)

Rs is also called a power law potential , and R1 is specially called the Coulomb
potential or the electrostatic potential . The question of finding the N -point
minimizers for R1 is commonly called Thomson’s problem.

We consider the case N = 5. The Triangular Bi-Pyramid (TBP) is the
5 point configuration having one point at the north pole, one point at the
south pole, and 3 points arranged in an equilateral triangle on the equator.
A Four Pyramid (FP) is a 5-point configuration having one point at the
north pole and 4 points arranged in a square equidistant from the north
pole.

Define

15+ = 15 +
25

512
. (3)

Theorem 1.1 (Phase Transition) There exists ש ∈ (15, 15+) such that:

1. For s ∈ (0, (ש the TBP is the unique minimizer for Rs.

2. For s = ש the TBP and some FP are the two minimizers for Rs.

3. For each s ∈ ,ש) 15+) some FP is the unique minimizer for Rs.

The proof has many moving parts. The largest part involves eliminating
all the configurations and energy exponents outside a set

Υ× [13, 15+]

using a computer-assisted divide-and-conquer algorithm. Another part in-
volves ruling out all configurations in the set (Υ −K4) × [13, 15+]. Here
K4 is the set of configurations with 4-fold dihedral symmetry. This paper
discusses the critical region critical region (Υ∩K4)× [12, 15+]. This region,
which looks somewhat contrived, contains those FPs which compete with
the TPB for energy exponents s reasonably near .ש
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1.3 The Result Covered Here

In order to state the precise result proved here, I first need to introduce
some background information.

Stereographic Projection: Let S2 ⊂ R3 be the unit 2-sphere. Stere-
ographic projection is the map Σ : S2 → R2 ∪ ∞ given by the following
formula.

Σ(x, y, z) =

(
x

1− z
,

y

1− z

)
. (4)

Here is the inverse map:

Σ−1(x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
. (5)

Σ−1 maps circles in R2 to circles in S2 and Σ−1(∞) = (0, 0, 1).

Avatars: Stereographic projection gives us a correspondence between 5-
point configurations on S2 having (0, 0, 1) as the last point and planar con-
figurations:

p̂0, p̂1, p̂2, p̂3, (0, 0, 1) ∈ S2 ⇐⇒ p0, p1, p2, p3 ∈ R2, p̂k = Σ−1(pk). (6)

We call the planar configuration the avatar of the corresponding configura-
tion in S2. By a slight abuse of notation we write EF (p1, p2, p3, p4) when we
mean the F -potential of the corresponding 5-point configuration.

The Special Domains: Let Ψ4 denote the set of avatars of the form

(x, 0), (0,−y), (−x, 0), (0, y), 64(x, y) ∈ [43, 64]. (7)

Let Ψ]
4 denote the set of avatars of the form

(x, 0), (0,−y), (−x, 0), (0, y), 64(x, y) ∈ [55, 56]. (8)

Finally, let Ψ8 denote the diagonal of Ψ4, the points where x = y. Likewise
define the diagonal Ψ]

8 of Ψ]
4. To relate Ψ4 to the discussion above, we have

Υ ∩K4 ⊂ Ψ4

and (obviously)

Ψ]
8 ⊂ Ψ]

4 ⊂ Ψ4.

The tiny domain Ψ]
8 contains the avatar for the FP which ties with the TBP

at s = .ש
Here is the result of this paper.
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Theorem 1.2 (Endgame) Let ξ0 denote a avatar of the TBP. There exist
ש ∈ (15, 15+) such that the following is true.

1. Es(ξ0) < Es(ξ) for all (ξ, s) ∈ (Ψ4× [13, 15])∪ ((Ψ4−Ψ]
4)× [15, 15+]).

2. Es(ξ0) < Es(ξ) for all (ξ, s) ∈ Es(ξ0) < Es(ξ).

3. For all s ∈ ,ש) 15+) and some ξ ∈ Ψ]
8 we have Es(ξ0) > Es(ξ).

1.4 How This Fits In

The Endgame Theorem looks a bit too piecemeal and random to be useful,
so we discuss how it ties in with overall goal. In Paper 5 we prove the
following result.

Theorem 1.3 (Symmetrization I) There is a retraction σ1 : Υ → Ψ4

such that Es(σ1(ξ)) ≤ Es(ξ) for all s ∈ [12,∞].

Theorem 1.4 (Symmetrization II) There is a retraction σ2 : Ψ]
4 → Ψ8

such that Es(σ2(ξ)) ≤ Es(ξ) for all s ∈ [14, 16].

Combining the Endgame Theorem with these two results we get a more
satisfying corollary.

Corollary 1.5 Let ξ0 denote a avatar of the TBP. There exist a number
ש ∈ (15, 15+) such that the following is true:

1. Es(ξ0) < Es(ξ) for all (ξ, s) ∈ Υ× [13, .(ש

2. For all x ∈ ,ש) 15+) there is some ξ ∈ Υ such that Es(ξ0) > Es(ξ).

1.5 Paper Organization

Statement 1 of the Endgame Theorem is in some sense a problem in 3-
variable calculus and Statements 2 and 3 are in some sense problems in
2-variable calculus. I will give a computational proof that uses exact integer
arithmetic in Mathematica. In §2 we include some preliminary material
about polynomials. In §3 I give some bounds on the partial derivatives of
the relevant quantities. These bounds are used variously in the proofs of all
the statements of the Engame Theorem. In §4 I will deal with Statements
1. in §5 I will deal with Statements 2 and 3. The reader can download all
the code I have written to prove the Endgame Theorem. I will describe the
calculations in a lot of detail, and I think that a competent programmer
could reproduce them in under a day.
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2 Preliminaries

Here we explain a positivity criterion for polynomials. I call this tool Positive
Dominance. The works [S2] and [S3] give more details about this criterion.
I developed the Positive Dominance criterion myself, though I would not
be surprised to learn that it has turned up elsewhere in the vast field of
computational algebra.

Let G ∈ R[x1, ..., xn] be a multivariable polynomial:

G =
∑
I

cIX
I , XI =

n∏
i=1

xIii . (9)

Given two multi-indices I and J , we write I � J if Ii ≤ Ji for all i. Define

GJ =
∑
I�J

cI , G∞ =
∑
I

cI . (10)

We call G weak positive dominant (WPD) if GJ ≥ 0 for all J and G∞ > 0.
We call G positive dominant if GJ > 0 for all J .

Lemma 2.1 (Weak Positive Dominance) If G is weak positive domi-
nant then G > 0 on (0, 1]n. If G is positive dominant then G > 0 on [0, 1]n.

Proof: We prove the first statement. The second one has almost the same
proof. Suppose n = 1. Let P (x) = a0 + a1x + .... Let Ai = a0 + ... + ai.
The proof goes by induction on the degree of P . The case deg(P ) = 0 is
obvious. Let x ∈ (0, 1]. We have

P (x) = a0 + a1x+ x2x
2 + · · ·+ anx

n ≥

x(A1 + a2x+ a3x
2 + · · · anxn−1) = xQ(x) > 0

Here Q(x) is WPD and has degree n− 1.
Now we consider the general case. We write

P = f0 + f1xk + ...+ fmx
m
k , fj ∈ R[x1, ..., xn−1]. (11)

Since P is WBP so are the functions Pj = f0 + ...+ fj . By induction on the
number of variables, Pj > 0 on (0, 1]n−1. But then, when we arbitrarily set
the first n− 1 variables to values in (0, 1), the resulting polynomial in xn is
WPD. By the n = 1 case, this polynomial is positive for all xn ∈ (0, 1]. ♠
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3 Bounds on Derivatives

3.1 A List of Results

We define
Θ(x, y, s) = Es(x, y)− E(1,

√
3/3). (12)

Let

I =

[
55

64
,
56

64

]
. (13)

In this chapter we give some bounds on Θ. Let Θx be the partial derivative
of Θ with respect to x, etc.

Lemma 3.1 For all (x, y, s) ∈ Ψ4 × [13, 16] we have Θxx,Θyy,Θxy > 0.

Lemma 3.2
Θtts(t, t, 15) < 0, ∀t ∈ I. (14)

We say that a block is a rectangular solid, having the following form:

X = Q× J ⊂ [0, 1]2 × [0, 16], (15)

where Q is a square and J is an interval. We define |X|1 to be the length of
J and |X|2 to be the side length of Q. Let v(X) denote the set of 8 vertices
of X.

Lemma 3.3 For any block X ⊂ Ψ4× ⊂ [13, 16] we have

min
X

Θ ≥ min
v(X)

Θ− (|X|21/512 + |X|22).

3.2 Proof of Lemma 3.1

We prove this for Θxx and Θxy. The case of Θyy follows from this and
symmetry. Setting u = s/2 we compute

Es(x, y) = A(x, s) +A(y, s) + 2B(x, s) + 2B(y, s) + 4C(x, y, s), (16)

A(x) = a(x)u, B(x) = b(x)u, C(x) = c(x)u,

a(x) =
(1 + x2)2

16x2
b(x) =

1 + x2

4
c(x, y) =

(1 + x2)(1 + y2)

4(x2 + y2)

Hence
Θxx = Axx + 2Bxx + 4Cxx, Θxy = Cxy. (17)
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For each choice of F = A,B,C we have

Fxx = u(u− 1)fu−2f2x + ufu−1fxx, Cxy = u(u− 1)cu−2cxcy + ucu−1cxy. (18)

Our notation is such that f = a when F = A, etc.
We compute

axx =
3 + x4

8x4
> 0, bxx =

1

2
, cxx =

(1− y4)(3x2 − y2)
2(x2 + y2)3

≥ 0.

cx =
x(y4 − 1)

2(x2 + y2)2
< 0, cy =

y(x4 − 1)

2(x2 + y2)2
< 0, cxy =

2xy(1 + x2y2)

(x2 + y2)3
> 0.

Equation 18 combines with all this to prove that Θxx > 0 and Θxy > 0 on
Ψ4 × [13, 16].

3.3 Proof of Lemma 3.3

We prove Lemma 3.3 through two smaller lemmas.

Lemma 3.4 |Θxx|, |Θyy| ≤ 4 on Ψ4 × [13, 16].

Proof: By symmetry it suffices to prove this for Θxx. We already know
Θxx > 0 on our domain. We use the notation from the proof of Lemma 3.1.
In particular, An easy exercise in calculus shows that f ∈ (0, 3/5) on Ψ4 for
each f = a, b, c. From this bound, we see that the expression in Equation
18 is decreasing as a function of u for u ≥ 6. (Recall that u = s/2.) Hence
it suffices to prove that 4−Θxx ≥ 0 on {12} × [43/64, 1]2.

We define φ(t) = (43/64)(1− t)+ t. The file LemmaC221.m computes that
for s = 12 the polynomial Φ = num+(4−Θxx ◦φ) is weak positive dominant
and hence non-negative on [0, 1]2. Hence 4 − Θxx ≥ 0 when s = 12 and
(x, y) ∈ Ψ4. ♠

Lemma 3.5 |Θss| ≤ 1/64 on Ψ4 × [13, 16].

Proof: Let ψ(s) = b−s. Let β = (1.3,
√

2,
√

3) and γ = (440, 753, 4184). We
first establish the following bound:

0 < min
b≥βj

ψss(s, b) ≤ 1/γj , j = 1, 2, 3, ∀s ≥ 13. (19)

As a function of s, and for b > 1 fixed, ψss(s, b) = b−s log(b)2 is decreasing.
Hence, it suffices to prove Equation 19 when s = 13. Choose b ≥ 1.3.
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The equation ψssb(13, b) = 0 has its unique solution in [1,∞) at the value
b = exp(2/13) < 1.3. Moreover, the function ψss(13, b) tends to 0 as b →
∞. Hence the restriction of the function b → ψss(13, b) to [b,∞) takes its
maximum value at b. Evaluating at b = 1.3,

√
2,
√

3 we get Equation 19.
For x, y ∈ [43/64, 1] we easily check the inequalities

A(−1, x) ≥ 3, B(−1, x) ≥ 2, C(−1, x, y) ≥ (1.3)2.

The quantities on the left are the square distances of the various pairs
of points in the corresponding configuration on S2. From this analysis
we conclude that the 10 distances associated to a 5-point configuration
parametrized by a point in Ψ4 exceed 1.3, and at least 6 of them exceed√

2, and at least 2 of them exceed
√

3. The same obviously holds for the
TBP.

Now, 10 of the 20 terms comprising Θss(x, y, s) are positive and 10 are
negative. Also, for the terms of the same sign, all 10 of them are less than
1/440, and at least 6 of them are less than 1/753, and at least 2 of them
are less than 1/4184. Hence, by Equation 19, we have the final bound
|Θss| ≤ (4/440) + (4/753) + (2/4184) < 1/64. ♠

Write I = [s0, s1] andQ = [x0, x1]×[y0, y1]. Choose (x, y, s) ∈ X = I×Q.
Taylor’s Theorem with remainder tells that for any function f : [a, b] → R
and any x ∈ [a, b] we have

f(x) ≥ min(f(a), f(b))− 1

8
max
[a,b]
|f ′′|.

Applying this result 3 times and using the bounds in our two lemmas, we
have

Θ(x, y, s) ≥ min
i

Θ(x, y, si)− |I|/512 ≥

min
i,j

Θ(xj , y, si)− |I|/512− |x0 − x1|/2 ≥

min
i,j,k

Θ(xj , yj , si)− |I|/512− |x0 − x1|/2− |y0 − y1|/2 =

min
v(X)

Θ− |X|1/512− |X|2.

This completes the proof of Lemma 3.3.
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3.4 Proof of Lemma 3.2

The file LemmaC3.m does the calculations for this proof. We use the notation
from previous sections.

Because the s-energy of the TBP does not depend on the t-variable, we
have

Θstt(t, t, 15) = 2Astt|s=15 + 4Bstt|s=15 + 4Cstt|s=15. (20)

Call the three functions on the right α(t), β(t), and γ(t). To finish the proof,
we just need to see that each of these is negative in I. We write f ∼ f∗ if

f

f∗
= 2utv(1 + t2)w(2 + t2 + t−2)x

for exponents u, v, w, x ∈ R. In this case, f and f∗ have the same sign.

Lemma 3.6 β < 0 on I.

Proof: Taking (u, v, w, x) = (−14, 0, 11/2, 0) we have β ∼ −β∗,

β∗(t) = (−2 + 30 log(2)) + t2(−58 + 420 log(2))− 15(1 + 14t2) log(1 + t2).

Noting that log(2) = 0.69... we eyeball β∗ and see that it is positive for t ∈ I.
The term +420 log(2)t2 dominates. Hence β < 0 on I. ♠

Lemma 3.7 γ < 0 on I.

Proof: Taking (u, v, w, x) = (−41/2,−16, 12, 1/2) we have γ ∼ −γ∗,

γ∗(t) = (−31 + 360 log(2)) + t2(56− 585 log(2)) + t4(−29 + 315 log(2))+

15(−8 + 13t2 − 7t4) log(2 + t2 + t−2).

We have γ∗(55/64) > 24 and we estimate easily that γ∗t > −210 on I. Only
the underlined term has negative derivative in I. Noting that I has length
2−6, we see that γ∗ cannot decrease more than 24 as we move from x0 to
any other point of I. Hence γ∗ > 0 on I. Hence γ < 0 on I. ♠

Lemma 3.8 α < 0 on I.

Proof: Taking (u, v, w, x) = (−29,−14, 10, 3/2) we have α ∼ −α∗,

α∗(t) = γ∗(t) + δ∗(t), δ∗(t) = 15 log 2× (8− 13t2 + 7t4).

We see easily that δ∗ > 0 on I. So, from Lemma C33, we have α∗ > 0 on I.
Hence α < 0 on I. ♠
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4 Proof of Statement 1

4.1 Rational Approximation

We first explain our calculation and then we give a record of its performance.

Suppose we want to establish an inequality like (ab )
p
q < c

d , where every
number involved is a positive integer. This inequality is true iff bpcq−apdq >
0. We check this using exact integer arithmetic. The same idea works with
(>) in place of (<). We call this the expanding out method .

More generally, we will want to verify inequalities like

10∑
i=1

b−si −
10∑
i=1

a
−s/2
i > C. (21)

where all ai belong to the set {2, 3, 4}, and bi, c, s are all rational. more
specifically s ∈ [13, 15+] will be a dyadic rational and c will be positive. The
expression on the left will be Es(p)−Es(p0) for various choices of p, and the
constant C is related to the error term we define below.

Here is how we handle expressions like this. For each index i ∈ {1, ..., 10}
we produce rational numbers Ai and Bi such that

A
s/2
i > ai Bs

i < bi. (22)

We use the expanding out method to check these inequalities. We then
check that

10∑
i=1

Bi −
10∑
i=1

Ai > C. (23)

This last calculation is again done with integer arithmetic. Equations 22
and 23 together imply Equation 21. Logically speaking, the way that we
produce the rational Ai and Bi does not matter, but let us explain how we

find them in practice. For Ai we compute 232a
−s/2
i and round the result up

to the nearest integer Ni. We then set Ai = Ni/2
32. We produce Bi in a

similar way. When we have verified Equation 21 in this manner we say that
we have used the rational approximation method to verify Equation 21. We
will only need to make verifications like this on the order of 20000 times.

4.2 The Grading Step

We say that a rational number p/q is dyadic if q is a power of 2. We say
that a block (defined in the previous chapter) is dyadic if all coordinates of
all the block vertices are dyadic rationals.

We perform the following pass/fail evaluation of X.
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1. If I ⊂ [0, 13] or I ⊂ [15+, 16] or Q ∩Ψ4 = ∅, we pass X because X is
irrelevant to the calculation.

2. If s0 ≥ 15 and Q ⊂ Ψ̂4 we pass X.

3. s0 < 13 and s1 > 13 we fail X because we don’t want to make any
computations which involve exponents less than 13.

4. If X has not been passed or failed, we try to use the rational approxi-
mation method to verify that Θ(v) > |X|21/512− |X|22 for each vertex
v of X. If we succeed at this, then we pass X. Otherwise we fail X.

To prove Statement 1 of the Endgame Theorem it suffices to find a par-
tition of [0, 16]× [0, 1]2 into blocks which all pass the evaluation.

Subdivision: Let X = I × Q. Here is the rule we use to subdivide X:
If 16|X|2 > |X|1 we subdivide X along Q dyadically, into 4 pieces. Other-
wise we subdivide X along I, into two pieces. This method takes advantage
of the lopsided form of Lemma C22 and produces a small partition.

4.3 Running the Algorithm

We perform the following algorithm.

1. We start with a list L of blocks. Initially L has the single member
{0, 16} × {0, 1}2.

2. We let B be the last block on L. We grade B. If B passes, we delete
B from L. If L = ∅ then HALT. If B fails, we delete B from L and
append to L the subdivision of B. Then we go back to Step 1.

For the calculation, I used a 2017 iMac Pro with a 3.2 GHz Intel Zeon W
processor, running the Mojave operating system. The Java version is Java
8 Update 201. When I run the algorithm, it halts with success after 21655
steps and in about 1 minute. The partition it produces has 14502 blocks.
This proves Statement 1 of the Endgame Theorem.
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5 Proof of Statements 2 and 3

We carry over the notation from the previous two chapters. In particular,
we define Θ as in Equation 12. Our parameter interval is I = [55, 56]/64.
The left endpoint is

t0 =
55

64
. (24)

Lemma 5.1 For any ξ ∈ Ψ̂8 let Θ(s, ξ) = Es(ξ) − Es(ξ). Then for s ∈
[15, 15+] we have ∂Θ/∂s < 0.

Proof: We compute that

Θst(t0, t0, 15) < 0, Θs(t0, t0, 15) < −2−7, (25)

and these conditions combine with Equation 14 to show that

Θs(15, t, t) < −2−7. ∀t ∈ I. (26)

Lemma 3.5 gives us |Θss| ≤ 2−6 on [13, 16]×Ψ4. Hence

|Θss| × |15+ − 15| ≤ 2−6 × 25

512
< 2−7. (27)

Hence Θs(s, t, t) varies by less than 2−7 as s ranges in [15, 15+]. Hence
Θs(s, t, t) < 0 for all s ∈ [15, 15+] and all t ∈ I. ♠

Now we deduce Statements 2 and 3. By Statement 1, we have Θ > 0 on
Ψ̂8 × {15}. We compute that Θ(x, x, 15+) < 0 for

x = 445/512 ∈ [55, 56]/64.

Combining this with Lemma 5.1, we see that there exists a smallest param-
eter ש ∈ (15, 15+) such that Θ(ש, p∗) = 0 for some p∗ ∈ Ψ̂8. For s > ,ש
Lemma 5.1 now says that Θ(s, p∗) < 0. This establishes Statements 2 and
3 at the same time.
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