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1 Introduction

The pentagram map, T , is a natural operation one can perform on polygons.
See [S1], [S2] and [OST] for the history of this map and additional references.
Though this map can be defined for an essentially arbitrary polygon in an
essentially arbitrary field, it is easiest to describe the map for convex polygons
contained in R

2. Given such an n-gon P , the corresponding n-gon T (P ) is
the convex hull of the intersection points of consequtive shortest diagonals
of P . Figure 1 shows two examples.

T(P)T(P)

P P

Figure 1: The pentagram map defined on a pentagon and a hexagon.

Thinking of R
2 as a natural subset of the projective plane RP

2, we
observe that the pentagram map commutes with projective transformations.
That is, φ(T (P )) = T (φ(P )), for any projective transformation φ. Indeed,
the pentagram map induces a self-diffeomorphism of the space Cn of convex
n-gons modulo projective transformations. We again denote this map by T .

It turns out that T is the identity map on C5 and an involution on C6.
For n ≥ 7, the map T exhibits quasi-periodic properties. Experimentally, the
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orbits of T exhibit the kind of quasiperiodic motion associated to completely
integrable systems. It seems that T preserves a certain foliation of Cn by
roughly half-dimensional tori, and the action of T on each torus is conjugate
to a rotation. Our recent paper [OST] very nearly proves this result.

Rather than work directly with Cn, we work with a slightly larger space,
which we call Pn. The space Pn is the space of twisted n-gons modulo
projective equivalence. (We give the formal definition in §2.1 below.) We
introduce coordinates that identify Pn with an open subset of R

2n. Using
these coordinates, we show that the pentagram map preserves a Poisson
structure that is completely integrable in the sense of Arnold–Liouville, [A],
and we give an explicit and complete list of invariants (or integrals) for the
map. This is the algebraic part of our theory.

The space Cn is naturally a subspace of Pn, and our algebraic results say
something (but not quite enough) about the action of the pentagram map
on Cn. There are still some details about how the Poisson structure and
the invariants restrict to Cn that we have yet to work out. To get a crisp
geometric result, we work with a related space, which we describe next.

We say that a universally convex twisted n-polygon is a map φ : Z → R
2

such that φ(Z) is convex and contained in the positive quadrant. We require
that

φ(k + n) = M ◦ φ(k); ∀k ∈ Z. (1)

Here M : R
2 → R

2 is a linear transformation having the form

M =

[
a 0
0 b

]
; a < 1 < b (2)

The image of φ looks somewhat like a “polygonal hyperbola”. We say that
two universally convex twisted n-gons φ1 and φ2 are equivalent if there is a
positive diagonal matrix µ such that µ ◦φ1 = φ2. Let Un denote the space of
universally convex twisted n-gons modulo equivalence. It turns out that Un

is a pentagram-invariant and open subset of Pn. Here is our main geometric
result.

Theorem 1.1 Almost every pont of Un lies on a smooth torus that has a

T -invariant affine structure. Hence, the orbit of almost every universally

convex n-gon undergoes quasi-periodic motion under the pentagram map.

In this note we will sketch the main ideas in the proof of Theorem 1.1. We
refer the reader to [OST] for more results and details, as well as a discussion
of the context behind the integrability we establish.
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2 Sketch of the Proof

2.1 Coordinates

A twisted n-gon is a map φ : Z → RP
2 such that

φ(n + k) = M ◦ φ(k) (3)

for some projective transformation M and all k. We let vi = φ(i). Thus, the
vertices of our twisted polygon are naturally ...vi−1, vi, vi+1, .... Our standing
assumption is that vi−1, vi, vi+1 are in general position for all i, but sometimes
this assumption alone will not be sufficient for our constructions.

Recall that the cross ratio of 4 collinear points in RP
2 is given by

[t1, t2, t3, t4] =
(t1 − t2) (t3 − t4)

(t1 − t3) (t2 − t4)
. (4)

To get this expression, we use a projective transformation to identify the line
containing the points with R; the result is independent of the choice. We
use the cross ratio to construct coordinates on the space of twisted polygons.
We associate to every vertex vi two numbers:

xi = [vi−2, vi−1, ((vi−2, vi−1) ∩ (vi, vi+1)) , ((vi−2, vi−1) ∩ (vi+1, vi+2))]

yi = [((vi−2, vi−1) ∩ (vi+1, vi+2)) , ((vi−1, vi) ∩ (vi+1, vi+2)) , vi+1, vi+2]
(5)

called the left and right corner cross-ratios. We often call our coordinates
the corner invariants.

i

i+2

v
i+1v

i−1

v
i−2

v

v

Figure 2: Points involved in the definition of the invariants.

3



This construction is invariant under projective transformations, and thus
gives us coordinates on the space Pn. At generic points, Pn is locally diffeo-
morphic to R

2n.
To save words later, we say now that we will work with generic elements

of Pn, so that all constructions are well-defined. Let φ∗ = T (φ) be the image
of φ under the pentagram map. We choose the labelling scheme shown in
Figure 3. The black dots represent φ and the white ones represent φ∗.

4
5

3

1

2
2

3

4

Figure 3: The labelling scheme.

Now we describe the pentagram map in coordinates. Suppose the coor-
dinates for φ are x1, y1, ... and the coordinates for φ∗ = T (φ) are x∗

1, y
∗

1, ...
then

x∗

i = xi
1 − xi−1 yi−1

1 − xi+1 yi+1
, y∗

i = yi+1
1 − xi+2 yi+2

1 − xi yi
, (6)

Equation 6 has two immediate corollaroes. First, there is an interesting
scaling symmetry of the pentagram map. We have a rescaling operation on
R

2n, given by the expression

Rt : (x1, y1, ..., xn, yn) → (tx1, t
−1y1, ..., txn, t

−1yn). (7)

Corollary 2.1 The pentagram map commutes with the rescaling operation.

Second, the formula for the pentagram map exhibits rather quickly some
invariants of the pentagram map. When n is odd, define

On =

n∏

i=1

xi; En =

n∏

i=1

yi (8)
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When n is even, define

On/2 =
∏

i even

xi +
∏

i odd

xi. En/2 =
∏

i even

yi +
∏

i odd

yi. (9)

The products in this last equation run from 1 to n.

Corollary 2.2 When n is odd, the functions On and En are invariant under

the pentagram map. When n is even, the functions On/2 and En/2 are also

invariant under the pentagram map.

2.2 The Monodromy Invariants

In this section we describe the invariants of the pentagram map. We call
them the monodromy invariants. As above, let φ be a twisted n-gon with
invariants x1, y1, .... Let M be the monodromy of φ. We lift M to an element
of GL3(R). By slightly abusing notation, we also denote this matrix by M .
The two quantities

Ω1 =
trace3(M)

det(M)
; Ω2 =

trace3(M−1)

det(M−1)
; (10)

enjoy 3 properties.

• Ω1 and Ω2 are independent of the lift of M .

• Ω1 and Ω2 only depend on the conjugacy class of M .

• Ω1 and Ω2 are rational functions in the corner invariants.

We define
Ω̃1 = O2

nEnΩ1; Ω̃2 = OnE
2
nΩ2. (11)

In [S3] (and again in [OST]) it is shown that Ω̃1 and Ω̃2 are polynomials in
the corner invariants. Since the pentagram map preserves the monodromy,
and On and En are invariants, the two functions Ω̃1 and Ω̃2 are also invariants.

We say that a polynomial in the corner invariants has weight k if we have
the following equation

R∗

t (P ) = tkP. (12)
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here R∗

t denotes the natural operation on polynomials defined by the rescaling
operation above. For instance, On has weight n and En has weight −n. In
[S3] it shown that

Ω̃1 =

[n/2]∑

k=1

Ok; Ω̃2 =

[n/2]∑

k=1

Ek (13)

where Ok has weight k and Ek has weight −k. Since the pentagram map com-
mutes with the rescaling operation and preserves Ω̃1 and Ω̃2, it also preserves
their “weighted homogeneous parts”. That is, the functions O1, E1, O2, E2, ...
are also invariants of the pentagram map. These are the monodromy invari-
ants. They are all nontrivial polynomials. In [S3] it is shown that the
monodromy invariants are algebraically independent.

2.3 The Poisson Bracket

In [OST] we introduce the Poisson bracket on Pn. Let C∞

n denote the algebra
of smooth functions on R

2n. A Poisson structure on C∞

n is a map

{ , } : C∞

n × C∞

n → C∞

n (14)

that obeys the following axioms.

1. Antisymmetry: {f, g} = −{g, f}

2. Linearity: {af1 + f2, g} = a{f1, g} + {f2, g}.

3. Leibniz Identity: {f, g1g2} = g1{f, g2} + g2{f, g1}.

4. Jacobi Identity: Σ{f1, {f2, f3}} = 0.

Here Σ denotes the cyclic sum.
We define a following Poisson bracket on the coordinate functions of R

2n.

{xi, xi±1} = ∓xi xi+1, {yi, yi±1} = ±yi yi+1 (15)

All other brackets not explicitly mentioned above vanish. Once we have the
definition on the coordinate functions, we use linearity and the Liebniz rule
to extend to all rational functions. An easy exercise shows that the Jacobi
identity holds.
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Two functions f and g are said to Poisson commute if {f, g} = 0. A
function f is said to be a Casimir (relative to the Poisson structure) if f
Poisson commutes with all other functions.

The corank of a Poisson bracket on a smooth manifold is the codimen-
sion of the generic symplectic leaves. These symplectic leaves can be locally
described as levels Fi = const of the Casimir functions. See [W] for the
details.

Now that we have these basic definitions in place, we can state the main
lemmas we establish in [OST] concerning our Poisson bracket. We establish
4 things.

1. The Poisson bracket is invariant with respect to the Pentagram map.

2. The monodromy invariants Poisson commute.

3. The invariants in Equations 8 and (in the even case) 9 are Casimirs.

4. The Poisson bracket has corank 2 if n if odd and corank 4 if n is even.

We now consider the case when n is odd. The even case is similar. On the
space Pn we have a generically defined and T -invariant Poisson bracked that
is invariant under the pentagram map. This bracket has co-rank 2, and the
generic level set of the Casimir functions has dimension 4[n/2] = 2n− 2. On
the other hand, after we exclude the two Casimirs, we have 2[n/2] = n − 1
algebraically independent invariants that Poisson commute with each other.
This gives us the classical Liouville-Arnold complete integrability.

2.4 The End of the Proof

Now we specialize our algebraic result to the space Un of universally convex
twisted n-gons. We check that Un is an open and invariant subset of Pn.
The invariance is pretty clear. The openness result derives from 3 facts.

1. Local convexity is stable under perturbation.

2. The linear transformations in Equation 2 extend to projective trans-
formations whose type is stable under small perturbations.

3. A locally convex twisted polygon that has the kind of hyperbolic mon-
odromy given in Equation 2 is actually globally convex.

7



As a final ingredient in our proof, we show that the leaves of Un, namely
the level sets of the monodromy invariants, are compact. We don’t need to
consider all the invariants; we just show in a direct way that the level sets of
En and On together are compact.

The rest of the proof is the usual application of Sard’s theorem and the
definition of integrability. We explain the main idea in the odd case. The
space Un is locally diffeomorphic to R

2n, and foliated by leaves which gener-
ically are smooth compact symplectic manifolds of dimension 2n − 2. A
generic point in a generic leaf lies on an (n−1) dimensional smooth compact
manifold, the level set of our monodromy invariants. On a generic leaf, the
symplectic gradients of the monodromy functions are linearly independent
at each point of the leaf.

The n− 1 symplectic gradients of the monodrony invariants give a natu-
ral basis of the tangent space at each point of our generic leaf. This basis is
invariant under the pentagram map, and also under the Hamiltonian flows
determined by the invariants. This gives us a smooth compact n − 1 mani-
fold, admitting n−1 commuting flows that preserve a natural affine structure.
From here, we see that the leaf must be a torus. The pentagram map pre-
serves the canonical basis of the torus at each point, and hence acts as a
translation. This is the quasi-periodic motion of Theorem 1.1.
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