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Preface

Outer billiards is a dynamical system defined relative to a convex shape in the
plane. B. H. Neumann introduced outer billiards in the 1950s, and J. Moser pop-
ularized the system in the 1970s as a toy model for celestial mechanics. When
the underlying shape is smooth, outer billiards has connections to area-preserving
twist maps and Kolmogorov-Arnold-Moser (KAM) theory. Whenthe underlying
shape is a polygon, outer billiards is related to interval exchange transformations
and piecewise isometric actions. Outer billiards is an appealing dynamical system
because it is quite simple to define and yet gives rise to a richintricate structure.

The Moser-Neumann questionhas been one of the basic questions guiding the
subject of outer billiards. This question asks,Does there exist an outer billiards
system with an unbounded orbit? Until recently, all the results on the subject have
given negative answers to the question in particular cases.That is, it has been shown
that all orbits are bounded for various classes of shape.

Recently, we answered the Moser-Neumann question in theaffirmativeby showing
that outer billiards has an unbounded orbit when defined relative to the Penrose kite,
the convex quadrilateral that arises in the famous Penrose kite-and-dart tilings. Even
more recently, D. Dolgopyat andB. Fayadproved, using different methods, that outer
billiards has unbounded orbits when defined relative to a half-disk.

Our original unboundedness proof involves special properties of the Penrose kite
and naturally raises questions about generalizations. In this book, we will prove
that outer billiards has unbounded orbits when defined relative to any irrational kite.
A kite is a convex quadrilateral having a diagonal that is also a line of symmetry.
The kite isirrational if the other diagonal divides the kite into two triangles whose
areas are not rational multiples of each other.

As we prove the unboundedness result for irrational kites, we will explore the
deep structure underlying outer billiards on kites. Our analysis reveals connec-
tions between outer billiards on kites and self-similar sets, higher-dimensional poly-
tope exchange maps, Diophantine approximation, the modular group, the universal
odometer, and renormalization. The structural results in this book perhaps point the
way toward a broader theory of polygonal outer billiards.

I discovered most of the phenomena discussed in this book through computer
experimentation with my program Billiard King and only later found conventional
proofs. I encourage the reader of this book to download Billiard King and play with
it. This Java program is platform-independent and heavily documented. The reader
can download Billiard King from http://press.princeton.edu/titles/9105.html or from
my Brown University website, http://www.math.brown.edu/∼/res/BilliardKing. My
website also has an interactive guide to this book.
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Chapter One

Introduction

1.1 DEFINITIONS AND HISTORY

B. H. Neumann [N] introducedouter billiards in the late 1950s. In the 1970s, J.
Moser [M1] popularized outer billiards as a toy model for celestial mechanics. See
[T1], [T3], and [DT1] for expositions of outer billiards and many references on the
subject.

Outer billiards is a dynamical system defined (typically) inthe Euclidean plane.
Unlike the more familiar variant, which is simply calledbilliards, outer billiards
involves a discrete sequence of moves outside a convex shaperather than inside it.
To define an outer billiards system, one starts with a boundedconvex setK ⊂ R2

and considers a pointx0 ∈ R2 − K . One definesx1 to be the point such that the
segmentx0x1 is tangent toK at its midpoint andK lies to the right of the ray−−→x0x1.
The iterationx0 → x1 → x2 → · · · is called theforward outer billiards orbitof
x0. It is defined for almost every point ofR2 − K . The backward orbit is defined
similarly.

2

K

3

1 0

Figure 1.1: Outer billiards relative toK .

One important feature of outer billiards is that it is an affinely invariant system.
Since affine transformations carry lines to lines and respect the propertyof bisection,
an affine transformation carrying one shape to another conjugates the one outer
billiards system to the other.

It is worth recalling here a few basic definitions about orbits. An orbit is called
periodic if it eventually repeats itself, and otherwiseaperiodic. An orbit is called
boundedif the whole orbit lies in a bounded portion of the plane. Otherwise, the
orbit is calledunbounded. Sometimes (un)bounded orbits are called(un)stable.
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J. Moser [M2, p. 11] attributes the following question1 to Neumann ca. 1960,
though it is sometimes called Moser’s question.Is there an outer billiards system
with an unbounded orbit? This is an idealized version of the question about the
stability of the solar system. Here is a chronological list of much of the work related
to this question.

• J. Moser [M2] sketches a proof, inspired by KAM theory, that outer billiards
on K has all bounded orbits provided that∂K is at leastC6 smooth and
positively curved. R. Douady gives a complete proof in his thesis [D].

• In Vivaldi-Shaidenko [VS], Kolodziej [Ko], and Gutkin-Simanyi [GS], it is
proved (each with different methods) that outer billiards on aquasirational
polygonhas all orbits bounded. This class of polygons includes rational
polygons – i.e., polygons with rational-coordinate vertices – and also regular
polygons. In the rational case, all defined orbits are periodic.

• S. Tabachnikov [T3] analyzes the outer billiards system for a regular pentagon
and shows that there are some nonperiodic (but bounded) orbits.

• P. Boyland [B] gives examples ofC1 smooth convex domains for which an
orbit can contain the domain boundary in itsω-limit set.

• F. Dogru and S. Tabachnikov [DT2] show that, for a certain class of polygons
in the hyperbolic plane, calledlarge, all outer billiards orbits are unbounded.
(One can define outer billiards in the hyperbolic plane, though the dynamics
has a somewhat different feel to it.)

• D. Genin [G] shows that all orbits are bounded for the outer billiards systems
associated to trapezoids. See §A.4. Genin also makes a briefnumerical study
of a particular irrational kite based on the square root of 2,observes possibly
unbounded orbits, and indeed conjectures that this is the case.

• In [S] we prove that outer billiards on the Penrose kite has unbounded or-
bits, thereby answering the Moser-Neumann question in the affirmative. The
Penrose kite is the convex quadrilateral that arises in the Penrose tiling.

• Recently, D. Dolgopyat and B. Fayad [DF] showed that outer billiards on
a half-disk has some unbounded orbits. Their proof also works for regions
obtained from a disk by nearly cutting it in half with a straight line. This is a
second affirmative answer to the Moser-Neumann question.

The result in [S] naturally raises questions about generalizations. The purpose
of this book is to develop the theory of outer billiards on kites and show that the
phenomenon of unbounded orbits for polygonal outer billiards is (at least for kites)
quite robust.

1It is worth pointing out that outer billiards relative to a line segment has unbounded orbits. This
trivial case is meant to be excluded from the question.
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1.2 THE ERRATIC ORBITS THEOREM

A kite is a convex quadrilateralK having a diagonal that is a line of symmetry. We
say thatK is (ir)rational if the other diagonal dividesK into two triangles whose
areas are (ir)rational multiples of each other. Equivalently, K is rational iff it is
affinely equivalent to a quadrilateral with rational vertices. To avoid trivialities, we
require that exactly one of the two diagonals ofK is a line of symmetry. This means
that a rhombus does not count as a kite.

Since outer billiards is an affinely natural system, we find ituseful to normalize
kites in a particular way. Any kite is affinely equivalent to the quadrilateralK (A)
having vertices

(−1,0), (0,1), (0,−1), (A,0), A ∈ (0,1). (1.1)

Figure 1.1 shows an example. The omitted caseA = 1 corresponds to rhombuses.
Henceforth, when we saykite, we meanK (A) for someA. The kite K (A) is
(ir)rational iff A is (ir)rational.

Let Zodd denote the set of odd integers. Reflection in each vertex ofK (A) pre-
servesR × Zodd. Hence outer billiards onK (A) preservesR × Zodd. We call an
outer billiards orbit onK (A) specialif (and only if) it is contained inR×Zodd. We
discuss only special orbits in this book. The special orbitsare hard enough for us
already. In the appendix, we will say something about the general case. See §A.3.

We call an orbitforward erraticif the forward orbit is unbounded and also returns
to every neighborhood of a kite vertex. We state the same definition for the backward
direction. We call an orbiterratic if it is both forward and backward erratic. In Parts
1–4 of the book we will prove the following result.

Theorem 1.1 (Erratic Orbits) The following hold for any irrational kite.

1. There are uncountably many erratic special orbits.

2. Every special orbit is either periodic or unbounded in both directions.

3. The set of periodic special orbits is open dense inR × Zodd.

It follows from the work on quasirational polygons cited above that all orbits are
periodic relative to a rational kite. (The analysis in this book gives another proof of
this fact, at least for special orbits. See the remark at the end of §3.2.) Hence the
Erratic Orbits Theorem has the following corollary.

Corollary 1.2 Outer billiards on a kite has an unbounded orbit if and only ifthe
kite is irrational.

The Erratic Orbits Theorem is an intermediate result included so that the reader
can learn a substantial theorem without having to read the whole book. We will
describe our main result in the next two sections.
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1.3 COROLLARIES OF THE COMET THEOREM

In Parts 5 and 6 of the book we will go deeper into the subject and establish our main
result, the Comet Theorem. The Comet Theorem and its corollaries considerably
sharpen the Erratic Orbits Theorem. We defer statement of the Comet Theorem
until the next section. In this section, we describe some of its corollaries.

Given a Cantor setC contained in a lineL, we letC# be the set obtained from
C by deleting the endpoints of the components ofL − C. We callC# a trimmed
Cantor set. Note thatC − C# is countable.

The interval

I = [0,2]× {−1} (1.2)

turns out to be a very useful interval. Figure 1.2 showsI and its first 3 iterates under
the outer billiards map.

I

Figure 1.2: I and its first 3 iterates.

Let UA denote the set of unbounded special orbits relative toA.

Theorem 1.3 Relative to any irrational A∈ (0,1), the following are true.

1. UA is minimal: Every orbit in UA is dense in UA and all but at most2 orbits
in UA are both forward dense and backward dense in UA.

2. UA is locally homogeneous: Every two points in UA have arbitrarily small
neighborhoods that are isometric to each other.

3. UA ∩ I = C#
A for some Cantor set CA.

Remarks:
(i) One endpoint ofCA is the kite vertex(0,−1). Hence Statement 1 implies that
all but at most 2 unbounded special orbits are erratic. The remaining special orbits,
if any, are each erratic in one direction.
(ii) Statements 2 and 3 combine to say that every point inUA lies in an interval that
intersectsUA in a trimmed Cantor set. This gives us a good local picture ofUA.
One thing we are missing is a good global picture ofUA.
(iii) The Comet Theorem describesCA explicitly.
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Given Theorem 1.3, it makes good sense to speak of the first return map to any
interval inR× Zodd. From the minimality result, the local nature of the return map
is essentially the same around any point ofUA. To give a crisp picture of this first
return map, we consider the intervalI discussed above.

For j = 1,2, let f j : X j → X j be a map such thatf j and f −1
j are defined on all

but perhaps a finite subset ofX j . We call f1 and f2 essentially conjugateif there
are countable setsC j ⊂ X j , each one contained in a finite union of orbits, and a
homeomorphism

h: X1 − C1→ X2 − C2

that conjugatesf1 to f2.
An odometeris the mapx→ x + 1 on the inverse limit of the system

· · · → Z/D3→ Z/D2→ Z/D1, Dk|Dk+1 ∀k. (1.3)

Theuniversal odometeris the mapx→ x+1 on theprofinite completionof Z. This
is the inverse limit taken over the system of all finite cyclicgroups. For concreteness,
Equation 1.3 defines the universal odometer whenDk = k factorial. See [H] for a
detailed discussion of the universal odometer.

Theorem 1.4 LetρA be the first return map to UA ∩ I .

1. For any irrational A∈ (0,1), the mapρA is defined on all but at most one
point and is essentially conjugate to an odometerZ A.

2. Any given odometer is essentially conjugate toρA for uncountably many
difference choices of A.

3. ρA is essentially conjugate to the universal odometer for almost all A.

Remarks:
(i) The Comet Theorem explicitly describesZ A in terms of a sequence we call

the remormalization sequence. This sequence is related to the continued fraction
expansion ofA. We will give a description of this sequence in the next section.
(ii) Theorem 1.4 is part of a larger result. There is a certainsuspension flow over
the odometer, which we callgeodesic flow on the cusped solenoid. It turns out that
the time-one map for this flow serves as a good model, in a certain sense, for the
dynamics onUA. §24.3.

Our next result highlights an unexpected connection between outer billiards on
kites and the modular groupSL2(Z). The groupSL2(Z) acts naturally on the upper
half-plane model of the hyperbolic plane,H2, by linear fractional transformations.
Closely related toSL2(Z) is the(2,∞,∞)-triangle groupŴgenerated by reflections
in the sides of the geodesic triangle with vertices(0,1, i ). The points 0 and 1 are
thecusps, and the pointi is the internal vertex corresponding to the right angle of
the triangle. See §25.2 for more details.Ŵ andSL2(Z) are commensurable: Their
intersection has finite index in both groups. In our next result, we interpret our kite
parameter interval(0,1) as the subset of the ideal boundary ofH2.
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Theorem 1.5 Let S= [0,1]−Q. Let u(A) be the Hausdorff dimension of UA.

1. For all A ∈ S, the set UA has length0. Hence almost all points inR × Zodd

have periodic orbits relative to outer billiards on K(A).

2. If A, A′ ∈ S are in the sameŴ-orbit, then UA and UA′ are locally similar. In
particular, u(A) = u(A′).

3. If A ∈ S is quadratic irrational, then every point of UA lies in an interval that
intersects UA in a self-similar trimmed Cantor set.

4. The function u is almost everywhere equal to some constantu0 and yet maps
every open subset of S onto[0,1].

Remarks:
(i) We do not know the value ofu0. We guess that 0< u0 < 1. Theorem 25.9 gives
a formula foru(A) in many cases.
(ii) The wordsimilar in statement 2 means that the two sets have neighborhoods
that are related by a similarity. In statement 3, aself-similarset is a disjoint finite
union of similar copies of itself.
(iii) We will see that statement 2 essentially implies both statements 3 and 4. State-
ment 2 is the first hint that outer billiards on kites is connected to the modular group.
The Comet Theorem says more about this.
(iv) Statement 3 of Theorem 1.4 combines with statement 4 of Theorem 1.5 to say
that there is a “typical behavior” for outer billiards on kites, in a certain sense. For
almost every parameterA, the dimension ofUA is the (unknown) constantu0 and
the return mapρA is essentially conjugate to the universal odometer.

We end this section by comparing our results here with the main theorems in [S]
concerning the Penrose kite. The Penrose kite parameter is

A =
√

5− 2= φ−3,

whereφ is the golden ratio. In [S], we prove2 thatC#
A ⊂ UA and that the first return

map toC#
A is essentially conjugate to the 2-adic odometer. Theorems 1.3 and 1.4

subsume these results about the Penrose kite.
As in §25.5.2, we might have computed in [S] that dim(CA) = log(2)/ log(φ3).

However, at the time we did not know how this number was related to dim(UA),
the real quantity of interest to us. From Theorem 1.3, we knowadditionally that
C#

A = UA ∩ I and dim(UA) = dim(CA).
While we recover and improve all the maintheoremsin [S], there is one way that

the work we do in [S] for the Penrose kite goes deeper than what we do here (for
every irrational kite). The work in [S] establishes a deeper kind of self-similarity
for the Penrose kite orbits than we have established in statement 3 of Theorem 1.5.
See §A.2 for a discussion.

2Technically, we prove these results for a smaller Cantor setwhich is the left half ofCA. However,
the arguments usingCA in place of its left half would be just about the same.
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1.4 THE COMET THEOREM

Now we describe our main result. Say thatp/q is oddor evenaccording to whether
pq is odd or even. There is a unique sequence{pn/qn} of distinct odd rationals,
converging toA, such that

p0

q0
= 1

1
, |pnqn+1− qn pn+1| = 2, ∀n. (1.4)

We call this sequence theinferior sequence. See §4.1. This sequence is closely
related to continued fractions.

We define

dn = floor

(
qn+1

2qn

)
, n = 0,1,2, ... (1.5)

Say that asuperior termis a termpn/qn such thatdn ≥ 1. We will show that there are
infinitely many superior terms. Say that thesuperior sequenceis the subsequence
of superior terms. Say that therenormalization sequenceis the corresponding sub-
sequence of{dn}. We reindex so that the superior and renormalization sequences
are indexed by 0,1,2, ....

Example: To fix ideas, we demonstrate how this works for the Penrose kite pa-
rameter.A = φ−3. The inferior sequence forA is

1
1

1

3

1
5

3

13

5
21

13

55

21
89

55

233

89
377

. . . .

The bold terms are the terms of the superior sequence. The superior sequence
obeys the recurrence relationrn+2 = 4rn+1 + rn, wherer stands for eitherp or q.
The initial sequence{dn} is 1,0,1,0, .... The renormalization sequence is 1,1,1, ....

The definitions that follow work entirely with the superior sequence. We define
Z A to be the inverse limit of the system

. . .→ Z/D3→ Z/D2→ Z/D1, Dn =
n−1∏

i=0

(di + 1). (1.6)

We equipZ A with a metric, definingdA(x, y) = q−1
n−1, wheren is the smallest index

such that [x] and [y] disagree inZ/Dn. In the Penrose kite example above,Z A is
naturally the 2-adic integers anddA gives the same topology as the classical 2-adic
metric.

We can identify the points ofZ A with the sequence space

5A =
∞∏

i=0

{0, ...,di }. (1.7)

The identification works like this.

φ1:
∞∑

j=0

k̃ j D j ∈ Z A −→ {k j } ∈ 5A. (1.8)
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The elements on the left hand side are formal series, and

k̃ j =
{ k j if p j /q j < A.

d j − k j if p j /q j > A.
(1.9)

Our identification is nonstandard in that it usesk̃ j in place of the more obvious
choice ofk j . Needless to say, we make this less-than-obvious choice because it
reflects the structure of outer billiards.

There is a mapφ2:5A→ R × {−1}, defined as follows.

φ2: {k j } −→
( ∞∑

j=0

2k jλ j ,−1

)
, λ j = |Aqj − p j |. (1.10)

We defineCA = φ2(5A). Equivalently,

CA = φ(Z A), φ = φ2 ◦ φ1. (1.11)

(The mapφ depends onA, but we suppress this from our notation.) It turns out
thatφ:Z A→ CA is a homeomorphism andCA is a Cantor set whose convex hull is
exactlyI , the interval discussed in the previous section. LetC#

A denote the trimmed
Cantor set based onCA.

Define

Z [ A] = {m A+ n|m,n ∈ Z}. (1.12)

Say that theexcursion distanceof a portion of an outer billiards orbit is the
maximum distance from a point on this orbit portion to the origin.

Theorem 1.6 (Comet)Let UA denote the set of unbounded special orbits relative
to an irrational A∈ (0,1).

1. For any N, there is an N′ with the following property. Ifζ ∈ UA satisfies
‖ζ‖ < N, then the kth outer billiards iterate ofζ lies in I for some|k| < N′.
Here N′ depends only on N and A.

2. UA ∩ I = C#
A. The first return mapρA: C#

A → C#
A is defined precisely on

C#
A − φ(−1). The mapφ−1 ◦ ρA ◦ φ, wherever defined onZ A, equals the

odometer.

3. For anyζ ∈ C#
A−φ(−1), the orbit portion betweenζ andρA(ζ )has excursion

distance in
[
c−1

1 d−1, c1d−1
]

and length in
[
c−1

2 d−2, c2d−3
]
. Here c1, c2 are

universal positive constants and d= dA
(
− 1, φ−1(ζ )

)
.

4. C#
A = CA − (2Z [ A] × {−1}). Two points in UA lie on the same orbit if and

only if the difference between their first coordinates lies in 2Z [ A].

Remarks:
(i) To use a celestial analogy, the unbounded special orbitsare comets andI is the
visible sky. Item 1 says roughly that any comet is always either approachingI or
leavingI . Item 2 describes the geometry and combinatorics of the visits to I . Item
3 gives a model of the behavior between visits. Item 4 gives analgebraic view.
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(ii) Lemma 23.7 replaces the bounds in item 3 with explicit estimates. The orders
on all the bounds in item 3 are sharp except perhaps for the length upper bound. See
the remarks following Lemma 23.7 for a discussion, and also §A.2.
(iii) The Comet Theorem has an analog for the backward orbits. The statement is
the same except that the pointφ(0) replaces the pointφ(−1) and the mapx→ x−1
replaces the odometer. We have the general identityφ(0)+ φ(−1) = (2,−2).
(iv) Our analysis will show thatφ(0) andφ(−1) have well defined orbits iff they lie
in C#

A. It turns out that this happens iff the superior sequence forA is not eventually
monotone. The Comet Theorem implies that the forward orbit of φ(−1) and the
backward orbit ofφ(0), when defined, accumulate only at∞. We think ofφ(−1)
as the “cosmic ejector.” When a comet comes close to this point, it is ejected way
out into space. Similarly, we think ofφ(0) as the “cosmic attractor”.
(v) Statement 3 of Theorem 1.5 is a hint that the setsCA have a beautiful structure.
Here is a structural result outside the scope of this book. Letting C′A denote the
scaled-in-half version ofCA that lives in the unit interval, it seems that

C =
⋃

A∈[0,1]

(
C′A × {A}

)
⊂ [0,1]2 ⊂ RP2 (1.13)

is the limit set of a semigroupS⊂ SL3(Z) that acts by projective transformations.
(CA can be defined even for rationalA.) The group closure ofS has finite index in
a maximal cusp ofSL3(Z). Figure 1.3 shows a plot ofC.

Figure 1.3: The setC. The bottom isA = 0 and the top isA = 1.
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1.5 RATIONAL KITES

Like most authors who have considered outer billiards, we find it convenient to
work with the square of the outer billiards map. LetO2(x) denote the square outer
billiards orbit ofx. Let I = [0,2]× {−1}, as above, and let

4 = R+ × {−1,1}. (1.14)

Whenǫ ∈ (0,2/q), the orbitO2(ǫ,−1) has a combinatorial structure independent
of ǫ. See Lemma 2.2. ThusO2(1/q,−1) is a natural representative of this orbit. We
often call this orbit thefundamental orbit. The fundamentalorbit plays a crucial role
in our proofs. The following result is a basic mechanism for producing unbounded
orbits.

Theorem 1.7 Relative to p/q, the set O2(1/q,−1) ∩ 4 has diameter between
λ(p+ q)/2 andλ(p+ q)+ 2. Hereλ = 1 if p/q is odd andλ = 2 if p/q is even.

Any odd rationalp/q appears as (say) thenth term in a superior sequence{pi/qi }.
The terms beforep/q are uniquely determined byp/q. This is similar to what
happens for continued fractions. Define5n to be the product of the firstn factors
of5A, the space from Equation 1.7.

Theorem 1.8 Letµi = |pnqi − qn pi |.

O2

( 1

qn
,−1

)
∩ I =

⋃

κ∈5n

(
Xn(κ),−1

)
, Xn(κ) =

1

qn

(
1+

n−1∑

i=0

2kiµi

)
.

Example: Here we show Theorem 1.8 in action. The odd rational 19/49 determines
the inferior sequence

p0

q0
= 1

1
,

1

3
,

5

13
,

19

49
= p3

q3
.

All terms are superior, so this is also the superior sequence. In our example,

• n = 3.

• The superior sequence is 1,2,1.

• Theµ sequence is 30,8,2.

Therefore the first coordinates of the 12 points ofO2(1/49) ∩ I are given by

1⋃

k0=0

2⋃

k1=0

1⋃

k2=0

2(30k0+ 8k1+ 2k2)+ 1

49
.

Writing these numbers in a suggestive way, we see that the union above works out
to

1

49
×
(
1 5 17 21 33 37 61 65 77 81 93 97

)
.
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Remarks:
(i) Theorem 1.8 is a good example of a result that is easy to check on a computer.
One can check the result for the example we give, or for any other smallish param-
eter, using Billiard King.
(ii) A version of Theorem 1.8 holds in the even case as well. Wewill discuss the
even case of Theorem 1.8 in §22.7.
(iii) We view statements 2 and 3 as the heart of the Comet Theorem. We will prove
these two statements by combining Theorems 1.7 and 1.8 and then taking a geo-
metric limit. The proofs for statements 1 and 4 of the Comet Theorem require some
other ideas that we cannot describe without a buildup of machinery.
(iv) Theorem 1.8 has a nice conjectural extension, which describes the entire return
map toI . See §A.1. A suitable geometric limit of the conjecture in §A.1 describes
the structure of the orbits inI −C#

A in the case whenA is irrational. See Conjecture
A.1.

We mention two more results about outer billiards on rational kites. These results
do not play such an important role in our proof of the Comet Theorem, but they are
appealing and fairly easy by-products of our analysis.

Here is an amplification of the upper bound in Theorem 1.7.

Theorem 1.9 If p/q is odd, letλ = 1. If p/q is even, letλ = 2. Each special orbit
intersects4 in exactly one set of the form Ik × {−1,1}, where

Ik = (λk(p+ q), λ(k+ 1)(p+ q)), k = 0,1,2,3, ....

Hence any special orbit intersects4 in a set of diameter at mostλ · (p+ q)+ 2.

Theorem 1.9 is similar in spirit to a result in [K ]. See §3.4 for a discussion.
We call an outer billiards orbit onK (A) persistent3 if there are nearby and com-

binatorially identical orbits onK (A′) for all A′ sufficiently close toA. Otherwise,
we call the orbitfleeting. In the odd case,O2(1/q,±1) is fleeting.

Theorem 1.10 In the even rational case, all special orbits are persistent. In the odd
case, the set Ik×{−1,1} contains exactly two fleeting orbits, U+k and U−k , and these
are conjugateby reflection in the x-axis. In particular, we haveU±0 = O2(1/q,±1).

Remark: None of our structure theorems holds, as stated, for generalquadrilaterals
or even for nonspecial orbits on kites. We do not really have agood understanding
of the structure of outer billiards on a general rational quadrilateral, though we can
see that it promises to be quite interesting. We take up this discussion in §A.4.

3It would be more usual to call such orbitsstable, but in the subject of outer billiards, the wordstable
has historically meant the same as the wordbounded.
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1.6 THE ARITHMETIC GRAPH

Here we describe thearithmetic graph, a central construction in the book. One
should think of the first return map to4 = R+ × {−1,1}, for rational parameters,
as an essentially combinatorial object. The arithmetic graph gives a 2-dimensional
representation of this combinatorial object. The principle guiding our construction
is that sometimes it is better to understand the Abelian group Z [ A] as a module
overZ rather than as a subset ofR. Our arithmetic graph is similar in spirit to the
lattice vector fields studied by Vivaldi et al. in connectionwith interval exchange
transformations. See, e.g., [VL ].

Here we explain the idea roughly. See §2.4 for precise details. The arithmetic
graph is most easily explained in the rational case. Letψ be the square of the outer
billiards map. It turns out that every orbit starting on4 eventually returns to4. See
Lemma 2.3. Thus we can define the first return map

9:4→ 4. (1.15)

We define the mapT : Z2→ 2Z [ A] × {−1,1} by the formula

T(m,n) =
(
2Am+ 2n+ 1/q, (−1)p+q+1

)
. (1.16)

HereA = p/q.
Up to the reversal of the direction of the dynamics, every point of4 has the same

orbit as a point of the formT(m,n), where(m,n) ∈ Z2. For instance, the orbit
of T(0,0) = (1/q,−1) is what we called the fundamental orbit above. We form
the grapĥŴ(p/q) by joining the points(m1,m2) to (m2,n2) when these points are
sufficiently close together and alsoT(m1,n1) = 9±1(m2,n2). (The mapT is not
injective, so we have choices to make. That is the purpose of thesufficiently close
condition.)

We letŴ(p/q) denote the component of̂Ŵ(p/q) that contains(0,0). This com-
ponent tracks the orbitO2(1/q,−1), the main orbit of interest to us. Whenp/q is
odd,Ŵ(p/q) is an infinite periodic polygonal arc, invariant under translation by the
vector(q,−p). Note thatT(q,−p) = T(0,0). When p/q is even,Ŵ(p/q) is an
embedded polygon. We prove many structural theorems about the arithmetic graph.
Here we informally mention three central ones.

• The Embedding Theorem(Chapter 2):̂Ŵ(p/q) is a disjoint union of embed-
ded polygons and infinite embedded polygonal arcs. Every edge of Ŵ̂(p/q)
has length at most

√
2. The persistent orbits correspond to closed polygons,

and the fleeting orbits correspond to infinite (but periodic)polygonal arcs.

• The Hexagrid Theorem(Chapter 3): The structure of̂Ŵ(p/q) is controlled
by 6 infinite families of parallel lines. See Figure 3.3. Thequasiperiodic
structure is similar to what one sees in DeBruijn’s famous pentagrid con-
struction of the Penrose tilings. See [DeB].

• The Copy Theorem(Chapter 18; also Lemmas 4.2 and 4.3): IfA1 andA2 are
two rationals that are close in the sense of Diophantine approximation, then
the corresponding arithmetic graphsŴ1 andŴ2 have substantial agreement.
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The Hexagrid Theorem causesŴ(p/q) to have an oscillation (relative to the line
of slope−p/q through the origin) on the order ofp+q. The Hexagrid Theorem is
responsible for Theorems 1.7, 1.9, and 1.10. Referring to the superior sequence, the
Copy Theorem guarantees that one period ofŴ(pn/qn) is copied byŴ(pn+1/qn+1).
If we combine the Copy Theorem and the Hexgrid Theorem, we getTheorem
1.8. The Hexagrid Theorem and the Copy Theorem work as a team,with one
result forcing large oscillations and the other result organizing these oscillations in
a coherent way for the family of arithmetic graphs corresponding to the superior
sequence.

Figure 1.4: The graphsŴ(1/3), Ŵ(3/7), Ŵ(13/31), Ŵ(29/69).

We illustrate these ideas in Figure 1.4, where each frame shows one period of
Ŵ(p/q) in reference to the line of slope−p/q through the origin. Herep/q depends
on the box. We choose 4 consecutive terms in a superior sequence. Each graph
copies at least one period of the previous one, creating the beginnings of a large-
scale fractal structure.

When p/q is an even rational,Ŵ(p/q) is a closed embedded polygon. A related
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kind of period-copying phenomenon happens in the case of even rationals. We
consider arithmetic graphs associated to chains of rationals ..., p′/q′, p/q, ... such
that |pq′ − qp′| = 1 for consecutive pairs. Figure 1.5 shows the 4 solid polygons
bounded by the corresponding arithmetic graphs corresponding to 4 consecutive
terms in such a chain of even rationals.

Figure 1.5: The filled-in graphsŴ(2/5), Ŵ(5/12), Ŵ(8/19), Ŵ(21/50).

The polygons are nested. This always seems to occur for such chains of rationals,
though we do not actually know a proof. Fortunately, our actual proofs do not rely
on this nesting phenomenon. Billiard King has a feature thatdraws figures like this
automatically once the final term in the chain of rationals issupplied.

One final remark: The reader should compare the undersides ofthe polygons in
Figure 1.5 with the graphs in Figure 1.4. The fact that the twofigures so closely
resemble each other is not an accident. It has to do with our careful choice of
rationals. Part 6 of the book explores relationships like this.
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1.7 THE MASTER PICTURE THEOREM

The logic of the book works like this. After we define the arithmetic graph, we prove
a number of structural results about it. We then deduce the Comet Theorem and
its corollaries from these structural results. The way we understand the arithmetic
graph is to obtain a kind of closed-form expression for it. The Master Picture
Theorem gives this expression. Here we will give a rough description of this result.
We formulate and prove the Master Picture Theorem in Part 2 ofthe book.

Let us first discuss the Master Picture Theorem in vague terms. It sometimes
happens that one has a dynamical system ona high-dimensional manifoldM together
with an embeddingof a lower-dimensionalmanifoldX into M that is, in some sense,
compatible with the dynamics onM. The dynamics onM then induces a dynamical
system onX. Sometimes the higher-dimensionalsystem onM is much simpler than
the system onX, and most of the complexity of the system onX comes from its
complicated embedding intoM. The Master Picture Theorem says that this situation
happens for outer billiards on kites.

Now we will say something more precise. Recall that4 = R+ × {−1,1}. The
arithmetic graph encodes the dynamics of the first return map9:4→ 4. It turns
out that9 is an infinite interval exchange map. The Master Picture Theorem reveals
the following structure for each parameterA.

1. There is a locally affine mapµ from4 into a union̂4 of two 3-dimensional
tori.

2. There is a polyhedron exchange map9̂: 4̂→ 4̂ defined relative to a partition
of 4̂ into 28 polyhedra.

3. The mapµ is a semiconjugacy between9 and9̂.

In other words, the return dynamics of̂9 has a kind of compactification into a
3 dimensional polyhedron exchange map. All the objects above depend on the
parameterA, but we have suppressed them from our notation.

There is one master picture, a union of two 4-dimensional convex lattice polytopes
partitioned into 28 smaller convex lattice polytopes, thatcontrols everything. For
each parameter, one obtains the 3-dimensional picture by taking a suitable slice.

The fact that nearby slices give almost the same picture is the source of the Copy
Theorem. The interaction between the mapµ and the walls of our convex polytope
partitions is the source of the Hexagrid Theorem. The Embedding Theorem follows
from basic geometric properties of the polytope exchange map in an elementary
way that is hard to summarize here.

My investigation of the Master Picture Theorem is really just starting, and this
book has only the beginnings of a theory. First, I believe that a version of the Master
Picture Theorem should hold much more generally. (This is something that John
Smillie and I hope to work out together.) Second, some recentexperiments convince
me that there is a renormalization theory for this object grounded in real projective
geometry. All of this will perhaps be the subject of a future work.
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1.8 REMARKS ON COMPUTATION

As I mentioned in the preface, I discovered most of the phenomena discussed in
this book using my program Billiard King. Billiard King and this book developed
side by side in a kind of feedback loop. Since I am ultimately trying to verify
phenomena that I discovered with the aid of a computer, one might expect some
computational aspects to the formal proofs. The overall proof here uses considerably
less computation than the proof in [S], but I still use a computer-aided proof in several
places.

Mainly, I use a computer to check that various 4-dimensionalconvex integral
polytopes have disjoint interiors. This involves a small amount of linear algebra,
using exact integers, that one could in principle do by hand.One could do these
calculations by hand in the same way that one could count all the coins filling up a
bathtub. One could do it,but it is better left to a machine. Most of these computations
come from Part 3 of the book.

The experimental method I used has the advantage that I checked essentially
all the results with extensive and visually surveyable computation. The interested
reader can make many of the same visual checks by downloadingthe program and
playing with it. I suppose I cannot guarantee Billiard King does not have a subtle
bug, but the output from the program makes sense in a way that would be unlikely
in the presence of a serious problem. Also, the output of Billiard King matches the
results I have proved in a traditional way in this book.

1.9 ORGANIZATION OF THE BOOK

The book has 6 parts. Parts 1–4 comprise the core of the book. In Part 1, we prove
the Erratic Orbits Theorem modulo some auxilliary results such as the Hexagrid
Theorem. In Part 2, we prove the Master Picture Theorem, our main structural
result. in Parts 3 and 4, we use the Master Picture Theorem to prove the various
auxilliary results assumed in Part 1.

In Part 5, we prove the Comet Theorem and its corollaries modulo various aux-
illiary results. In Part 6, we prove these auxilliary results.

In the Appendix, we discuss some additional phenomena, bothfor kites and for
quadrilaterals, that we have observed but not proved.

Before each part of the book, we include an overview of that part.



book April 3, 2009

Part 1. The Erratic Orbits Theorem

In this part of the book, we will prove the Erratic Orbits Theorem modulo a number
of auxilliary results that we prove in Parts 2–4.

• In Chapter 2, we establish some basic results that allow fordefinition of the
arithmetic graph. The arithmetic graph is our main object ofstudy. We also
state the Embedding Theorem, a basic structural result about the arithmetic
graph that we prove in Part 3.

• In Chapter 3, we state the Hexagrid Theorem, another structural result about
the arithmetic graph. We then deduce Theorems 1.7, 1.9, and 1.10 from the
Hexagrid Theorem. We prove the Hexagrid Theorem in Part 3.

• In Chapter 4, we discuss the period-copying results neededto prove the Er-
ratic Orbits Theorem. Along the way, we introduce the inferior and superior
sequences, two basic ingredients in our overall theory. We prove the period-
copying results in Part 4.

• In Chapter 5, we assemble the ingredients from previous chapters and prove
the Erratic Orbits Theorem. We note that the arguments we usein Parts 5
and 6 to prove the Comet Theorem are independent of Chapter 5.Thus, for
the reader who plans to work through the proof of the Comet Theorem, the
material in Chapter 5 is redundant.

We mention several conventions that we use repeatedly throughout the book.
Recall thatp/q is an odd rational ifpq is odd. When we sayodd rational, we mean
that the odd rational lies in(0,1). On very rare occasions, we also consider the odd
rational 1/1. However, we never consider negative odd rationals, or oddrationals
greater than 1. Also,A always stands for a kite parameter, and we writeA = p/q.
Similarly, An stands forpn/qn, andA+ stand forp+/q+, etc. Sometimes we will
fail to mention these conventions explicitly.

We imagine that certain readers will be interested mainly instatement 1 of the
Erratic Orbits Theorem – i.e., the existence of unbounded orbits. For such readers,
we sometimes add remarks indicating sections that are not necessary for this part of
the proof.
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Chapter Two

The Arithmetic Graph

2.1 POLYGONAL OUTER BILLIARDS

Let P be a convex polygon. We denote the outer billiards map relative to P byψ ′,
and the square of the outer billiards map byψ = (ψ ′)2. Our convention is that
a person walking fromp to ψ ′(p) sees theP on the right side. These maps are
defined away from a countable set of line segments inR2 − P. This countable set
of line segments is sometimes called thelimit set.

Figure 2.1: Part of the tiling forK (1/3).

The result in [VS], [K ], and [GS] states, in particular, that the orbits for rational
polygons are all periodic. In this case, the complement of the limit set is tiled by
dynamically invariant convex polygons. Figure 2.1 shows part of the tiling for the
kite K (1/3).

This is the simplest tiling1 we see among all the kites. We have drawn only part
of the tiling. The reader can draw more of these figures, and incolor, using Billiard
King. The existence of these tilings is what motivated me to study outer billiards.
I wanted to understand how the tiling changes with the rational parameter and saw
that the kites give rise to highly nontrivial figures.

1Note that the picture is rotated 90 degrees from the usual normalization.
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2.2 SPECIAL ORBITS

Until the last result in this section, the parameterA = p/q is rational. Say that a
special intervalis an open horizontal interval of length 2/q centered at a point of
the form(a/q,b) with a odd. Herea/q need not be in lowest terms.

Lemma 2.1 The outer billiards map is entirely defined on any special interval and
indeed permutes the special intervals.

Proof: The four order 2 rotations about the vertices ofK (A) send the point(x, y),
respectively, to each of the following points.

(−2− x,−y), (−x,2− y), (−x,−2− y), (2A− x,−y). (2.1)

The corresponding outer billiards mapψ ′ is built out of these rotations.
Define

3 = 2Z [ A] × Zodd; Z[ A] = {m A+ n| m,n ∈ Z} (2.2)

From Equation 2.1, both3 andR × Zodd are invariant underψ ′. Therefore the
complementary set3c = R× Zodd−3 is also invariant underψ ′. Note that3c is
precisely the union of special intervals.

To find the points ofR × Zodd whereψ ′ is not defined, we extend the sides of
K (A) and intersect them withR × Zodd. We get 4 families of points.

(2n,2n+ 1), (2n,−2n− 1), (2An,2n− 1), (2An,−2n+ 1). (2.3)

Heren ∈ Z. Notice that all these points lie in3. Henceψ ′ is defined on all
points of3c. The first statement of our result now follows from the fact that3c is
ψ ′-invariant.

For the second statement, note thatψ ′ is completely defined on any special in-
terval. Butψ ′ is a piecewise isometric map. By continuity,ψ ′ is an isometry when
restricted to each special interval. But thenψ ′ must map each special interval to
another one. This proves the second statement. 2

Remark: For rational kites, the dynamics onR×Zodd is essentially combinatorial.
It is just a question of how the special intervals are permuted by the dynamics. Thus
we are really dealing with an infinite permutation. Of course, we will sometimes
profit from considering this situation geometrically.
.

Lemma 2.2 Let A∈ (0,1) be arbitrary. Relative to the kite K(A), the entire outer
billiards orbit of any point(α,n) is defined provided thatα 6∈ 2Z [ A] and n∈ Zodd.

Proof: The orbit of the point(α,n) never lands in any of the 4 families of points
discussed in the previous result. Hence, at any step in the orbit, both the forward
and backward iterates are defined. 2

WhenA is irrational, the set 2Z [ A] is a countable dense subset ofR. Likewise,
2Z [ A] × Zodd is a countable dense set ofR × Zodd.
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2.3 THE RETURN LEMMA

Letψ be the square map relative to some kite, as above. As in §1.5, let

4 = R+ × {−1,1}. (2.4)

Lemma 2.3 (Return) Let p ∈ 4. be a point with a well defined outer billiards
orbit. Thenψa(p), ψ−b(p) ∈ 4 for some a,b > 0.

Remark: The main goal of this section is to prove the Return Lemma. Thereader
interested in the broad picture might want to skip this rather tedious section on the
first pass. To accommodate such a reader, we give a quick heuristic explanation of
why the Return Lemma is true. Theψ-orbits generally circulate around the kite,
skipping at most 2 lines ofR× Zodd with each iterate. Being made from 2 consec-
utive rays,4 serves as an impenetrable barrier to the progress of the orbit in both
the forward and backward directions.

To prepare for our proof of the Return Lemma, and also for later use in the proof
of the Pinwheel Lemma in Part 2, we discuss some structure ofthe mapψ. For
eachp ∈ R2 at whichψ is well defined, we haveψ(p) = p+ V for some vector
V that is twice the difference between a pair of vertices ofK (A). There are a priori
12 possibilities forV , and the following 10 actually occur.

• V1 = −V5 = (0,4).

• V2 = −V6 = (−2,2).

• V3 = −V7 = (−2− 2A,0).

• V4 = −V8 = (−2,−2).

• V ♯
4 = −V ♭

6 = (−2A,2).

When listed in the order 1,2,3,4,4♯,5,6♭,6,7,8, the vectors defined above turn
in counterclockwise fashion.

For each indexj , there is some regionRj ⊂ R2 − K (A) such that

p ∈ Rj ⇐⇒ ψ(p) = p+ Vj . (2.5)

The two regionsR♯4 andR♭6 are bounded regions. These regions ultimately turn out
to be of no importance to us. The remaining regionsR1, ..., R8 are unbounded and
play an important role. The 10 regions partitionR2− K (A). One can compute this
partition by extending the sides ofK in pinwheel fashion and then suitably pulling
these sides back under the outer billiards map.

We now give a precise but terse description of the partition.For R♯4 andR♭6, we
list just the vertices of the polygon. The remaining regionsare unbounded. The
notation−→q1 , p1, ..., pk,

−→q2 indicates the following.

• The two unbounded edges are the rays−−→p1q1 and−−→pkq2.

• p2, ..., pk−1 are any additional intermediate vertices.
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Finally, to improve the typesetting, we have setα = (A− 1)−1.

• R1:
−−−−→
(1,−1), (1,−2),

−−−→
(1,1).

• R2:
−−−→
(1,1), (1,−2), (0,−1),

−−−→
(A,1).

• R3:
−−−→
(A,1), (2A,1), α(2A2,−1− A),

−−−−→
(−A,1).

• R4:
−−−−→
(−A,1), α(2A, A− 3),

−−−−→
(−1,1).

• R♯4: (A,0), (2A,1), α(2A2,−1− A).

• R5:
−−−−→
(−1,1), α(2A, A−3), (−A,2), α(2A,3A−1),

−−−−−→
(−1,−1).

• R♭6: (0,1), (−A,2), α(2A,3A− 1).

• R6:
−−−−−→
(−1,−1), α(2, A+ 1),

−−−−−−→
(−A,−1).

• R7:
−−−−−−→
(−A,−1), α(2, A+ 1), (−2,−1),

−−−−→
(A,−1).

• R8:
−−−−→
(A,−1), (−2,−1), (−1,0),

−−−−→
(1,−1).

Figure 2.2 shows accurately the partition and the vectors for A = 1/3. The
numbers indicate the regions in an obvious way. The small 4 representsR♯4, for
instance. For the vectors, the rule is that that the tail ofVj lies in Rj . The shaded
strip is bounded by the linesy = ±1. Note a certain “kinship” betweenR4 andR♯4,
and similarly betweenR6 andR♭6.

5

4

2

6

6

4

7
8

1

3

Figure 2.2: The partition forA = 1/3.
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Figure 2.3 shows the partition for the parametersA = p/7 for p = 1,2,3,4,5,6.
The reader can draw the figure for any slice using Billiard King.

Figure 2.3: The partition for 6 parameters.
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We define

R̂i = Ri + Vi , Si j = R̂i ∩ Rj ∩ (R × Zodd). (2.6)

We put a 1 in the(i j )th spot of the matrix if there is a parameterA for whichSi j 6= ∅.
This means that there is somep ∈ Ri ∩ (R× Zodd) such thatψ(p) ∈ Rj . Both the
partition andψ depend on the parameter, but we omit this from our notation. Note
that not all transitions are possible for all parameters. Here is the transition matrix.

R1 R2 R3 R4 R♯4 R5 R♭6 R6 R7 R8

R̂1 1 1 1 0 0 0 0 0 0 0
R̂2 0 1 1 1 0 1 1 0 0 0
R̂3 0 0 1 1 1 1 0 0 0 0
R̂4 0 0 0 1 0 1 0 0 0 0
R̂♯4 0 0 0 0 0 1 0 0 0 1
R̂5 0 0 0 0 0 1 1 1 1 1
R̂♭6 0 1 0 0 0 0 0 0 1 0
R̂6 0 0 0 0 0 0 0 1 1 1
R̂7 1 0 0 0 0 0 0 0 1 1
R̂8 1 1 0 0 1 0 0 0 0 1

(2.7)

Remark: Though it plays no role in our analysis, we note one pretty symmetry:
Reflection in thex-axis swapŝRi and Rj if i + j = 10. This works even for the
pair (4♯,6♭).

Proof of the Return Lemma: We will consider just the forward orbit. The back-
ward orbit requires the same treatment and indeed follows from symmetry. Given
the regions and vectors, the forward orbit of a point cannot stay in one region forever.
Starting with a pointz ∈ 4, we let i1→ i2 → · · · denote the sequence of regions
encountered by the forwardψ-orbit of z. Let zk = (xk, yk) be the first point inRik .
Looking at the matrix, we arrive at 3 cases.

Case 1: Supposeik = 1 for somek. Looking at R1, we see thatxk > 0. The
set{y ≥ 3} is more than 4 units from the regionRik−1, and each of the vectors has
length at most 4. Henceyk ∈ {...,−3,−1,1}. As the orbit proceeds, we just keep
addingV1 = (0,4) until we reachyk ∈ {−1,1}, and then we are in4.

Case 2: Supposeik = 2 for somek. The same argument places the constraints
on xk andyk as in Case 1. Now we also observe that the set{y ≤ −3} is disjoint
from R2. Henceyk ∈ {−1,1}. Hencezk ∈ 4.

Case 3: If we never seeik ∈ {1,2}, then we must haveik−1 = 8 andik = 4♯

for somek. We check easily that in this casezk ∈ 4. The argument is similar to
that in the previous two cases. 2
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2.4 THE RETURN MAP

The Return Lemma implies that thefirst return map9:4→ 4 is well defined on
any point with an outer billiards orbit. This includes the set

(R+ − 2Z [ A])× {−1,1},

as we saw in Lemma 2.2.
Given the nature of the maps in Equation 2.1 comprisingψ, we see that

9(p)− (p) ∈ 2Z [ A] × {−2,0,2}.

In Part 2, we will prove the main structural result about the first return map,
namely, the Master Picture Theorem. As a consequence of the Master Picture
Theorem, we get the following result.

9(p)− (p) = 2(Aǫ1+ ǫ2, ǫ3), ǫ j ∈ {−1,0,1},
3∑

j=1

ǫ j ≡ 0 mod 2.

(2.8)
The parity result in Equation 2.8 has the following proof. The vectorsVj consid-

ered above all have the form

(2a A+ 2b,2c), a+ b+ c ≡ 0 mod 2.

The vector9(p)− p is some finite sum of these vectors.
We do not have an easy proof for the bound|ǫ j | = 1, but we can easily give a

rough idea. For the reader who skipped the proof of the ReturnLemma above, we
remark that our explanation here also gives a rough reason why the Return Lemma
is true. Consider the forwardψ-orbit of a point of4 that is far from the origin.
This orbit essentially circulates counterclockwise around the origin, nearly making
a giant octagon. Looking at our vectorsV1, ...,V8, we see that this near octagon has
approximate 4-fold bilateral symmetry. Thereturn pair (ǫ1(p), ǫ2(p)) essentially
measures theapproximation errorbetween the true orbit and the closed octagon.
There is almost complete cancellation as one goes around this near octagon, and
this keeps the return pair uniformly small.

Remarks:
(i) Some version of the first return map is considered in many papers on outer bil-
liards – e.g., [GS], [G], and [DF].
(ii) On a nuts-and-bolts level, this book concerns how the pair (ǫ1(p), ǫ2(p)) de-
pends onp ∈ 4. The pair(ǫ1, ǫ2) and the parity condition determineǫ3. I like to
say that this book is really about the infinite accumulation of small errors.
(ii) Reflection in thex-axis conjugates the mapψ to the mapψ−1. Thus, once we
understand the orbit of the point(x,1), we automatically understand the orbit of the
point(x,−1). Put another way, the unordered pair of return points{9(p),9−1(p)}
for p = (x,±1) depends only onx.
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2.5 THE ARITHMETIC GRAPH

Fundamental Map: Recall that4 = R+×{−1,1}. Givenα ∈ R and a parameter
A, define

M = MA,α : Z2→ R × {−1,1}
by

MA,α(m,n) =
(
2Am+ 2m+ 2α, (−1)m+n+1

)
. (2.9)

The second coordinate ofM is either 1 or−1, depending on the parity ofm+ n.
This definition is adapted to the parity condition in Equation 2.8. We callM a
fundamental map. Each choice ofα gives a different map.

Main Definition: M is injective whenA is irrational andM is injective on any
disk of radiusq when A = p/q. Given p1, p2 ∈ Z2, we write p1 → p2 iff the
following hold.

• ζ j = M(p j ) ∈ 4.

• 9(ζ1) = ζ2.

• ‖p1− p2‖ is as small as possible.

The third condition is relevant only in the rational case. According to Equation
2.8, the choice ofp2 depends uniquely onp1, in all cases, and‖p1 − p2‖ ≤

√
2.

Our construction gives a directed graph with vertices inZ2. We call this graph
thearithmetic graphand denote it bŷŴα(A). We usually ignore the isolated ver-
tices of the graph. These correspond to points on which the return map is the identity.

A Convention: When A = p/q, any choice ofα ∈ (0,2/q) gives the same
result. This is a consequence of Lemma 2.1. To simplify the formulas, we choose
α = 0+, where 0+ is an infinitesimally small positive number. When we write
formulas, we usually takeα = 0, but we always use the convention that the lattice
point (m,n) tracks the orbits just to the right of the points(2Am+ 2n,±1). With
this convention, we have

Ŵ̂
( p

q

)
= Ŵ̂0+

( p

q

)
, M(m,n) =

(
2
( p

q

)
m+ 2n, (−1)m+n+1

)
. (2.10)

We say that thebaselineof Ŵ̂(A) is the lineM−1(0). The baseline is the line of slope
−A through a point infinitesimally far beneath the origin. In practice, we think of
the baseline as the line of slope−A through the origin.

Translation Symmetry: When p/q is odd, Equation 2.10 gives

M(ζ + V) = M(ζ ), V = (q,−p), (2.11)

for any ζ ∈ Z2. Hence translation byV preserveŝŴ(p/q) as a directed graph.
Whenp/q is even, we haveM(ζ +V) = R◦M(ζ ), whereR is the reflection in the
x-axis. The mapR conjugates9 to9−1. In this case, translation byV preserves
Ŵ̂(p/q) as a graph but reverses the direction.
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In Part 3 we will prove the following result.

Theorem 2.4 (Embedding)Any well defined arithmetic graph is the disjoint union
of embedded polygons and bi-infinite embedded polygonal curves.

LetŴ(p/q) denote the component of̂Ŵ(p/q) that contains the origin. This com-
ponent corresponds to the fundamental orbit discussed in Theorem 1.7. The com-
ponentŴ(p/q) is never a closed polygon whenp/q is odd. This is a consequence
of the Room Lemma in Chapter 3. Figure 2.4 shows an example.

Figure 2.4: Some of̂Ŵ(7/25), with Ŵ(7/25) in black

In contrast, we have the following result.

Lemma 2.5 If p/q is even, then every component ofŴ̂(p/q) is a polygon.

Proof: Suppose that some componentβ is not a polygon. Since translation byV
reverses the direction on̂Ŵ, we haveβ 6= β + V .

Let 〈V 〉 ≈ Z denote the group generated by integer multiples ofV . Let X be
the cylinderR2/〈V 〉. Let π : R2 → X be the quotient map. By the Embedding
Theorem,π(β) is embedded inX. Sinceβ corresponds to a periodic orbit,π(β) is
a closed loop inX. Sinceβ is not a polygon,π(β) is nontrivial in the first homology
groupH1(X) = Z ≈ 〈V 〉. Becauseπ(β) is embedded,π(β)must generateH1(X).
But thenβ = β + V , a contradiction. 2
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2.6 LOW VERTICES AND PARITY

Remark: The material in this section is not needed for the proofs of statements 1
and 2 of the Erratic Orbits Theorem.

Let A be any kite parameter. We define theparity of a low vertex(m,n) to be
the parity ofm+ n. Here we explain the structure of the arithmetic graph at low
vertices. Our answer will be given in terms of a kind of phase portrait. Given a
point (x, A) ∈ (0,2)× (0,1), we have

9±1(x,−1) = (x,−1)+ 2(ǫ±1 A+ ǫ±2 , ǫ
±
3 ). (2.12)

For the point(x, A) we associate the directed graph

(ǫ−1 , ǫ
−
2 )→ (0,0)→ (ǫ+1 , ǫ

+
2 ).

This gives a local picture of the arithmetic at the low vertex(m,n) such that
MA(m,n) = (x,−1). If MA(m,n) = (x,1), then we get the local picture by
reversing the edges. Figure 2.5 shows the final result. The gray edges in the figure,
present for reference, connect(0,0) to (0,−1). The gray triangle represents the
places where the return map is the identity.

(4/3,1/3) (2,1/2)

(0,0)

(0,1) (2,1)

(2,0)

Figure 2.5: Low-vertex phase portrait.

Example: Relative toA = 1/3, the vertex(−7,3) is a low vertex. We compute
that

M1/3(A) = (4/3+ α,−1).

Hereα is an infinitesimally small positive number. To see the localpicture of the
arithmetic graphŴ(1/3) at (−7,3), we observe that the pointp = (4/3+ α,1/3)
lies infinitesimally to the right of the point(4/3,1/3). Hence(ǫ−1 , ǫ

−
2 ) = (0,1) and

(ǫ+1 , ǫ
+
2 ) = (1,−1).

In principle, one can derive Figure 2.5 by hand. We will explain how to derive it
in §6.8 as a corollary of the Master Picture Theorem.
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Lemma 2.6 No component of̂Ŵ(A) contains low vertices of both parities.

Proof: Recall that̂Ŵ is an oriented graph. Ifv is a nontrivial low vertex of̂Ŵ, we can
say whether̂Ŵ is left-travellingor right-travelling at v. The definition is this: As
we travel along the orientation and pass throughv, the line segment connectingv to
v − (0,1) lies on either our left or our right. This gives the name to ourdefinition.

A component ofŴ cannot right-travel at one low vertex and left-travel at another.
Figure 2.6 shows the problem. The curveγ would create a pocket for itself, andγ
could not escape from this pocket because it must stay above the baseline. The low
vertices ofγ serve as barriers. Travelling into the pocket,γ would have only a finite
number of steps before it would have to cross itself. But thenwe would contradict
the Embedding Theorem.

right

left

Figure 2.6: γ travels into a pocket.

To finish the proof, we just have to show that a component ofŴ̂ right-travels at a
low vertexv if and only if v has even parity. We will show that a component ofŴ̂
always right-travels at low vertices of even parity. Let us explain why this suffices.
Recall that the fundamental mapM maps vertices of even parity toR+×{−1}, and
vertices of odd parity toR×{1}. Also, recall that reflection in thex-axis conjugates
the return map9 to 9−1. It follows from this symmetry that̂Ŵ left-travels at all
low vertices of odd parity if and only if̂Ŵ right-travels at all vertices of even parity.
But a glance at Figure 2.5 shows thatŴ̂ right-travels at all vertices of even parity.
The gray line segment always lies on the right. 2

Corollary 2.7 Let A ∈ (0,1) be arbitrary. Suppose thatξ+ ∈ (0,2) × {1} and
ξ− ∈ (0,2) × {−1} have well defined orbits. Then the two orbits O2(ξ+) and
O2(ξ−) are distinct.

Proof: Suppose, for the sake of contradiction, that the orbits coincide. Then there
is a choice ofα such that a componentŴ of the arithmetic graphŴα(A) corresponds
to this common orbit. There are low vertices(m+,n+) and (m−,n−) such that
Mα(m±,n±) = ξ±. But then(m+,n+) and(m−,n−) have opposite parity, contra-
dicting the previous result. 2
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2.7 HAUSDORFF CONVERGENCE

Here we state the basic results that will allow us to take geometric limits of orbits
for outer billiards systems with varying parameters. When it comes to taking limits
of arithmetic graphs, we will always use the Hausdorff topology.

The Hausdorff metric and topology: Given two compact subsetsK1, K2 ⊂ R2,
we defined(K1, K2) to be the infimalǫ > 0 such that the setK1 is contained in the
ǫ-tubular neighborhood of the setK2, and vice versa. The functiond(K1, K2) is
known as theHausdorff metric. A sequence{Cn} of closed subsets ofR2 is said to
Hausdorff convergeto C ⊂ R2 if d(Cn ∩ K ,C ∩ K )→ 0 for every compact subset
K ⊂ R2. This notion of convergence is called theHausdorff topology.

Remark: In the cases of interest to us,Cn is always an arc of an arithmetic graph
that contains(0,0). In this case, the Hausdorff convergence has a simple meaning.
{Cn} converges toC if and only if the following property holds true. For anyN,
there is someN′ such thatn > N′ implies that the firstN steps ofCn away from
(0,0) in either direction agree with the corresponding steps ofC.

Given a parameterA ∈ (0,1) and a pointζ ∈ 4, we say that a pair(A, ζ ) is
N-definedif the first N iterates of the outer billiards map ofζ are defined relative
to A in both directions. We letŴ(A, ζ ) be as much of the arithmetic graph as is
defined. We callŴ(A, ζ ) a partial arithmetic graph.

Lemma 2.8 (Continuity Principle) Let {ζn} ∈ 4 converge toζ ∈ 4. Let {An}
converge to A. Suppose the orbit ofζ is defined relative to A. Then for any N, there
is some N′ such that n> N′ implies that(ζn, An) is N-defined. The corresponding
sequence{Ŵ(An, ζn)} of partially defined arithmetic graphs Hausdorff-converges
to Ŵ(A, ζ ).

Proof: Letψ ′n be the outer billiards map relative toAn. Letψ ′ be the outer billiards
map defined relative toA. If pn → p andψ ′ is defined atp, thenψ ′n is defined
at pn for n sufficiently large andψ ′n(pn)→ ψ(p). This follows from the fact that
K (An) → K (A) and from the fact that a piecewise isometric map is defined and
continuous in open sets. The Continuity Principle now follows from induction. 2

In the case when the orbit ofζn relative toAn is already well defined, the partial
arithmetic graph is the same as one component of the ordinaryarithmetic graph. In
this case, we can state the Continuity Principle more simply.

Corollary 2.9 Let {ζn} ∈ 4 converge toζ ∈ 4. Let{An} converge to A. Suppose
the orbit ofζ is defined relative to A and the orbit ofζn is defined relative to An for
all n. Then{Ŵ(An, ζn)} Hausdorff converges toŴ(A, ζ ).

We will have occasion to use both versions of the Continuity Principle in our
proofs.
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Remark: The remaining material in this section is not needed for the proofs of
statements 1 and 2 of the Erratic Orbits Theorem.

Lemma 2.10 Let s∈ (0,1). If (ψ ′)k(s,1) is not defined on K(A) for some|k| ≤ N,
then s= 2Am+ 2n for some m,n ∈ Z such that|m| ≤ 2N.

Proof: We will consider the case whenk > 0. The other case is similar. By
induction, we may suppose thatt = (t1, t2) = (ψ ′)N−1(s) is well defined. Looking
at the maps in Equation 2.1, we see inductively that|t2| ≤ 2N. If ψ ′(t) is not
defined, thent is one of the points in Equation 2.3 for some|n| ≤ N. Hence

t1 = 2Am′ + 2n′; |m′| ≤ N.

By Equation 2.1 and induction, we have

s= 2Am+ 2n; |m| ≤ N + |m′| ≤ 2N.

This completes the proof 2

We think of the next result as a rigidity lemma because it saysthat certain limits
are independent of how we take them.

Lemma 2.11 (Rigidity) Let An be any sequence of parameters converging to the
irrational parameter A. Letζn ∈ [0,2]×{1} be any sequence of points converging
to (0,1). LetŴ(ζn, A) be the arithmetic graph ofζn relative to A. Then the sequence
{Ŵ(ζn, A)}, if entirely defined, Hausdorff-converges.

Proof: Let ǫ ∈ (0,1) be given. Define

6ǫ(A) = {(s, A′)| s ∈ (0, ǫ), |A− A′| < ǫ}. (2.13)

Let O(s; A′) denote the outer billiards orbit of(s,1) relative toK (A′). Suppose
that one of the firstN iterates ofO(s, A′) is not defined. By Lemma 2.10, we have
m,n ∈ Z such that

s = 2A′m− 2n; |m| ≤ 2N. (2.14)

(We use a minus sign for convenience.) Note thatm 6= 0. Hence, by Equation 2.14
and the triangle inequality,

∣∣∣A− n

m

∣∣∣ < |A− A′| +
∣∣∣A′ − n

m

∣∣∣ < ǫ + s

2|m|
< 2ǫ. (2.15)

This is impossible forǫ sufficiently small. Hence the firstN iterates ofO(s; A′) in
both directions are well defined when(s, A′) ∈ 6ǫ(A) andǫ is sufficiently small.

If all orbits in some interval are defined, then all orbits in that interval have the
same combinatorial structure. Hence, for anyN, there is someǫ > 0 such that
the combinatorics of the firstN iterates, in either direction, ofO(s; A′) are in-
dependent of(s, A′) ∈ 6ǫ(A). This lemma now follows from the Return Lemma,
which guarantees that, asN →∞, the number of returns to4 tends to∞ as well.2



book April 3, 2009



book April 3, 2009

Chapter Three

The Hexagrid Theorem

3.1 THE ARITHMETIC KITE

In this section we describe a certain quadrilateral, which we call thearithmetic
kite. This object is meant to “live” in the same plane as the arithmetic graph. The
diagonals and sides of this quadrilateral define 6 special directions. In the next
section we describe a grid made from 6 infinite families of parallel lines based on
these 6 directions. LetA = p/q. Figure 3.1 accurately showsK(A) for A = 1/3.

(q,−p)

c

(0,0)

(−q,p)

(q,q)

b W

V

(p,0)

U

Figure 3.1: The arithmetic kite.

One can construct this figure using straight lines and the given coordinates. The
pairs of lines that look parallel are supposed to be parallel. Settinga = (q,q), we
have

b = a− V

2
, U = Aa+ (1− A)b, W = U

1+ A
= b+ c

2
. (3.1)

The vectorsV andW are of special interest to us. We have

V = (q,−p), W =
(

pq

p+ q
,

pq

p+ q
+ q − p

2

)
. (3.2)

It follows from the rightmost (double) equality in Equation3.1 thatK(A) is affinely
equivalent toK (A).
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Thehexagrid G(A) consists of two interacting grids, which we call theroom grid
RG(A) and thedoor grid DG(A).

Room Grid: When A is an odd rational,RG(A) consists of the lines obtained
by extending the diagonals ofK(A) and then taking the orbit under the lattice
Z [V/2,W]. These are the black lines in Figure 3.2. In the case whenA is an even
rational, we make the same definition but use the latticeZ [V,2W] instead.

Door Grid: The door grid DG(A) is the same for both even and odd rationals.
It is obtained by extending the sides ofK(A) and then taking their orbit under the
1-dimensional latticeZ [V ]. These are the gray lines in Figure 3.2.

Figure 3.2: G(25/47). andK(25/47).

Figure 3.2 shows the hexagridG(25/47) and the arithmetic kiteK(25/47). Bil-
liard King allows the user to draw color versions of such figures for essentially any
rational parameter.
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3.2 THE HEXAGRID THEOREM

First we will talk informally about the Hexagrid Theorem. Inthe previous section,
we defined two grids, the room grid and the door grid. The Hexagrid Theorem says
that these two grids control the large-scale structure of the arithmetic graph. It turns
out that the lines of the room grid serve to “confine” the arithmetic graph, in the
sense that the arithmetic graph can cross these lines only atvery specific locations.
The door grid serves to define the locations – i.e., the doors –where the graph can
cross the lines of the room grid. Thus the Hexagrid Theorem relates two kinds of
objects,wall crossingsanddoors. Informally, the Hexagrid Theorem says that the
arithmetic graph crosses a wall only at a door. Here are formal definitions.

Rooms and Walls: RG(A) dividesR2 into different connected components which
we callrooms. Say that awall is the line segment of positive slope that divides two
adjacent rooms.

Doors: When p/q is odd, we say that adoor is a point of intersection between
a wall of RG(A) and a line ofDG(A). When p/q is even, we have the same
definition, except that we exclude intersection points of the form(x, y), wherey is
a half-integer. Every door is a triple point, and every wall has one door. The first
coordinate of a door is always an integer. (See Lemma 15.1.) In exceptional cases
– when the second coordinate is also an integer – the door liesin the corner of the
room. In this case, we associate the door to both walls containing it. The door(0,0)
has this property.

Crossing Cells: Say that an edgee of Ŵ̂ crosses a wallif e intersects a wall at
an interior point. Say that a union of two incident edges ofŴ crosses a wallif the
common vertex lies on a wall and the two edges point to opposite sides of the wall.
The point(0,0) has this property. We say that acrossing cellis either an edge or
a union of two edges that crosses a wall in the manner just described. For instance
(−1,1)→ (0,0)→ (1,1) is a crossing cell for anyA ∈ (0,1).

In Part 3 of the book we will prove the following result. Let [y] denote the floor
of y, the greatest integer less than or equal toy.

Theorem 3.1 (Hexagrid) Let A∈ (0,1) be rational.

1. Ŵ̂(A) never crosses a floor of RG(A). Any edges of̂Ŵ(A) incident to a vertex
contained on a floor rise above that floor (rather than below it.)

2. There is a bijection between the set of doors and the set of crossing cells. If
y is not an integer, then the crossing cell corresponding to the door(m, y)
contains(m, [y]) ∈ Z2. If y is an integer, then(x, y) corresponds to2 doors.
One of the corresponding crossing cells contains(x, y), and the other one
contains(x, y− 1).

Figure 3.3 illustrates the Hexagrid Theoremforp/q= 25/47. We will explain the
shaded parallelogramR(25/47) in the next section. We have shown only the fleeting
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components in Figure 3.3 – i.e., those components that are not closed polygons. Each
persistent component – i.e., those components that are closed polygons – is confined
to a single room.

Figure 3.3: G(25/47), R(25/47), and some of̂Ŵ(25/47).

The figure for the even case looks similar but slightly different. The reader can
see much better figures for the Hexagrid Theorem using eitherBilliard King or our
interactive guide to the book. The interactive guide shows only the odd case, but
Billiard King shows both the even and odd cases.

The Hexagrid Theorem helps us in two ways. First, the patternof the doors forces
some of the orbits to oscillate on a large scale. Second, the pattern of the walls guar-
antees that the components do not oscillate too wildly for usto control them. This
controlled oscillation will come in handy later on when we discuss period-copying
phenomena.

Remark: The Hexagrid Theorem immediately implies that all special orbits on
K (p/q) are bounded, and hence periodic.
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3.3 THE ROOM LEMMA

The Room Lemma, an easy consequence of the Hexagrid Theorem,is the main
result we use to force large oscillations of the fundamentalorbit O(1/q,−1).

Let R(p/q) denote the parallelogram whose vertices are

(0,0), V, W, V +W. (3.3)

HereV andW are as in Equation 3.2.R(p/q) is the shaded parallelogram in Figure
3.3. We also define

d0 = (x, [y]), x = p+ q

2
, y = q2− p2

4q
(3.4)

d0 lies within 1 vertical unit of the centerline ofR(p/q), above the midpoint of the
centerline.d0 is just below the triple point contained in the interior of the shaded
parallelogram in Figure 3.3.

Lemma 3.2 (Room) Let p/q be an odd rational. ThenŴ(p/q) is an open polyg-
onal curve. One period ofŴ(p/q) connects(0,0) to d0 to (q,−p). This period is
contained in R(p/q).

Proof: First of all, for any value ofA, it is easy to check thatŴ(A) contains the
arc(−1,1)→ (0,0)→ (1,1). One can see this from the phase portrait shown in
Figure 2.6. This is to say thatŴ(p/q) entersR(p/q) from the left at(0,0). Now
R(p/q) is the union of two adjacent roomsR1 andR2. Note that(0,0) is the only
door on the left wall ofR1, and(x, y) is the only door on the wall separatingR1

and R2, and(q,−p) is the only door on the right wall ofR2. Here(x, y) is as in
Equation 3.4. From the Hexagrid Theorem and the Embedding Theorem,Ŵ(p/q)
must connect(0,0) to d0 to (q,−p). The arithmetic grapĥŴ(p/q) is invariant
under translation by(q,−p), and so the whole pattern repeats endlessly to the left
and right ofR(p/q). HenceŴ(p/q) is an open polygonal curve. 2

We remark that we did not really need the Embedding Theorem inour proof
above.1 All we require is thatŴ(p/q) cannot backtrack as we travel from one
corner ofR(p/q) to the other. Lemma 3.3 below gives a self-contained proof of
what we need.

Lemma 3.3 Ŵ(p/q) has valence2 at every vertex.

Proof: Recall that9 is the first return map toR+ ×{−1,1}. As in our proof of the
Room Lemma,Ŵ(p/q) has valence 2 at(0,0). ButŴ(p/q) describes the forward
orbit of p = (1/q,1) under9. If some vertex ofŴ(p/q) has valence 1, then9 has
order 2 when evaluated at the corresponding point. But then9 has order 2 when
evaluated atv. But thenŴ(p/q) has valence 1 at(0,0). This is a contradiction.2

1I am grateful to Dmitry Dolgopyat and Giovanni Forni for pointing this out to me.
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3.4 ORBIT EXCURSIONS

Remark: The material in this section is not needed for the proof of theErratic
Orbits Theorem.

In this section, we prove Theorems 1.7, 1.9, and 1.10.
Let M1 be the first coordinate of the mapM in Equation 2.10. Letλ = 1 if p/q

is odd andλ = 2 if p/q is even.

Lemma 3.4 No point of O2(1/q)∩4 has a first coordinate greater thanλ(p+ q).

Proof: Let L be the line of the room grid parallel to the baseline that contains the
pointλW. HereW is as in Equation 3.2. We compute thatM1(λW) = λ(p+ q).
By the Hexagrid Theorem,Ŵ(p/q) lies in the strip bounded by the baseline andL.
Looking at Equation 2.10, we see thatM1 is constant onL. Therefore we have the
boundM1(m,n) ≤ λ(p+ q) for any vertex(m,n) of Ŵ(p/q). 2

Lemma 3.5 The first coordinate of some point in O2(1/q)∩4 exceedsλ(p+q)/2.

Proof: To avoid an irritating case in which the calculations yield abound that is off
by 1 unit, we assume thatp > 1.

In the odd case,M1(d0) is the first coordinate of a point ofO2(1/q,−1)∩4, and
we compute thatM1(d0) > (p+ q)/2. Hered0 is as in the Room Lemma.

Consider the even case. LetL0 be the line of the room grid through(0,0) and
parallel to the walls. By Lemma 2.5, the componentŴ(p/q) is a closed polygon.
SinceŴ(p/q) contains the arc(−1,1) → (0,0) → (1,1), an arc that has points
on either side ofL0, the polygonŴ(p/q)must crossL0 at some point above(0,0)
as well. The door onL0 immediately above(0,0) is within 1 unit ofU , the tip of
K(A). See Figure 3.1. By the Hexagrid Theorem,Ŵ(p/q) must crossL0 within 1
unit of U . Call this crossing pointd′0. We compute thatM(d′0) > p+ q, at least
when p > 1. But M1(d′0) is the first coordinate of a point inO2(1/q,−1) ∩4. 2

Proof of Theorem 1.7: Lemma 3.5 immediately gives the lower bounds in Theo-
rem 1.7, except in the casep = 1. The unimportant casep = 1 requires a separate
argument which we omit. For the upper bounds, we note that thefirst coordinates
of points in O2(1/q,−1) ∩ 4 lie in [0, λ(p+ q)], by Lemma 3.4. The second
coordinates belong to the set{−1,1}. This completes the proof. 2

Proof of Theorem 1.9: We will give the proof for odd rationals. The even case is
just about the same except for the factor of 2. Suppose thatp/q is odd. Sincep
andq are relatively prime, we can realize any integer as an integer combination of
p andq. From this we see that every point of the forms/q, with s odd, lies in the
image ofM1. Hence some point ofZ2, above the baseline of̂Ŵ(p/q), corresponds
to the orbit of either(s/q,1) or (s/q,−1). Let thefloor grid denote the lines of
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negative slope in the room grid. These lines all have slope−p/q. Thekth line Lk

of the floor grid contains the point

ζk =
(

0,
k(p+ q)

2

)
.

Modulo translation byV , the pointζk is the only lattice point onLk. Statement 1
of the Hexagrid Theorem says that the edges ofŴ incident toζk lie betweenLk and
Lk+1 (rather than betweenLk−1 andLk).

We compute thatM1(ζk) = k(p+ q). For all lattice points(m,n) betweenLk

andLk+1, we therefore have

M1(m,n) ∈ Ik, (3.5)

the interval from Theorem 1.9. This theorem now follows fromEquation 3.5, state-
ment 1 of the Hexagrid Theorem, and our remarks aboutζk. 2

Remark: We compare the odd case of Theorem 1.9 to a result in [K ]. (The even
case is similar.) The result in [K ] is quite general, and so we will specialize it to
kites. In this case, a kite is quasirational iff it is rational. The (special case of the)
result in [K ], interpreted in our language, says that every special orbit is contained
in one of the intervalsJ0, J1, J2, ..., where

Ja =
p+q−1⋃

i=0

Iak+i .

The endpoints of theJ intervals correspond tonecklace orbits. A necklace orbit (in
our case) is an outer billiards orbit consisting of copies ofthe kite touching vertex
to vertex. Compare Figure 2.1.

Recall that a periodic orbit relative toK (A) is persistent if there exists a nearby
and combinatorially identical orbit relative toK (A′) for all nearby parametersA′.

Lemma 3.6 Suppose that p∈ 4 is a periodic point relative to outer billiards on
K (A). Then O2(p) is persistent if and only if the component of the arithmetic graph
corresponding to A and p is a closed polygon.

Proof: Let γ be a the component of interest. By Equation 2.8, we have

9k(p)− p = (2mk A+ 2nk,2ǫk), k = 1,2,3, . . . (3.6)

Heremk,nk ∈ Z andǫk ∈ {−1,0,1} andmk+nk+ ǫk is even. For any givenk, the
triple (mk,nk, ǫk) remains the same for small perturbations of the parameter. The
point is that a finite amount of combinatorial data determines (mk,nk). If γ is a
closed polygon, then(mk,nk, ǫk) = (0,0,0) for somek. But then9k(p) = p for
all parameters nearA. HenceO2(p) is persistent. Conversely, ifO2(p) is persistent
thenmk A′ + nk = 0 for somek and all A′ sufficiently close toA. But this forces
(mk,nk) = (0,0). Henceγ is a closed polygon. 2
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Proof of Theorem 1.10: Lemmas 2.5 and 3.6 combine to prove the even case
of Theorem 1.10. Now we establish the odd case. Letp/q be an odd rational. Say
that asuite is the region between two floors of the room grid. Each suite isparti-
tioned into rooms. Each room has two walls, and each wall has adoor in it. From
the Hexagrid Theorem, we see that there is an infinite polygonal arc ofŴ̂(p/q) that
lives in each suite. LetŴk(p/q) denote the infinite polygonal arc that lives in the
kth suite. HereŴ0(p/q) = Ŵ(p/q).

We have just described the infinite familyof fleetingcomponents listed inTheorem
1.10. All the other components of̂Ŵ(p/q) are closed polygons and must be confined
to single rooms. The corresponding orbits are persistent,by Lemma 3.6. The already
described polygonal arcs use up all the doors.

The point(m,n) ∈ Z2 lies on the component of the arithmetic graph correspond-
ing to one of the two orbits(M(m,n),±1). HereM is the fundamental map from
Equation 2.9. By the parity result in Equation 2.8, these twopoints lie on different
9-orbits. Therefore each component of̂Ŵ corresponds to two distinct special or-
bits. In particular, there are exactly two fleeting orbitsU+k andU−k contained in the
interval Ik, and these correspond toŴk(p/q). This completes the proof. 2
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Chapter Four

Period Copying

4.1 INFERIOR AND SUPERIOR SEQUENCES

We discussed inferior and superior sequences in §1.4. Here we say a bit more. Let
p/q ∈ (0,1) be any odd rational. There are unique rationalsp−/q− and p+/q+
such that

p−
q−

<
p

q
<

p+
q+
, max(q−,q+) < q, qp± − pq± = ±1. (4.1)

See Chapter 17 for more details.
We define the odd rational.

p′

q′
= |p+ − p−|
|q+ − q−|

, (4.2)

wherep′/q′ is the unique odd rational satisfying the equation

q′ < q, |pq′ − qp′| = 2. (4.3)

We call p′/q′ the inferior predecessorof p/q, and we writep′/q′ ← p/q or
p/q→ p′/q′. We can iterate this procedure. Anyp/q belongs to a finite chain

1

1
← p1

q1
← · · · ← pn

qn
= p

q
. (4.4)

Corresponding to this sequence, we define

dk = floor

(
qk+1

2qk

)
. (4.5)

We define thesuperior predecessorof p/q to be pk/qk, wherek is the largest
index such thatdk ≥ 1. It might happen that the inferior and superior predecessors
coincide, and it might not.

For reference, we repeat the example from §1.4. Consider thesequence

1
1
← 1

3
← 1

5
← 3

13
← 5

21
← 13

55
← 21

89
← 55

233
← 89

377
← . . . .

3/13 has 1/5 as both a superior and an inferior predecessor. 5/21 has 3/13 as an
inferior predecessor and 1/5 as a superior predecessor. The implied limit of this
sequence is

√
5− 2, the Penrose kite parameter.

The inferior predecessor construction organizes all the odd rationals into a directed
tree of infinite valence. The rational 1/1 is the terminal node of this tree. The nodes
incident to 1/1 are 1/3, 3/5, 5/7, etc. Figure 4.1 shows part of this tree. The edges
are labelled with thed-values from Equation 4.5.
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1/5 3/7

17/3911/255/117/171/7

3/11

1/3 3/5 5/7

1/1

10

1

3

0 1

2

1 0 1

2

Figure 4.1: Part of the odd tree.

The tree we are drawing has infinite valence at all nodes. Withthe exception of
the top node, 1/1, all the other nodes have the following structure.

1. There is one incoming arrow labelled 0.

2. There are two incoming arrows labelledk for eachk = 1,2,3, ....

We will establish these results in Part 4 of the book. We will also establish the
following result, which identifies certain ends of the tree with the irrationals in
(0,1).

Lemma 4.1 (Superior Sequence)Let A∈ (0,1) be irrational. There is a unique
sequence{pn/qn} of odd rationals such that

p0

q0
= 1

1
,

pn+1

qn+1
→ pn

qn
∀n, A = lim

n→∞

pn

qn
. (4.6)

There are infinitely many indices n such that2qn < qn+1.

We call the sequence{pn/qn} theinferior sequence. We calln asuperior indexif
2qn < qn+1. In terms of Equation 4.5, the indexn is superior if and only ifdn ≥ 1.
We define thesuperior sequenceto be the subsequence indexed by the superior
indices. Though there are many inferior and superior sequences containingpn/qn,
the initial parts of these sequences are determined bypn/qn. This comes from the
directed tree structure we have already mentioned. The converse result is also true.
Any inferior sequence with infinitely many superior terms has an irrational limit.
This is a consequence of Lemma 17.4.

Remark: One can also define a similar tree for even rationals. To do this, we
modify Equation 4.3 to read|pq′− qp′| = 1. For instance, 1/2 and 2/5 are related
this way. Compare the discussion surrounding Figure 1.5 in the introduction.
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4.2 STRONG SEQUENCES

4.2.1 The Main Result

Let A1 andA2 be two odd rationals. LetŴ1 andŴ2 be the corresponding arithmetic
graphs. We fix

ǫ = 1/8. (4.7)

This is an arbitrary but convenient choice.
Let V1 = (q1,−p1). LetŴ1

1 denote the period ofŴ1 connecting(0,0) to V1 and
let Ŵ−1

1 denote the period ofŴ1 connecting(0,0) to−V1. We define

Ŵ1+ǫ
1 = Ŵ1

1 ∪
(
Ŵ1 ∩ Bǫq1(V1)

)
, Ŵ−1−ǫ

1 = Ŵ−1
1 ∪

(
Ŵ1 ∩ Bǫq1(−V1)

)
.

(4.8)
We are extending one period ofŴ1 slightly beyond one of its endpoints. Say that
a monotone convergent sequence of odd rationals{pn/qn} is strong if it has the
following properties.

1. |A− An| < Cq−2
n for some universal constantC.

2. If An < An+1, thenŴ1+ǫ
n ⊂ Ŵ1

n+1.

3. If An > An+1, thenŴ−1−ǫ
n ⊂ Ŵ−1

n+1.

In other words,Ŵn+1 copies about 1+ ǫ periods ofŴn for everyn. As usual, we
have setAn = pn/qn.

In Part 4 we will prove the following result.

Theorem 4.2 Any superior sequence has a strong subsequence. In particular, any
irrational in (0,1) is the limit of a strong subsequence.

In the next chapter we will prove that any limit of a strong sequence satisfies the
conclusions of the Erratic Orbits Theorem. Thus Theorem 4.2is one of the key
ingredients in the proof of the Erratic Orbits Theorem.

4.2.2 An Easier Result

The proof of Theorem 4.2 is rather involved. It requires all the material in Part 4. It
turns out that we can prove a result nearly as strong as the Erratic Orbits Theorem
based on the following easier result.

Lemma 4.3 Let Aj = p j /q j be odd rationals such that|A1− A2| < 1/(2q2
1).

• If A1 < A2, thenŴ1+ǫ
1 ⊂ Ŵ1

2.

• If A1 > A2, thenŴ−1−ǫ
1 ⊂ Ŵ−1

2 .

Hereǫ = 1/8 as above. The proof of Lemma 4.3, given in §17.4 and Chapter 18,
requires only a small portion of Part 4.
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Let1k ⊂ (0,1) denote the set of irrationalsA such that the equation

0<

∣∣∣∣A−
p

q

∣∣∣∣ <
1

kq2
, p,q ∈ Zodd (4.9)

holds infinitely often. Lemma 4.3 has the following corollary.

Corollary 4.4 Every A∈ 12 is the limit of a strong sequence.

Proof: If A ∈ 12, then there exists a monotone sequence of solutions to Equation
4.9 fork = 2. This sequence is strong, by Lemma 4.3. 2

Combining the last corollary with our work in the next chapter, we obtain the
proof of the Erratic Orbits Theorem for allA ∈ 12. We close this section with some
observations on the size of the sets1k.

Lemma 4.5 1k has full measure in(0,1) for any k.

Proof: Any block of 3 consecutive odd terms≥ k in the continued fraction ex-
pansion ofA guarantees a solution to Equation 4.9. It follows from the ergodicity
of the Gauss map (or the ergodicity of the geodesic flow on the modular surface)
that almost everyA has infinitely many such blocks. Hence1k has full measure in
(0,1). See [BKS] for the relevant ergodic theory. 2

It turns out1 that every irrational in(0,1) belongs to11. This result is similar in
spirit to Lagrange’s famous theorem stating that every irrational A satisfies∣∣∣∣A−

p

q

∣∣∣∣ <
1√
5q2

infinitely often. Lagrange’s theorem does not imply that every irrational lies in12

because the conditions on12 involve a parity restriction. In any case, the set12

seems to be pretty close to all of(0,1)−Q.
For the interested reader, we sketch the proof of the result we have just mentioned.

Lemma 4.6 11 = (0,1)−Q.

Proof: (Sketch.) Consider the usual horodisk packing in the upper half-plane as-
sociated to the modular group. The disk tangent toR at p/q has diameter 1/q2.
Remove all horodisks except those based at odd rationals. Dilate each disk (in the
Euclidean sense) by a factor of 2 about its tangency point. Observe that the comple-
ment of these inflated disks in the hyperbolic plane has infinitely many components.
Interpret this result in terms of11 using the usual connection between the modular
horodisk packing and rational approximation. 2

Lemma 4.6 plays no role in our proofs, however.

1I am grateful to Curt McMullen for pointing this out to me and also for supplying the proof sketched
here.
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Chapter Five

Proof of the Erratic Orbits Theorem

5.1 PROOF OF STATEMENT 1

In this section we will prove the following result.

Lemma 5.1 Suppose that A is the limit of a strong sequence{An}. Then statement
1 of the Erratic Orbits Theorem holds for A.

Statement 1 of the Erratic Orbits Theorem follows from Theorem 4.2 and Lemma
5.1. The reader who is satisfied with the Erratic Orbits Theorem for all A ∈ 12 can
use the much easier Lemma 4.3 in place of Theorem 4.2.

In our proof of Lemma 5.1, we will consider the monotone increasing case.
The monotone decreasing case is essentially the same. Letǫ = 1/8 be as in the
definition of strong sequences. Note that our sequence remains strong if we pass to
a subsequence. Passing to a subsequence, we arrange that

ǫqn+1 > 10qn (5.1)

Let Vn = (qn,−pn). Define

Ŵ2
n = Ŵ1

n + Vn+1, (5.2)

Lemma 5.2

Ŵ1
n ⊂ Ŵ1

n+1, Ŵ2
n ⊂ Ŵ1

m ∀m ≥ n+ 2. (5.3)

Proof: We have

Ŵ1+ǫ
n ⊂ Ŵ1

n+1,

by definition, and

Ŵ1
n + Vn+1 ⊂ Ŵn+1

becauseŴn+1 is invariant under translation byVn+1. Our choice of subsequence
gives

Ŵ1
n ⊂ Ŵ1+ǫ

n ⊂∗ B10qn(0,0) ⊂ Bǫqn+1(0,0) ∩ Ŵn+1. (5.4)

The starred containment comes from the Room Lemma. Translating by Vn+1, we
have

Ŵ1
n + Vn+1 ⊂ Bǫqn+1(Vn+1) ∩ Ŵ1

n+1 ⊂ Ŵ1+ǫ
n+1 ⊂ Ŵ1

n+2. (5.5)

Equation 5.3 follows immediately. 2

Figure 5.1 shows schematicaly the sort of binary structure we have set up. In this
figure, the notationi j stands forŴ j

i .
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41

11 12

21 22

3231

Figure 5.1: Large-scale Cantor set structure

Figure 5.2 shows a simplified version of Figure 5.1 that retains the structure of
interest to us. Below we will analyze this figure carefully.

21

81

61

41 42

62

22

Figure 5.2: Large-scale Cantor set structure simplified

Corollary 5.3 The vertex

ωn = ω(σ):=
n−1∑

k=1

ǫkV2k+1 (5.6)

is a vertex ofŴ1
2n for any binary sequenceǫ1, ..., ǫn−1.

Proof: This follows from Equation 5.3 and induction. 2

Let 5 denote the set of not-eventually-constant sequences. Given anyσ ∈ 5,
we form the sequence of translated baselines and translatedgraphs

L ′n = L2n − ωn, Ŵ′n = Ŵ1
2n − ωn. (5.7)

Hereωn is based on the firstn − 1 terms ofσ as in Equation 5.6. The lineL2n is
the baseline ofŴ2n, namely, the line of slope−A2n through the origin.

Lemma 5.4 {L ′n} converges in the Hausdorff topology to a line L of slope−A.

Proof: This follows from the fact that there is a uniform bound to thedistance from
ωn to L2n. 2
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Lemma 5.5 {Ŵ′n} Hausdorff-converges to an open polygonal arcŴ that in both
directions rises unboundedly far from L and comes arbitrarily close to L.

Proof: Figure 5.2 shows a pattern of nested rectangles orboxes. We now formally
define these boxes. Say that the box containingŴ1

n is Rn = R(An), as in the Room
Lemma. We define the 8 smallest boxes in Figure 5.2 as

R2 + ǫ1V3+ ǫ2V5+ ǫ3V7, ǫ j ∈ {0,1}. (5.8)

The larger boxes have similar definitions. We rank each box according to the label
of its leftmost translate. The smallest boxes have rank 2; the next-smallest have
rank 4; and so on. The following structure emerges.

1. The arc inside a box of rank 2n is a translate ofŴ1
2n and has diameterO(q2n).

This arc contains the bottom corners of the corresponding box and rises up
O(q2n) units toward the top of the box. This is all a consequence of the Room
Lemma and Corollary 5.3.

2. The bottom edge of a box of rank 2n lies within O(1/q2n) of the bottom edge
of the box of rank 2n+ 2 that nearly contains it. For the leftmost boxesR2n

and R2n+2 this result follows from the facts that the bottom edges of these
boxes meet at the origin, their slopes differ byO(1/q2

2n), and the shorter edge
has lengthO(q2n). Next, sinceV2n+1 is at mostO(1/q2n) units from the
bottom of R2n+2, we get the same result forR2n + V2n+1 and R2n+2. The
general case now follows from translation.

By construction, the pattern of boxes surroundingωn stabilizes when we view
any fixed-radius neighborhood ofωn. More formally, for anyR, there is someN
such thatm,n > N implies thatŴ1

2m∩ BR(ωm) is a translate ofŴ1
2n∩ BR(ωn). Here

we are crucially using the fact thatσ ∈ 5, so that the common pattern of boxes
grows both to the left and to the right of the points of interest. Hence the sequence
{Ŵ′n} Hausdorff-converges to a limitŴ. The 2 properties above imply thatŴ rises
unboundedly far fromL in both directions.

Now consider the claim about the near approach. Call an arc ofŴ′n steadyif this
same arc also belongs toŴ′m for m > n. By construction, we get the following
result. For anyk, there is somen such thatŴ′n contains a steady arc of the form
β − ωn. Hereβ is a full period ofŴk but is contained inŴ1

2n. Some vertexv of β
has the form

n−1∑

j=k

ǫ j V2 j+1. (5.9)

The distance fromv to the baseline ofŴ2n is O(1/q2k+1). But then the distance
fromv−ωn to the baseline ofŴ′n is O(1/q2k+1). Butv−ωn is also a vertex ofŴ (by
the Hausdorff-convergence)and its distance to the baseline ofŴ is alsoO(1/q2k+1).
We can choose the arcβ − ωn either to the left or to the right of the origin. Hence
both sides of the limitŴ come arbitrarily close toL. 2
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Now we will recognizeŴ as an arithmetic graph corresponding to the parameter
A and a certain offset valueα. At the same time,L will be the baseline of this graph.

Similar to Equation 2.10, we define

M(m,n) =
(

2Am+ 2n, (−1)m+n+1

)
. (5.10)

Givenσ = {ǫk} ∈ 5, the point

α(σ) =
( ∞∑

k=1

2ǫk

(
Aq2k+1 − p2k+1

)
,−1

)
(5.11)

is well defined because thekth term in the series has sizeO(1/q2k+1) and the
sequence{q2k+1} grows exponentially. The union of such limits, taken over all of
5, contains an uncountable set. Throwing out all points in 2Z [ A] × {−1}, we still
have an uncountable set. Takingσ from this uncountable set, the pointα = α(σ)
we consider has a well defined orbit, by Lemma 2.2.

Lemma 5.6 Ŵ is the arithmetic graph ofα, and L is the baseline.

Proof: Let M2n be as in Equation 2.10 for the parameterA2n. Define

αn = M2n(σn) =
( n−1∑

k=1

2ǫk

(
A2nq2k+1 − p2k+1

)
,−1

)
. (5.12)

There is some constantC such that
∣∣∣(A2nq2k+1−p2k+1)− (Aq2k+1−p2k+1)

∣∣∣ = q2k+1|A−A2n| < Cq−1
2n , ∀k ≤ n−1,

∣∣∣∣
∞∑

k=n

2ǫk(Aq2k+1 − p2k+1)

∣∣∣∣ < Cq−1
2n .

It follows from these estimates and the triangle inequalitythat

|α − αn| < Cnq−1
2n .

Henceαn→ α.
By construction,Ŵ′n is one period of the arithmetic graph ofαn relative toA2n.

The distance thatŴ′n extends from the origin in either direction tends to∞ with n.
By the Continuity Principle,{Ŵ′n} converges to the arithmetic graph ofα. But {Ŵ′n}
also converges toŴ. HenceŴ is the arithmetic graph ofα.

The lineL2n − ω is the baseline for the arithmetic graphŴ′n that tracks the orbit
of αn. HenceL is the baseline ofŴ. 2

Combining Lemmas 5.5 and 5.6, we see thatα lies on an erratic orbit relative to
outer billiards onK (A). But there are uncountably manyα to which our argument
applies. This proves Lemma 5.1.
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5.2 PROOF OF STATEMENT 2

The result we prove in this section shows that statement 1 of the Erratic Orbits
Theorem implies statement 2. The reader will see from the next lemma that we
do not need the full force of statement 1. We just need the existence of a point
sufficiently close to a kite vertex that has a two-sided unbounded orbit.

Lemma 5.7 Suppose that A is a parameter and p∈ (0,2)× {1} has an orbit that
is unbounded in both directions. Then all special orbits relative to A are either
periodic or unbounded in both directions.

Proof: We write p = (2ζ,1). By hypothesis,ζ ∈ (0,1). Suppose thatβ has an
aperiodic orbit that is forward-bounded. (The backward case is similar.) For ease
of exposition, we suppose thatβ 6∈ 2Z [ A], so that all components of the arithmetic
graphŴ̂ associated toβ are well defined. In the case whenβ ∈ 2Z [ A], we simply
apply our argument to a sequence{βn} converging toβ and invoke the Continuity
Principle. Our robust geometric limit argument works the same way with only
notational complications.

Let Ŵ be the component of̂Ŵ that tracksβ. The forward directionŴ+ remains
within a bounded distance of the baselineL of Ŵ̂ and yet is not periodic. HenceŴ+
travels infinitely far either to the left or to the right. Since L has an irrational slope,
we can find a sequence of vertices{vn} of Ŵ+ such that the vertical distance fromvn

to L converges toζ + N for some integerN. Letwn = vn − (0, N). Let γn be the
component of̂Ŵn containingwn. Note thatM(wn)→ p. HereM is as in Equation
2.10.

X

Y

Figure 5.3: The contradiction.

Let Tn be a translation so thatTn(wn) = (0,0). By compactness, we can choose
our sequence so that{Tn(Ŵ+)} converges to an infinite polygonal arcX that remains
within a bounded distance of any line parallel toL. By construction,X travels
infinitely far both to the left and to the right. At the same time,{Tn(γn)} converges
to the arithmetic graphY of ζ . HereY starts at(0,0), a point within 1 unit of the
baselineL∞ = lim Tn(L), and rises unboundedly far fromL∞. HenceY starts
out belowX and rises aboveX, contradicting the Embedding Theorem. Figure 5.3
shows the contradiction. 2
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5.3 PROOF OF STATEMENT 3

In this section we prove that statement 1 of the Erratic Orbits Theorem implies
statement 3. LetA be an irrational parameter for which statement 1 of the Erratic
Orbits Theorem holds. Since outer billiards is a piecewise isometry, the set of
periodic orbits is open inR × Zodd. We just need to prove that the periodic orbits
are dense.

Let Ŵ̂ be an arithmetic graph associated toA such thatŴ tracks an erratic orbit.
SinceA is irrational, we can find a sequence of vertices{(mk,nk)} of odd parity that
converges to the baseline ofA. Letγk be the component of̂Ŵ that contains(mk,nk).
Note thatγk 6= Ŵ because, by Lemma 2.6,Ŵ contains vertices only of even parity.
By the Embedding Theorem,γk is trapped underneathŴ. Henceγk is a polygon.
Let |γk| denote the maximal distance between a pair of low vertices onγk.

Lemma 5.8 |γk| → ∞ as k→∞.

Proof: By the Rigidity Lemma in §2.7, a very long arc ofγk, with one endpoint
(mk,nk), agrees with the Hausdorff limit limn→∞ Ŵ(pn/qn). Here{pn/qn} is an ap-
proximating strong sequence. But this limit has vertices withinǫ of the baseline and
at least 1/ǫ apart for anyǫ > 0. Our result now follows from Hausdorff continuity.2

Let Sk denote the set of componentsγ ′ of Ŵ̂ such thatγ ′ is translation equivalent
toγk and the corresponding vertices are low. The vertex(m,n) is low if the baseline
of Ŵ̂ separates(m,n) and(m,n− 1).

Lemma 5.9 There is some constant Nk so that every point of L is within Nk units
of a member of Sk.

Proof: Say that a lattice point(m,n) is very low if it has depth less than 1/100
(but is still positive.) The polygonγk corresponds to a periodic orbitξk. Since
ξk is periodic, there is an open neighborhoodUk of ξk such that all orbits inUk

are combinatorially identical toξk. Let M be a fundamental map associated to
Ŵ̂. ThenM−1(Uk) is an open strip parallel toL. SinceL has an irrational slope,
there is some constantNk so that every point ofL is within Nk of some point of
M−1(Uk) ∩ Z2. But the components of̂Ŵ containing these points are translation-
equivalent toγk. ChoosingUk small enough, we can guarantee that the translations
takingγk to the other components carry the very low vertices ofγk to low vertices.2

Given two polygonal componentsX andY of Ŵ̂, we write X ⊲⊳ Y if one low
vertex ofY lies to the left ofX and one low vertex ofY lies to the right ofX. See
Figure 5.4. In this case,X is trapped underneathY, by the Embedding Theorem.

Now we pass to a subsequence so that

|γk+1| > 10(Nk + |γk|). (5.13)

Equation 5.13 has the following consequence. For any integer N, we can find
componentsγ j of Sj , for j = N, ...,2N, suchγN ⊲⊳ · · · ⊲⊳ γ2N . Let L N denote
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the portion ofL between the two distinguished low points ofγN . Let3N denote
the set of lattice points withinN units ofL N . The set3N is a parallelogram whose
base isL N , a segment whose length tends to∞ with N. The height of3N tends to
∞ as well.

V

Y

X

L

Figure 5.4: One polygon overlying another.

Lemma 5.10 The set M(Z2 ∩3N) consists entirely of periodic orbits.

Proof: Let V be a vertical ray whosex-coordinate is an integer. IfV starts out on
Ln, thenV must travel upward at leastN units before escaping from underneath
γ2N . This is an application of the pidgeonhole principle. The point is thatV must
intersect eachγ j , for j = N, ...,2N, in a different lattice point. Hence any point of
3N is trapped beneathγ2N . 2

Given the facts that both the base and height of3N are growing unboundedly
and the fact thatA is an irrational parameter, the union

⋃∞
N=1 M(3N ∩Z2) is dense

in R+. Hence the set of periodic orbits starting inR+ × {−1,1} is dense in the set
of all special orbits. Our proof of the Pinwheel Lemma in Part2 shows that every
special orbit eventually lands inR+ × {−1,1}. Hence the set of periodic special
orbits is dense inR × Zodd.
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Part 2. The Master Picture Theorem

In this part of the book, we will state and prove the Master Picture Theorem. All
the auxilliary theorems left over from Part 1 rely on this central result. Here is an
overview of the material.

• In Chapter 6, we will state the Master Picture Theorem. Roughly, the Master
Picture Theorem says that the structure of the return map9 is determined
by a pair of maps into a flat 3-torusR3/3 together with a partition ofR3/3
into polyhedra. Here3 is a certain 3-dimensional lattice that depends on
the parameter. We will consider the Master Picture Theorem from several
points of view, giving lots of example calculations. The remainder of Part
2 is devoted to the proof of the Master Picture Theorem. The reader who is
keen to see the applications can skip directly from Chapter 6to Part 3.

• In Chapter 7, we will prove the Pinwheel Lemma, a key technical step along
the way to the proof of the Master Picture Theorem. The Pinwheel Lemma
states that we can factor the return map9 into a composition of 8 simpler
maps, which we callstrip maps. A strip map is a very simple map from the
plane into an infinite strip.

• In Chapter 8, we prove the Torus Lemma, another key result. The Torus
Lemma implies that there exists some partition of the torus into open regions
such that the regions determine the structure of the arithmetic graph. The
Torus Lemma reduces the Master Picture Theorem to a rough determination
of the singular set. The singular set is the (closure of the) set of points in the
torus corresponding to points where the return map is not defined.

• In Chapter 9, we verify, with the aid of symbolic manipulation, certain func-
tional identities that arise in connection with the Torus Lemma. These func-
tional identities are the basis for our analysis of the singular set.

• In Chapter 10, we combine the Torus Lemma with the functional identities to
prove the Master Picture Theorem.

Billiard King has a module that shows the torus partition anddemonstrates the
Master Picture Theorem. A separate module on Billiard King shows all the sets
involved in the proof of the Pinwheel Lemma. We hope that the material in Chapters
6 and 7 stands on its own, but we strongly recommend that the reader use Billiard
King as a guide to this material.
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Chapter Six

The Master Picture Theorem

6.1 COARSE FORMULATION

Recall that4 = R+ × {−1,1}. We distinguish two special subsets of4.

4+ =
∞⋃

k=0

(2k,2k+2)×{(−1)k}, 4− =
∞⋃

k=1

(2k,2k+2)×{(−1)k−1}. (6.1)

Each set is an infinite disconnected union of open intervals of length 2. The reflection
in the x-axis interchanges4+ and4−. The union4+ ∪ 4− partitions the set
(R+ − 2Z)× {±1}.

Define

RA = [0,1+ A] × [0,1+ A] × [0,1] . (6.2)

RA is a fundamental domain for the action of a certain lattice3A. This lattice is
defined by the following matrix.

3A =
[ 1+ A 1− A −1

0 1+ A −1
0 0 1

]
Z3. (6.3)

We mean to say that3A is theZ-span of the column vectors of the above matrix.
We define maps

µ±:4±→ RA (6.4)

by the equations

µ±(t, ∗) =
(

t − 1

2
,

t + 1

2
,

t

2

)
±
(

1

2
,

1

2
,0

)
mod3. (6.5)

The maps depend on only the first coordinate. In each case, we mean to mapt into
R3 and then use the action of3A to move the image intoRA. It might happen that
there is not a unique representative inRA. (There is an issue with boundary points,
as is usual with fundamental domains.) However, ift 6∈ 2Z [ A], this situation does
not occur. The mapsµ+ andµ− are locally affine.

Here is a coarse formulation of the Master Picture Theorem. We will state the
entire result in terms of(+), with the understanding that the same statement holds
with (−) replacing(+) everywhere. Let9:4→ 4 be the first return map.

Theorem 6.1 For each parameter A, there is a partition(P A)+ of RA into finitely
many convex polyhedra. If9 is defined onξ1, ξ2 ∈ 4+ andµ+(ξ1) andµ+(ξ2) lie
in the same open polyhedron of(P A)+, then9(ξ1)− ξ1 = 9(ξ2)− ξ2.
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6.2 THE WALLS OF THE PARTITIONS

In order to make Theorem 6.1 precise,we need to describe the nature of the partitions
(P A)± and also the rule by which the polyhedron in the partition determines the
vector9(ξ)− ξ . We will make several passes through the description, adding a bit
more detail each time.

The polyhedra of(P A)± are cut out by the following 4 families of planes.

• {x = t} for t = 0, A,1,1+ A.

• {y = t} for t = 0, A,1,1+ A.

• {z= t} for t = 0, A,1− A,1.

• {x + y− z= t} for t = −1+ A, A,1+ A,2+ A.

As a first approximation, we say that the connected components of the com-
plement of the above planes are the polyhedra in the partition. Actually, the best
statement is that the polyhedra in the partition are certainconvex unions of these
components. This is to say that the actual partition into polyhedra is somewhat
simpler than what one would get just by taking the complementary regions we are
discussing. We will consider the best version at the very endof the chapter.

(1/2+A,0,1/2)(0,0,0) (A,0,0)

z=0 z=1/2(1+A,1+A,0)

(0,0,1/2)

Figure 6.1: Two slices of the partition forA = 2/3.

Figure 6.1 shows two slices of the partition for the parameter A = 2/3. We have
sliced the figure atz = 0 andz = 1/2 and we have labelled several points just
to make the coordinate system more clear. The arrow in indicates the “motion”
the diagonal lines would make if we increased thez-coordinate, showing a kind of
movie of the partition.
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6.3 THE PARTITIONS

For each parameterA we get a solid bodyRA partitioned into polyhedra. We can
put all these pieces together into a single master picture. We define

R=
⋃

A∈(0,1)

(
RA × {A}

)
⊂ R4. (6.6)

Each 2-plane family discussed above gives rise to a hyperplane family inR4. These
hyperplane families are now all defined overZ because the variableA is just the 4th
coordinate ofR4 in our current scheme. Given that we have two mapsµ+ andµ−,
it is useful for us to consider two identical copiesR+ andR− of R.

We have a fibrationf : R4→ R2 given by

f (x, y, z, A) = (z, A). (6.7)

This fibration in turn gives a fibration ofR over the unit squareB = (0,1)2. Figure
6.1 shows the fiberf −1(3/2,1/2). The base spaceB is partitioned into 4 regions,
as seen in Figure 6.2.

z

2

3

0

1

A

Figure 6.2: The partition of the base space.

All the fibers above the same open region in the base space havethe same com-
binatorial structure. Figure 6.3 shows precisely how the partition assigns the value
of the return map. Given a pointξ ∈ 4+, we have a pair of integers(ǫ+1 (ξ), ǫ

+
2 (ξ))

such that

9(ξ)− ξ = 2(ǫ+1 , ǫ
+
2 , ∗). (6.8)

The second coordinate,±2, is determined by the parity relation in Equation 2.8.
Similarily, we have(ǫ−1 , ǫ

−
2 ) for ξ ∈ 4−.
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Figure 6.3 shows a schematic picture ofR. For each of the 4 open triangles in the
base, we have drawn a cluster of 4 copies of a representative fiber over that triangle.
The j th column of each cluster determines the value ofǫ±j . The first row of each
cluster determinesǫ+j , and the second row determinesǫ−j . Light shading indicates
a value of+1. Dark shading indicates a value of−1. No shading indicates a value
of zero.

2

3

0

1

z

A1

1

1

1

2

2

2

2

Figure 6.3: The decorated fibers.

Given a generic pointξ ∈ 4±, the imageµ±(ξ) lies in some fiber. We then use
the shading scheme to determineǫ±j (ξ) for j = 1,2. (See below for examples.)
Theorem 6.1, together with the description in this section,constitutes the Master
Picture Theorem. In §6.9 we explain with more traditional formulas how to compute
these values.

Remark: The hard work in the proof of the Master Picture Theorem is show-
ing that Theorem 6.1 holds with respect to the partition we have defined. Once we
know this, a short finite experiment will determine the shading in Figure 6.3.
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6.4 A TYPICAL EXAMPLE

Here we will show the Master Picture Theorem in action. We will explain it deter-
mines the local structure of the arithmetic graphŴ(3/5) at the point(4,2). Let M
be the fundamental map associated to

A = 3/5; A = 1/10.

We compute

M(4,2) =
(
(8)(3/5)+ (4)+ (1/5), (−1)4+2+1

)
= (9,−1) ∈ 4−.

The pointµ−(9,−1) determines the forward direction and the pointµ+(9,1) deter-
mines the backward direction. (Reflection in thex-axis conjugates9 to its inverse.)

We compute

µ+ (9,1) =
(

9

2
,

11

2
,

9

2

)
≡
(

1

10
,

3

2
,

1

2

)
mod3,

µ− (9,−1) =
(

7

2
,

9

2
,

9

2

)
≡
(

7

10
,

1

2
,

1

2

)
mod3.

In §6.6 we will explain algorithmically how to make these computations. We have
(z, A) = (1/2,3/5). There we need to look at cluster 3, the cluster of fibers
above region 3 in the base. Here is the plot of the two points inthe relevant fiber.
When we look up the regions in Figure 6.3, we find that(ǫ+1 , ǫ

+
2 ) = (−1,1) and

(ǫ−1 , ǫ
−
2 ) = (1,0). The bottom right of Figure 6.4 shows the corresponding local

structure for the arithmetic graph.

+

+

21

Figure 6.4: Points in the fiber over region 3.
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6.5 A SINGULAR EXAMPLE

Sometimes it is an annoyance to deal with the tiny positive constantα that arises in
the definition of the fundamental map. In this section we willexplain an alternate
method for applying the Master Picture Theorem. One situation where this alternate
approach proves useful is when we need to deal with the fibers at z= α. We much
prefer to draw the fibers atz = 0 because they do not contain any tiny polygonal
regions. All the pieces of the partition can be drawn cleanly. However, in order to
make sense of the Master Picture Theorem, we need to slightlyredefine how the
partition defines the return map.

We define thelower boundaryof a polyhedronP ⊂ R3 as the portionS⊂ ∂P
such thatx ∈ S implies thatx + ǫ(1,1,1) ∈ S for sufficiently smallǫ > 0. Let P
denote the union of the interior ofP with its lower boundary. Whenα is sufficiently
small, we can setα = 0 and determine the return pair using the polyhedraP in
place of the interior ofP, which we used above. In practice, we will use this method
whenA is rational. In this case,α will always be small enough for our purposes.

We can explain the alternate method in terms of the slices we have drawn above.
We redefine the polygonal regions to include theirlower edges. A lower edge is an
edge first encountered by a line of slope 1. Figure 6.5 shows what we have in mind.

Figure 6.5: Polygons with their lower boundaries included.

We then setα = 0 and determine the relevant edges of the arithmetic graph by
which lower-borderedpolygon contains our points. Ifz ∈ {0, A,1− A}, then we
think of the fiber atz as being the geometric limit of the fibers atz+ ǫ for ǫ > 0.
That is, we take a right-sided limit of the figures. Whenz is not one of these special
values, there is no need to do this, for the fiber is completelydefined already.

We illustrate our approach with the exampleA = 3/5 and(m,n) = (0,8). We
compute thatt = 8+ α in this case. The relevant slices are the ones we get by
settingz= α. We deal with this by settingα = 0 and computing

µ+ (16,1) = (8,9,8) ≡ (4/5,1,0) mod 3

µ− (16,−1) = (7,8,8) ≡ (0,7/5,0) mod 3.

Figure 6.6 shows the relevant fibers. The bottom right of Figure 6.6 shows the local
structure of the arithmetic graph. For instance,(ǫ+1 , ǫ

+
2 ) = (0,1).
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1

+

−

+

−

2

Figure 6.6: Points in the fiber.

The only place where we need to use our special definition of a lower-bordered
polygon is for the point in the lower left fiber. This fiber determines thex-coordinate
of the edge corresponding toµ−. In this case, we include the point in the lightly
shaded parallelogram because the point lies in the lower border of this parallelogram.

Figure 6.7: An exceptional case.

There is one exception to our construction that requires an explanation. Referring
to the lower right fiber, suppose that the bottom point actually is the bottom right
vertex as shown in Figure 6.7. In this case, the point is simultaneously the bottom
left vertex, and we make the definition using the bottom left vertex. The underlying
reason is that a tiny push along the line of slope 1 would move the point into the
region on the left. Actually, this case is not really an exception if we think of the
left and right hand sides of the fiber as being identified.
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6.6 THE REDUCTION ALGORITHM

Let A be a parameter and letα be an offset value. LetM be the fundamental map
associated to the pair(A, α), as in Equation 2.9. We define

M+ = µ+ ◦ M, M− = µ− ◦ ρ ◦ M. (6.9)

Hereµ± is as in Equation 6.5 andρ is the reflection in thex-axis. The domain
of µ± is4±, the set from Equation 6.1. Note thatµ+ andµ− depend on only the
first coordinate, and this first coordinate is not changed byρ. The mapρ is present
mainly for bookkeeping purposes becauseρ(4+) = 4−.

Given a pointp ∈ Z2, the polyhedron ofR+ containingM+(p) determines the
forward edge of̂Ŵ incident to p, and the polyhedron ofR− containingM−(p)
determines the backward edge ofŴ̂ incident top. Concretely, we have

M+(m,n) = (s, s+ 1, s) mod 3,

M−(m,n) = (s− 1, s, s) mod 3,

s= Am+ n+ α. (6.10)

Let (m,n) ∈ Z2 be a point above the baseline ofŴα(A). Here we describe how
to compute the points

µ±(Mα(m,n)).

This algorithm will be important when we prove the Diophantine Lemma in Part 4.

1. Letz= Am+ n+ α.

2. Let Z = floor(z).

3. Let y = z+ Z.

4. LetY = floor(y/(1+ A)).

5. Letx = y− Y(1− A)− 1.

6. Let X = floor(x/(1+ A)).

We then have

µ−(Mα(m,n)) =
( x − (1+ A)X

y− (1+ A)Y
z− Z

)
. (6.11)

The description ofµ+ is identical except that the third step above is replaced by

y = z+ Z + 1. (6.12)

All this algorithm does is use the lattice3A to move the point(x, y, z) into the
fundamental domainRA.
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6.7 THE INTEGRAL STRUCTURE

Let Aff denote the group of affine automorphisms ofR4. We define a discrete affine
group action3 ⊂ Aff on the infinite slab

R̂= R3 × (0,1). (6.13)

The group3 is generated by the 3 mapsγ1, γ2, γ3. Hereγ j acts on the first 3
coordinates as translation by thej th column of the matrix3A, and on the 4th
coordinate as the identity. We think of theA-variable as the 4th coordinate.γ1, γ2, γ3

map the column vector(x, y, z, A)t , respectively, to



x + 1+ A
y
z
A


 ,




x + 1− A
y+ 1+ A

z
A


 ,




x − 1
y− 1
z+ 1

A


 . (6.14)

The quotient̂R/3 is naturally a fiber bundle over(0,1). Each fiber(R3×{A})/3 is
isomorphic toR3/3A. The regionR, from Equation 6.6, is a fundamental domain
for the action of3. Explicitly, the 16 vertices ofR are

(ǫ1, ǫ2, ǫ3,0), (2ǫ1,2ǫ2, ǫ3,1), ǫ1, ǫ2, ǫ3 ∈ {0,1}. (6.15)

Inplicit in Figure 6.3 is the statement that the regionsR+ andR− are partitioned
into smaller convex polytopes. The partition here is definedby the 4 families of hy-
perplanes discussed above. For each pair(ǫ1, ǫ2) ∈ {−1,0,1}, let R+(ǫ1, ǫ2) denote
the closure of the union of regions that assign(ǫ1, ǫ2). It turns out thatR+(ǫ1, ǫ2) is
a finite union of convex integral polytopes. There are 14 suchpolytopes, and they
give an integral partition ofR+. Here we list the 14 polytopes. In each case, we list
the vertices followed by the pair(ǫ1, ǫ2) that the polytope determines.




0
0
0
0







0
0
0
1







0
0
1
0







0
1
0
1







0
1
1
1







1
0
0
1







1
0
1
0







1
0
1
1







1
1
1
1


 (1,1),




0
0
0
0







0
1
0
0







0
1
0
1







0
2
0
1







0
2
1
1







1
1
0
1







1
1
1
1







1
2
1
1


 (−1,1),




0
1
0
0







0
1
1
0







1
1
1
0







1
1
1
1







1
2
1
1







2
1
1
1


 (−1,−1),




0
1
0
0







0
2
0
1







1
0
0
0







1
1
0
0







1
1
0
1







1
1
1
0







1
2
0
1







1
2
1
1


 (0,1),




0
0
0
0







0
0
1
0







0
1
0
1







0
1
1
0







0
1
1
1







0
2
1
1







1
0
1
0







1
1
1
1


 (0,1),
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


0
0
0
0







0
1
0
1







1
0
0
1







1
1
0
1







1
1
1
1


 (0,1),




0
0
0
1







0
0
1
0







0
0
1
1







0
1
1
1







1
0
1
1


 (0,1),




0
0
0
0







0
1
0
0







0
1
1
0







0
2
1
1







1
1
1
1







1
2
1
1


 (−1,0),




1
1
0
0







1
2
0
1







2
1
0
1







2
2
0
1







2
2
1
1


 (−1,0),




0
1
0
0







1
1
0
1







1
1
1
1







1
2
1
1







2
1
1
1


 (−1,0),




1
0
0
0







1
1
0
0







1
1
0
1







1
1
1
0







2
0
0
1







2
1
0
1







2
1
1
1


 (1,0),




1
0
0
1







1
0
1
0







1
0
1
1







1
1
1
1







2
0
1
1


 (1,0),




1
1
0
0







1
1
0
1







1
1
1
0







1
2
0
1







1
2
1
1







2
1
0
1







2
1
1
1







2
2
1
1


 (0,0),




0
0
0
0







0
1
0
0







0
1
1
0







1
0
0
0







1
0
0
1







1
0
1
0







1
1
0
1







1
1
1
0







1
1
1
1







2
0
0
1







2
0
1
1







2
1
1
1


 (0,0).

Let ι: R+→ R− be given by the map
ι(x, y, z, A) = (1+ A− x,1+ A− y,1− z, A). (6.16)

Geometrically,ι is a reflection in the 1-dimensional line. We have the general
equation

R−(−ǫ1,−ǫ2) = ι(R+(ǫ1, ǫ2)). (6.17)
Thus the partition ofR− is a mirror image of the partition ofR+. We can use the
action of3 to extend our partitions to give tilings of̂R by convex integer polytopes.
This tiling is our “master picture.”
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6.8 CALCULATING WITH THE POLYTOPES

We will illustrate a calculation with the polytopes we have listed. Letι andγ2 be
the maps from Equation 6.7. The regionR+(0,0) consists of two polygonsP1 and
P2. These are the last two listed above. We will show that

ι(P2)+ (1,1,0,0) = γ2(P2).

As above, the coordinates forP2 are



0
0
0
0







0
1
0
0







0
1
1
0







1
0
0
0







1
0
0
1







1
0
1
0







1
1
0
1







1
1
1
0







1
1
1
1







2
0
0
1







2
0
1
1







2
1
1
1


 .

Recall thatι(x, y, z, A) = (1 + A − x,1 + A − y,1 − z, A). For example,
ι(0,0,0,0) = (1,1,1,0). The coordinates forι(P2) are




1
1
1
0







1
0
1
0







1
0
0
0







0
1
1
0







1
2
1
1







0
1
0
0







1
1
1
1







0
0
0
0







1
1
0
1







0
2
1
1







0
2
0
1







0
1
0
1


 .

The coordinates forι(P2)+ (1,1,0,0) are



2
2
1
0







2
1
1
0







2
1
0
0







1
2
1
0







2
3
1
1







1
2
0
0







2
2
1
1







1
1
0
0







2
2
0
1







1
3
1
1







1
3
0
1







1
2
0
1


 .

We haveγ2(x, y, z, A) = (x+ 1− A, y+ 1+ A, z, A). For instance, we compute
thatγ2(0,0,0,0) = (1,1,0,0). The coordinates forγ (P2) are




1
1
0
0







1
2
0
0







1
2
1
0







2
1
0
0







1
2
0
1







2
1
1
0







1
3
0
1







2
2
1
0







1
3
1
1







2
2
0
1







2
2
1
1







2
3
1
1


 .

These are the same vectors as listed forι(P2)+ (1,1,0,0), but in a different order.

Finally, we illustrate how the general form of the integral partition can justify nu-
merical calculations. Consider the phase portrait described in Figure 2.5. Consider
the two rectangles

Q+ = {(t, t + 1, t)| t ∈ (0,1)} × [0,1] ,

Q− = {(t − 1, t, t)| t ∈ (0,1)} × [0,1] .

Allow Q± to intersect the polytopeR±. These intersections partitionQ+ andQ−
into a small finite number of polygons. The partition ofQ± tells the behavior of
9± on points of(0,2) × {1}. By symmetry, the partition ofQ∓ tells the behavior
of 9± on (0,2) × {−1}. The partition ofQ± gives us the information needed to
build Figure 2.5. Given the simplicity of the partitions involved, we can determine
the figure just by plotting (say) 10,000 fairly dense points in the rectangles. This is
what we did.
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6.9 COMPUTING THE PARTITION

Here we explain how Billiard King implements the Master Picture Theorem. We
cannot imagine that a person would want to do this by hand, butit seems worth
explaining what the computer actually does.

6.9.1 Step 1

Suppose(a,b, c) ∈ RA lies in the range ofµ+ or µ−. Now we describe how to
attach a 5-tuple(n0, ...,n4) to (a,b, c).

• Determiningn0:

– If we are interested inµ+, thenn0 = 0.

– If we are interested inµ−, thenn0 = 1.

• Determiningn1:

– If c < A andc < 1− A, thenn1 = 0.

– If c > A andc < 1− A, thenn1 = 1.

– If c > A andc > 1− A, thenn1 = 2.

– If c < A andc > 1− A, thenn1 = 3.

• Determiningn2:

– If a ∈ (0, A), thenn2 = 0.

– If a ∈ (A,1), thenn2 = 1.

– If a ∈ (1,1+ A), thenn2 = 2.

• Determiningn3:

– If b ∈ (0, A), thenn3 = 0.

– If b ∈ (A,1), thenn3 = 1.

– If b ∈ (1,1+ A), thenn3 = 2.

• Determiningn4:

– Let t = a+ b− c.

– Let n4 = floor(t − A).

Notice that each 5-tuple(n0, ...,n4) corresponds to a (possibly empty) convex poly-
hedron inRA. The polyhedron does not depend onn0. It turns out that this polyhe-
dron is empty unlessn4 ∈ {−2,−1,0,1,2}.
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6.9.2 Step 2

Let n = (n0, ...,n4). We now describe two functionsǫ1(n) ∈ {−1,0,1} and
ǫ2(n) ∈ {−1,0,1}.

Here is the definition ofǫ1(n).

• If n0 + n4 is even, then

– If n2 + n3 = 4 or x2 < x3 setǫ1(n) = −1.

• If n0 + n4 is odd, then

– If n2 + n3 = 0 or x2 > x3, setǫ1(n) = +1.

• Otherwise, setǫ1(n) = 0.

Here is the definition ofǫ2(n).

• If n0 = 0 andn1 ∈ {3,0}, then

– If n2 = 0, letǫ2(n) = 1.

– If n2 = 1, andn4 6= 0 let ǫ2(n) = 1.

• If n0 = 1 andn1 ∈ {0,1}, then

– if n2 > 0 andn4 6= 0, letǫ2(n) = −1.

– If n2 < 2 andn3 = 0 andn4 = 0, letǫ2(n) = 1.

• If n0 = 0 andn1 ∈ {1,2}, then

– If n2 < 2 andn4 6= 0, letǫ2(n) = 1.

– If n2 > 0 andn3 = 2 andn4 = 0, letǫ2(n) = −1.

• If n0 = 1 andn1 ∈ {2,3}, then

– If n2 = 2, letǫ2(n) = −1.

– If n2 = 1 andn4 6= 0, letǫ2(n) = −1.

• Otherwise, letǫ2(n) = 0.

6.9.3 Step 3

Let A ∈ (0,1) be any parameter and letα > 0 be some parameter such that
α 6∈ 2Z [ A]. Given any lattice point(m,n), we perform the following construction.

• Let (a±,b±, c±) = µ±(A,m,n). See §6.6.

• Let n± be the 5-tuple associated to(a±,b±, c±).

• Let ǫ±1 = ǫ1(n±) andǫ±2 = ǫ2(n±).

The Master Picture Theorem says that the two edges ofŴα(m,n) incident to(m,n)
are(m,n)+ (ǫ±1 , ǫ

±
2 ).
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Chapter Seven

The Pinwheel Lemma

7.1 THE MAIN RESULT

The Pinwheel Lemma gives a formula for the return map9:4 → 4 in terms of
maps we callstrip maps. Similar objects are considered in [GS] and [S].

Consider a pair(6, L), where6 is an infinite planar strip andL is a line transverse
to6. The pair(L,6) determines two vectorsV+ andV−, each of which points from
one boundary component of6 to the other and is parallel toL. Clearly,V− = −V+.
See Figure 7.1.

For almost every pointp ∈ R2, there is a unique integern such that

E(p):= p+ nV+ ∈ 6. (7.1)

We callE the strip map defined relative to(6, L). The mapE is well defined except
on a countable collection of parallel and evenly spaced lines.

p

L

S

E(p)

V

+V

−

Figure 7.1: A strip map.

Figure 7.2 shows 4 strips61, ..., 64 we associate to the kiteK (A). The labelled
points all lie on thex-axis, and we simply give the first coordinate. One edge of
each strip contains an edge ofK (A). The other edge of the same strip is obtained
by reflecting the first edge through the kite vertex that is furthest away from the first
edge. Referring to the vectors in §2.3, we associate the vector Vj to6 j . We remind
the reader that

V1 = (0,4), V2 = (−2,2), V3 = (−2−2A,0), V4 = (−2,−2). (7.2)
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The corresponding strip mapE j is based on(6 j ,Vj ). To make the notation com-
pletely consistent with §2.3, we define

6 j+4 = 6 j , Vj+4 = −Vj , E j+4 = E j . (7.3)

3
2

1

−2−A

4

3
A

−1

Figure 7.2: The 4 strips for the parameterA = 1/3.

To give formulas for the strip maps, we define vectors

W1 =
1

4
(−1,1,3), W2 =

1

2+ 2A
(−1, A, A),

W3 =
1

2+ 2A
(−1,−A, A), W4 =

1

4
(−1,−1,3). (7.4)

For a pointp ∈ R2, we define

F j (p) = Wj · (p1, p2,1). (7.5)

F( j , p) measures the position ofp relative to the strip6 j . This quantity lies in
(0,1) iff p lies in the interior of6 j . Letting [ ] denote the floor function, we have

E j (p) = p−
[
F j (p)

]
Vj . (7.6)

We also define a mapχ : R+ × Zodd→ 4 by the formula

χ(x,4n± 1) = (x,±1). (7.7)

Lemma 7.1 (Pinwheel)9 exists for any point of4 having a well defined outer
billiards orbit. In all cases,9 = χ ◦ (E8...E1).
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7.2 DISCUSSION

We call the map in the Pinwheel Lemma thepinwheel map. Results like the Pinwheel
Lemma seem to be foundational for polygonal outer billiards. Similar ideas appear
in [K ] and [GS], for instance. As we will see in the next section, the Pinwheel
Lemma is quite easy for points far from the kite. We are forcedto consider all
points in4 because all the unbounded orbits turn out to be erratic; theyinevitably
come close to the kite.

To prove the Pinwheel Lemma in general, we follow the strategy used for the
Return Lemma. We consider all possible sequences of the form

i1→ i2→ i3→ · · · ,
whereRi1, Ri2, ... denotes the list of successive regions of the partition encountered
by the forwardψ-orbit of some pointz1 ∈ 4. We let z j be the first point in the
forward orbit inRa j . Our proof boils down to a case-by-case analysis of the possible
sequences. In some cases, the proof relies on some lucky cancellations.

Clearly, something nontrivial must happen to make the Pinwheel Lemma true for
all points. Notice that the pinwheel map does not involve thevectorsV ♯

4 andV ♭
6 ,

and yet these vectors and their corresponding regions are involved in the dynamics.
Some kind of lucky cancellation must take place that “edits out” these vectors and
regions from the final reckoning. There are two “symmetrically related” lucky
accidents, and they are depicted in Figures 7.4 and 7.5 below. The nature of these
accidents dictates the order of our proof. First we deal withsequences that do not
involve 4♯ and 6♭ and then we consider the general case.

As in §2.3, we strongly recommend that the reader use Billiard King to better
follow the claims we make here. This program allows the reader to draw all the
regions in the partition and their translates, superimposing them as desired over the
strips. At the same time, the reader can plot the dynamics of the outer billiards map,
checking that all the sets have their advertised properties.

Since the Pinwheel Lemma is a nontrivial result for points near the kite, it seems
worth presenting some numerical evidence for the result. Using Billiard King, we
compute that the Pinwheel Lemma holds true at the points(x,±1) relative to the
parameterA for all

A = 1

256
, ...,

255

256
, x = ǫ + 1

1024
, ..., ǫ + 16384

1024
, ǫ = 10−6.

The small numberǫ is included to make sure that the outer billiards orbit is actually
defined for all the points we sample. This calculation fairlywell carpets the “near
region” with instances of the truth of the result. While thiscalculation does not
prove anything formally, it serves as a good sanity check that the Pinwheel Lemma
is true.

We close this section with a discussion of how the Pinwheel Lemma fits into the
proof of the Master Picture Theorem. The Master Picture Theorem really makes
a statement about the pinwheel map. The Pinwheel Lemma then translates this
statement to a statement about the map9. Thus, if we want to use the Master
Picture Theorem to verify a particular statement solely about the pinwheel map, we
do not need to know about the truth of the Pinwheel Lemma. Thisprinciple will
come in handy at the end, saving us some tedious work.
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7.3 FAR FROM THE KITE

Here we prove the Pinwheel Lemma for points of4 far from K . Logically, the
argumentwe give here is not necessary for our overall proof of the Pinwheel Lemma.
However, it is an easy argument, and it serves as a guide for the harder arguments
we give in the following sections when we come to the real proof.

Let K ′ be a large compact set surroundingK . Define

Sj = Rj − K ′, j = 1,2,3,4,5,6,7,8. (7.8)

K ′ contains the two compact regionsR♯4 andR♭6. Figure 7.3 shows how the regions
Sj sit with respect to the strips6 j . EachSj shares its unbounded edges with two
consecutive strips as shown.

8

1

6

4
3

7

5
z10

z2

z1

2

K

Figure 7.3: Easy case of the pinwheel lemma.

Looking at the figure, we have

z j+1 = E j (z j ), z10 = χ(z9), j = 1, ...,8. (7.9)

By induction and Equation 7.8, the pointz j+1 lies in the forward orbit ofz j for each
j = 1, ...,8. But thenz10 = 9(z1) = χ ◦ E8...E1(z1), and we are finished.
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7.4 NO SHARPS OR FLATS

Now we turn to the general proof of the Pinwheel Lemma. In thissection, we
prove the Pinwheel Lemma for sequences that contain neither4# or 6♭. Since
4 ⊂ R1∪R2∪R♯4, our sequence has the formi1→ · · · → ik, wherei1 ∈ {1,2} and
ik ∈ {9,10}. By Equation 2.7, the indices increase, and furthermore they increase
by at most 3 each time. We observe, using Billiard King, that

0< k − j < 4, H⇒ R̂j ∩ Rk ⊂ 6 j ∩ · · · ∩6k−1. (7.10)

Since no sharps and flats are involved, Equation 7.10 implies

z j+1 = Ei j (z j ). (7.11)

We check thatR2 ∩ 4 ⊂ 61. Hence, ifi1 = 2, we haveE1(z1) = z1. Therefore,
whetheri1 = 1 or i1 = 2, Equation 7.11 yields

z2 = Ei1...E1(z1). (7.12)

By Equation 7.10, we have

z2 ∈ R̂i1 ∩ Ri2 ⊂ 6i1 ∩ · · · ∩6i2−1, Ei2−1...Ei1+1(z2) = z2. (7.13)

The first equation above implies the second. Combining Equations 7.11–7.13, we
have

z3 = Ei2(z2) = Ei2...Ei1+1(z2) = Ei2...E1(z1). (7.14)

Repeating the same argument, we have

z4 = Ei3...E1(z1). (7.15)

This pattern continues in this way until we arrive atzk ∈ R9 ∪ R10.

Case 1:Supposezk ∈ R9 = R1. Then

zk = E8...E1(z1). (7.16)

The forward iterates ofzk are obtained by repeatedly addingV1. This is the same
as applying the mapχ . Hence

9(z1) = χ(zk) = χ ◦ E8...E1(z1). (7.17)

Hence the Pinwheel Lemma holds in this case.

Case 2:Supposezk ∈ R10 = R2. Then

zk = E9...E1(z1) =∗ E8...E1(z1) ⊂ 4 (7.18)

The starred equality comes from the fact that

E8...E1(z1) ∈ 69 = 61, (7.19)

by Equation 7.10. HenceE9 = E1 acts trivially. The containment in Equation 7.18
comes from the same argument we gave in case 2 of the proof of the Return Lemma
in §2.3. By Equation 7.18, we haveχ(zk) = zk, and again the Pinwheel Lemma
holds.
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7.5 DEALING WITH 4♯

In this section we will consider sequences that have 4# in them but not 6♭. In this
section, we suppose that 4# is not the first term. By Equation 2.7, we must have
a→ 3→ 4#→ · · ·, wherea ∈ {1,2}.

Our proof is based on the following items.

1. R♯4 ⊂ 64−63 andR♯4 + V3 ∈ 63−64.

2. V ♯
4 = V3 − V4+ V5.

3. R̂♯4 ∩ R8 ⊂ 65 ∩66 ∩67.

One can see these at a glance using Billiard King.

z

z4

3

Σ

#

−V

3

V3

V5

4

4

Σ
Figure 7.4: The orbit nearR♯4.

Considerz3, the first point in the forward orbit ofz1 that lies inR♯4. (This region
is labelled by a # in Figure 7.4.) From Equation 7.10 and from the fact that 3→ 4♯ ,
we have

z3 = E2E1(z1)+ nV3, n ≥ 1. (7.20)

Item 1 gives

E3E2E1(z1) = E3(z3) = z3 + V3, E4E3(z3) = z3+ V3−V4.

Item 2 gives the crucial starred equality in the next equation.

z4 = z3+V ♯
4 =∗ z3+V3−V4+V5 = E4E3(z)+V5 = E4E3E2E1(z1)+V5. (7.21)

Equation 2.7 givesz4 ∈ R5 or z4 ∈ R8. If z5 ∈ E5, then

z5 = E5(z4) = E5...E1(z1). (7.22)

If z4 ∈ R8, then item 3 gives the starred equality in the following equation.

z5 = E8(z4) =∗ E8E7E6E5(z4) = E8...E1(z1). (7.23)

In either case, the analysis finishes as in the previous section.
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7.6 DEALING WITH 6♭

In this section we will consider sequences that contain 6♭ but not the portion 2→ 6♭.
Our arguments refer mainly to Figure 7.5. By Equation 2.7, wemust have 5→ 6♭.
Our argument is based on the following items.

1. R♭6 ⊂ 66 −65 andR♭6 + V5 ⊂ 65 −66.

2. V ♭
6 = V5− V6+ V7.

3. R̂♭6 ∩ R2 ⊂ 67 ∪68.

6
R6

w

5

7

V6

Σ

V5

z
Σ

V

Figure 7.5: The orbit nearR♭6.

Letzbe the first point in the forward orbit ofz1 such thatz ∈ R♭6 and letw = ψ(z).
From the arguments in the last two sections, we have somen ≥ 1 such that

z= E4E3E2E1(z1)+ nV5, w = z+ V ♭
6 ∈ R7 ∪ R8 ∪ R2. (7.24)

By item 1 above, we have

E5E4E3E2E1(z1) = E5(z) = z+ V5, E6E5E4E3E2E1(z) = z+ V5− V6

By item 2, we have

w = E6E5E4E3E2E1(z1)+ V7. (7.25)

By Equation 2.7, we havew ∈ R7 orw ∈ R10 = R2. The first case is just like the
first case treated at the end of the last section. In the secondcase, we have

χE8...E1(z1) =1 E6...W1(z1) =2 w = 9(z) (7.26)

The first equality comes from item 3. The second equality comes from an argument
similar to case 2 at the end of §7.4.
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7.7 THE LAST CASES

Now we treat the two cases we have not yet treated.
First, suppose the sequence has the portion 2→ 6♭. Letw be the orbit point in

R♭6. We have

w ∈ R̂2 ∩ R♭6 ⊂ (−2A,0)× {1}. (7.27)

This forces the entire orbit sequence to be 2→ 6♭ → 2, and

z1 ∈ (2− 2A,2)× {−1}, 9(z1) = z1 − (2− 2A,0). (7.28)

Second, suppose the sequence starts with 4♯ . A similar calculation shows that

z1 ∈ (0,2A)× {1}, 9(z1) = z1 + (2− 2A,0). (7.29)

To finish the proof, we just have to compute the pinwheel map onthe above
intervals and see that it matches9. One can achieve this with the same kind of
analysis used in the previous sections. However, we prefer adifferent method. We
can use the formula from the Master Picture Theorem to see that the pinwheel map
does the right thing on the above intervals. This is not a circular argument, as we
discussed at the end of §7.2.
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Chapter Eight

The Torus Lemma

8.1 THE MAIN RESULT

For ease of exposition, we state and prove the(+) halves of our results. The(−)
halves have the same formulation and proof.

Let µ+ be as in Equation 6.5. We write(µ+)A to emphasize the dependence on
the parameterA. Let T4 = R̂/3, the 4-dimensional quotient discussed in §6.7.
Topologically,T4 is the product of a 3-torus with(0,1). We now define

µ+:4+ × (0,1)→ T4

by the obvious formula

µ+(p, A) = ((µ+)A(p), A). (8.1)

We are just stacking all these maps together.
Referring to the Pinwheel Lemma, we have9(p) = χ ◦ E8...E1(p) whenever

both maps are defined. Letp ∈ 4+. We setp0 = p and inductively define

p j = E j (p j−1) ∈ 6 j . (8.2)

We also define

θ(p) = minθ j (p), θ j (p) = distance(p j , ∂6 j ). (8.3)

The quantityθ(p) depends on the parameterA, so we will writeθ(p, A) when we
want to be clear about this.

Lemma 8.1 (Torus) Let (p, A), (q∗, A∗) ∈ 4+ × (0,1). There is someη > 0,
depending only onθ(p, A) andmin(A,1− A), with the following property. Sup-
pose that the pinwheel map is defined at(p, A). Suppose also thatµ+(p, A) and
µ+(q∗, A∗) are withinη of each other. Then the pinwheel map is defined at(q∗, A∗)
and(ǫ1(q∗), ǫ2(q∗)) = (ǫ1(p), ǫ2(p)).

Remarks:
(i) In the proof of the Pinwheel Lemma, we started our labelling with z1, then
consideredz2 = E1(z1), etc. Here we find it convenient to takep j = z j+1.
(ii) I discovered the Torus Lemma experimentally, but my formal proof owes a
considerable intellectual debt to the ideas presented in [K ] and [GS] concerning
outer billiards on quasirational polygons. (Compare the remark in the next section.)
My proof also owes an intellectual debt to the paper [T2], in which S. Tabachnikov
describes unpublished work of C. Culter on the existence of periodic orbits for
polygonal outer billiards. If all these written sources were not enough, I was also
influenced by conversations with John Smillie.
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8.2 INPUT FROM THE TORUS MAP

We first prove the Torus Lemma assuming thatA = A∗. Letq = q∗. In this section,
we explain the significance of the mapµ+. We introduce the quantities

λ̂ j = λ0 × · · · × λ j , λ j =
area(6 j−1 ∩6 j )

area(6 j ∩6 j+1)
, j = 1, ...,7. (8.4)

Remark: For a general convexn-gon, one can make the strip construction along
the lines of what we have done. The polygon is said to bequasirationalif all the
numbersλ j are rational. As mentioned in the introduction, the result in [VS], [K ],
and [GS] is that all outer billiards orbits are bounded relative to quasirational poly-
gons. In hindsight, it is no surprise that these quantities arise in our proof of the
Master Picture Theorem.

Let p = (x,±1) andq = (y,±1). We have

µ+(q)− µ+(p) = (t, t, t) mod 3, t = y− x

2
. (8.5)

Lemma 8.2 For any ǫ > 0, there is aδ > 0 with the following property. If
dist(µ+(x), µ+(y)) < δ in T3, then for each k, the quantity tλ̂k is within ǫ of some
integer Ik.

Proof: We compute

area(60 ∩61) = 8, area(61 ∩62) =
8+ 8A

1− A
,

area(62 ∩63) =
2(1+ A)2

A
, area(63 ∩64) =

8+ 8A

1− A
. (8.6)

This leads to

λ̂0 = λ̂4 = 1, λ̂1 = λ̂3 = λ̂5 = λ̂7 =
1− A

1+ A
, λ̂2 = λ̂6 =

4A

(1+ A)2
. (8.7)

The matrix

H =




1
1+A

A−1
(1+A)2

2A
(1+A)2

0 1
1+A

1
1+A

0 0 1


 (8.8)

conjugates the columns of the matrix defining3 to the standard basis. Therefore,
if µ+(x) andµ+(y) are close inT3 then H (t, t, t) is close to a point ofZ3. We
compute

H (t, t, t) =
(

4A

(1+ A)2
,

2

1+ A
,1

)
t = (̂λ2, λ̂1 + 1,1)t . (8.9)

Equations 8.7 and 8.9 now finish the proof. 2
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8.3 PAIRS OF STRIPS

Suppose(S1, S2,V2) is triple, whereV2 is a vector pointing from one corner of
S1 ∩ S2 to an opposite corner. Letp1 ∈ S1 and p2 = E2(p1) ∈ S2. HereE2 is the
strip map associated to(S2,V2). We definen andα by the equations

p2 − p1 = nV2, α =
area(B)

area(S1 ∩ S2)
, σ j =

‖p j − p′j‖
‖V2‖

. (8.10)

All quantities are affine-invariant functions of the quintuple(S1, S2,V2, p1, p2).

n=3

1

p
2

p
1

p

BS

(0,0)

1

S2

2V

p
2

Figure 8.1: Strips and associated objects.

Figure 8.1 shows what we call thestandard pairof strips, where6 j is the strip
bounded by the linesx j = 0 andx j = 1. Here we denote points in the plane by
(x1, x2). To get a better picture of the quantities we have defined, we consider them
on the standard pair. We have

• α = p11+ p12= p21+ p22,

• σ1 = p12,

• σ2 = 1− p22,

• n = [ p11] (the floor ofx).

Here pi j is the j th coordinate ofpi . The above equations lead to the following
affine-invariant relations. Letting〈x〉 = x − [x], the fractional part ofx, we have

n = [α − σ1] , σ2 = 1− 〈α − σ1〉. (8.11)

Again, the relations in Equation 8.11 hold for any pair of strips.
In our next result, we hold(S1, S2,V2) fixed but compare all the quantities for

(p1, p2) and another pair(q1,q2). Let n(p) = n(S1, S2,V2, p1, p2), etc. Also,N
stands for an integer.
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Lemma 8.3 (Strip) Letǫ > 0. There is someδ > 0 with the following property. If

|σ(p1)− σ(q1)| < δ, |α(q)− α(p)− N| < δ,

then

|σ(p2)− σ(q2)| < ǫ, N = n(q)− n(p).

The numberδ depends on onlyǫ and the distance fromσ(p1) andσ(p2) to {0,1}.

Proof: If δ is small enough, then〈α(p) − σ(p1)〉 and 〈α(q) − σ(q1)〉 are very
close and relatively far from 0 or 1. Equation 8.11 now says thatσ(p2) andσ(q2)
are close. Also, the following two quantities are both nearN, while the individual
summands are all relatively far from integers.

α(q)− α(p),
(
α(q)− σ(q1)

)
−
(
α(p)− σ(p1)

)
.

But the second quantity is near the integern(q)− n(p), by Equation 8.11. 2

Suppose now thatS1, S2, S3 is a triple of strips andV2,V3 is a pair of vectors,
such that(S1, S2,V2) and(S2, S3,V3) are as above. Letp j ∈ Sj , for j = 1,2,3, be
such thatp2 = E2(p1) and p3 = E3(p2). For j = 1,2, define

α j = α(Sj , Sj+1,Vj+1, p j , p j+1), λ = area(S1 ∩ S2)

area(S2 ∩ S3)
. (8.12)

It is convenient to setσ2 = σ(p2).

Lemma 8.4 There are constants C and D such thatα2 = λα1 + Cσ2 + D. The
constants C and D depend on the strips.

Proof: We normalize so that we have the standard pair. Then

p2 = (1− σ2, α1 + σ2 − 1). (8.13)

There is a unique orientation-preserving affine mapT such thatT(Sj+1) = Sj for
j = 1,2, andT carries the linex2 = 1 to the linex1 = 0. Given thatS1 ∩ S2 has
unit area, we have det(T) = λ. Given the description ofT , we have

T(x1, x2) =
(

a λ
−1 0

)
(x1, x2)+ (b,1) = (ax1+ b+ λx2,1− x1). (8.14)

Herea andb are constants depending onS2 ∩ S3. Settingq = T(p2), the relations
above giveα = q1+ q2. Hence

α2 = a(1− σ2)+ b+ λ(α1 + σ2 − 1)+ σ2 = λα1 + Cσ2 + D. (8.15)

This completes the proof. 2
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8.4 SINGLE-PARAMETER PROOF

The Pinwheel Lemma gives a formula for the quantities in Equation 2.8. We have
integersn0, ...,n7 such that

p j+1 = E j+1(p j ) = p j + n j Vj+1. (8.16)

Compare Figure 7.3. Given the equations

V1 = (0,4), V2 = (−2,2), V3 = (−2− 2A,0), V4 = (−2,−2),
(8.17)

we find that

ǫ1 = n2 − n6, ǫ2 = n1 + n2 + n3 − n5 − n6 − n7. (8.18)

We are still working under the assumption, in the Torus Lemma, that A = A∗.
Our main argument relies on Equation 8.18, which gives a formula for the return
pairs in terms of the strip maps. We define the pointq j relative toq just as we
definedp j relative top.

p
0

q
0

p
0

q
0

Figure 8.2: The pointŝp0 andq̂0.

We would like to apply Lemmas 8.2–8.4 inductively. One inconvenience is that
p0 andq0 do not lie in any of our strips. To remedy this situation, we start with the
two points

p̂0 = E0(p0), q̂0 = E0(q0). (8.19)

See Figure 8.1. We havêp0, q̂0 ∈ 60. Let t be the near integer from Lemma 8.2.
Looking at Figure 8.4, we see that|σ (̂q0)− σ( p̂0)| tends to 0 asη tends to 0.
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We define

αk(p) = α(6k,6k+1,Vk+1, pk, pk+1) (8.20)

It is also convenient to write

σk(p) = σ(pk), 1σk = σk(q)− σk(p). (8.21)

Fork = 0, we usêp0 in place ofp0, andq̂0 in place ofq0, for these formulas.

Remarks:
(i) The functionsσk play a big role in our overall proof. The next chapter is devoted
entirely to obtaining, in a certain sense, closed-form expressions for the functions
σk. For later reference, we call these functionsstrip functions.
(ii) Our next lemma is stated in a slightly peculiar way because the last-mentioned
quantitynk(p)−nk(q) is an integer. But that is the whole point of the lemma: Once
an integer quantity is sufficiently close to 0, it must actually be 0.

Lemma 8.5 Asη→ 0, the pairwise differences between the3 quantities

αk(q)− αk(p), nk(q)− nk(p), t λ̂k

converge to0 for all k.

Proof: Referring to Figure 8.2, we have

area(60 ∩61) = 8, area(B( p̂0))− area(B(̂q0)) = 4y− 4x.

This givesα0(q)− α0(p) = t . Applying Lemma 8.4 inductively, we find that

αk = α0̂λk +
k∑

i=1

ξiσi + Ck (8.22)

for constantsξ1, ..., ξk andCk that depend analytically onA. Therefore

αk(q)− αk(p) = t λ̂k +
k∑

i=1

ξi1σi , k = 1, ...,7. (8.23)

By Lemma 8.2, the termtλk is near an integer for allk. By Lemma 8.3 and induc-
tion, the remaining terms on the right hand side are near 0. This lemma now follows
from Lemma 8.3. 2

Combining our last result with Equation 8.7, we see that

n1(q)− n1(p) = n3(q)− n3(p) = n5(q)− n5(p) = n7(q)− n7(p),

n2(q)− n2(p) = n6(q)− n6(p), (8.24)

onceη is small enough. Given the dependence of constants in Lemma 8.3, the
necessary bound onη depends on only min(A,1− A) andθ(p). Equation 8.18 now
tells us thatǫ j (p) = ǫ j (q), for j = 1,2, onceη is small enough.
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8.5 PROOF IN THE GENERAL CASE

Now we turn to the proof of the Torus Lemma in the general case.Our first result
is the key step that allows us to handle pairs of distinct parameters. Once we set up
the notation, the proof is almost trivial. Our second resultis a variant that will be
useful in the next chapter.

Suppose that(S1, S2,V2, p1, p2) and(S∗1, S∗2,V
∗
2 ,q

∗
1,q

∗
2) are two quintuples. To

fix the picture in our minds, we imagine that(S1, S2,V2) is near(S∗1, S∗2,V
∗
2 ), though

this is not necessary for the proof of the result to follow. Wecan define the quantities
α, ρ j ,n for each of these quintuples. We place a∗ by each quantity associated to
the second triple.

Lemma 8.6 Let ǫ > 0. There is someδ > 0 with the following property. If
|σ(p1)− σ(q∗1)| < δ and |α(q∗)− α(p)− N| < δ, then|σ(p2)− σ(q∗2)| < ǫ and
N = n(q∗)− n(p). The numberδ depends on onlyǫ and the distance fromσ(p1)
andσ(p2) to {0,1}.

Proof: There is an affine transformation such thatT(X∗) = X for each object
X = S1, S2,V2. We setq j = T(q∗j ). Thenα(q∗1) = α(q1), by affine invariance.
Likewise for the other quantities. Now we apply Lemma 8.3 to the triple(S1, S2,V2)
and the pairs(p1, p2) and(q1,q2). The conclusion involves quantities with no∗,
but returning the∗ does not change any of the quantities. 2

For use in the next chapter, we state a variant of Lemma 8.6. For this result, we
interpret〈x〉 as the image of a real numberx in R/Z.

Lemma 8.7 Let ǫ > 0. There is someδ > 0 with the following property. If
|σ(p1)− σ(q∗1)| < δ and|α(q∗)− α(p)− N| < δ, then the distance from〈σ(p2)〉
to 〈σ(q∗2)〉 in R/Z is less thanǫ and N = n(q∗) − n(p). The numberδ depends
only onǫ and the distance fromσ(p1) andσ(p2) to {0,1}.

Proof: Using the same trick as in Lemma 8.3, we reduce to the single-variable
case. In this case, we mainly repeat the proof of Lemma 8.3. Ifδ is small enough,
then〈α(p)− σ(p1)〉 and〈α(q)− σ(q1)〉 are very close and relatively far from〈0〉.
Equation 8.11 now says that〈σ(p2)〉 and〈σ(q2)〉 are close inR/Z. 2

In proving the general version of the Torus Lemma, we no longer suppose that
A = A∗ and we return to the original notation(q∗, A∗) for the second point. In our
proof of this result, we attach a∗ to any quantity that depends on(q∗, A∗). We first
need to repeat the analysis from §8.2, this time keeping track of the parameter. Let
η be as in the Torus Lemma. We use the “big O” notation.

Lemma 8.8 There is an integer Ik such that|α∗0λ̂∗k − α0λk − Ik| < O(η).

Proof: Let H be the matrix in Equation 8.8. Let〈V〉 denote the distance from
V ∈ R3 to the nearest point inZ3. Let p = (x,±1) andq∗ = (x∗,±1). Recalling
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the definition ofµ+, the hypotheses in the Torus Lemma imply that the fractional
part of

H ∗
(

x∗

2
,

x∗

2
+ 1,

x∗

2

)
− H

(x

2
,

x

2
+ 1,

x

2

)
(8.25)

has sizeO(η). We compute thatα0 = x/2+1/2 independent of parameter. There-
fore

H
(x

2
,

x

2
+ 1,

x

2

)
= H (α0, α0, α0)+

1

2
H (−1,1,−1).

The same is true for the starred quantities. Therefore

〈〈(̂λ∗2, λ̂∗1 − 1,1)α∗0 − (̂λ2, λ̂1 − 1,1)α0〉

= 〈H ∗(α∗0, α∗0, α∗0)− H (α0, α0, α0)〉 < O(η)+‖(H ∗− H )(−1,1,−1)‖ < O(η).

The lemma now follows immediately from Equation 8.7. 2

The integerIk of course depends on(p, A) and(q∗, A∗), but in all cases Equation
8.7 gives us

I0 = I4, I1 = I3 = I5 = I7, I2 = I6, (8.26)

Lemma 8.9 Asη → 0, the pairwise differences between the3 quantitiesα∗k − αk

and n∗k − nk and Ik tend to0 for all k.

Proof: Hereα∗k stands forαk(q∗), etc. Equation 8.22 works separately for each
parameter. The replacement for Equation 8.23 is

α∗k − αk = W + X + Y, W = α∗0λ̂∗k − α0̂λk (8.27)

X =
k∑

i=1

ξ∗i σ
∗
i (q
∗)−

k∑

i=1

ξiσi (p) =
k∑

i=1

ξi
(
σ ∗i − σi

)
+ O(|A− A∗|), (8.28)

Y =
k∑

i=1

C∗i −
k∑

i=1

Ci = O(|A− A∗|). (8.29)

The estimates onX andY come from the fact thatξi andCi vary smoothly withA.
Putting everything together, we have the following.

α∗k − αk =
(
α∗0λ̂

∗
k − α0λk

)
+

k∑

i=1

ξi
(
σ ∗i − σi

)
+ O(|A− A∗|). (8.30)

In light of Lemma 8.8, it suffices to show thatσ ∗i −σi tends to 0 asη tends to 0. The
same argument as in the single-parameter case works here, with Lemma 8.6 used in
place of Lemma 8.3. 2

As in the single-parameter case, Equations 8.18 and 8.26 nowfinish the proof.
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Chapter Nine

The Strip Functions

9.1 THE MAIN RESULT

The purpose of this chapter is to understand the functionsσ j that arose in the proof
of the Torus Lemma. See Equation 8.21. We continue using the notation from
the previous chapter. We call these functionsstrip functions. Let 〈x〉 denote the
fractional part ofx. Sometimes we interpret〈x〉 as an element ofR/Z.

Let Wk ⊂ 4+ × (0,1) denote the set of points whereEk...E1 is defined but
Ek+1Ek...E1 is not defined. LetSk denote the closure ofµ+(Wk) in R. HereR is
as in Equation 6.6. Finally, let

W′k =
k−1⋃

j=0

Wj , S′k =
k−1⋃

j=0

Sj , k = 1, ...,7. (9.1)

The Torus Lemma applies to any point that does not lie in thesingular set

S= S0 ∪ · · · ∪ S7. (9.2)

If p ∈ 4+ − W′k, then the pointsp = p0, ..., pk are defined. Here, as in the
previous chapter,p j = E j (p j−1). The functionsσ1, ..., σk andα1, ..., αk are defined
for such a choice ofp. Again,σ j measures the position ofp j in6 j relative to∂6 j .
Even if Ek+1 is not defined onpk, the equivalence class orpk+1 is well defined in
the cylinderR2/〈Vk+1〉. The corresponding functionσk+1(q) = σ(qk+1) is well
defined as an element ofR/Z.

Let π j : R4→ R be the j th coordinate projection. The following identities refer
to the(+) case. We discuss the(−) case at the end of the chapter.

σ1 =
〈
2− π3

2

〉
◦ µ+ on 4+. (9.3)

σ2 =
〈
1+ A− π2

1+ A

〉
◦ µ+ on 4+ −W′1. (9.4)

σ3 =
〈
1+ A− π1

1+ A

〉
◦ µ+ on 4+ −W′2. (9.5)

σ4 =
〈
1+ A− π1 − π2 + π3

2

〉
◦ µ+ on 4+ −W′3. (9.6)

In the next chapter we deduce the Master Picture Theorem fromthese identities
and the Torus Lemma. In this chapter, we establish the identities. Equation 9.3 is
true by inspection. The other 3 identities are the nontrivial ones.
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9.2 CONTINUOUS EXTENSION

Since the mapµ+(4+ × (0,1)) is dense inR− S′k, we define

σ̃ j (τ ):= lim
n→∞

σ j (pn, An), τ ∈ R− S′k. (9.7)

Here(pn, An) is chosen so that all functions are defined andµ+(pn, An)→ τ . Note
that the sequence{pn} need not converge. So far, we do not know that the limit we
take is well defined. However, the next result clears this up.

Lemma 9.1 The functions̃σ1, ..., σ̃k+1, consideredR/Z-valued functions, are well
defined and continuous on R− S′k.

Proof: For the sake of concreteness, we will give the proof in the case whenk = 2.
This representative case explains the idea. First of all, the continuity follows from
the well-definedness. We just have to show that the limit above is always well
defined. We need to considerσ̃1, σ̃2, andσ̃3. Our argument is essentially inductive.

Here is the base case.σ̃1 is well defined and continuous on all ofR, by Equation
9.3.

SinceS′1 ⊂ S′2, we see thatτ ∈ R− S′1. Henceτ does not lie in the closure of
µ+(W0). Hence there is someθ1 > 0 such thatθ1(pn, An) > θ1 for all sufficiently
largen. Note also that there is a positive and uniform lower bound tothe quantity
min(An,1− An). Note that

〈α1(pn, An)〉 = 〈π3(µ+(pn, An)〉.
Hence

{〈α1(pn, An)〉} (9.8)

forms a Cauchy sequence inR/Z.
Lemma 8.7 now applies uniformly to

(p, A) = (pm, Am), (q∗, A∗) = (pn, An)

for all sufficiently large pairs(m,n). Since{µ+(pn, An)} forms a Cauchy sequence
in R, Lemma 8.7 implies that{σ2(τm, Am)} forms a Cauchy sequence inR/Z. Hence
σ̃2 is well defined onR− S′1 and continuous.

Sinceτ ∈ R− S′2, we see thatτ does not lie in the closure ofµ+(W1). Hence
there is someθ2 > 0 such thatθ j (pn, An) > θ j for j = 1,2 and sufficiently large
n. As in the proof of the General Torus Lemma, Equation 8.30 nowshows that

{〈α2(pn, An)〉} (9.9)

forms a Cauchy sequence inR/Z. We now repeat the previous argument to see that
{σ3(τm, Am)} forms a Cauchy sequence inR/Z. Henceσ̃3 is well defined onR−S′2
and continuous. 2

Referring to Equations 9.8 and 9.9, we define

βk = 〈αk〉 ∈ R/Z. (9.10)

This function will come in handy in our next result.
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9.3 LOCAL AFFINE STRUCTURE

Let X = R−∂R⊂ R4. Note thatX is an open and convex polytope,combinatorially
equivalent to the 4-dimensional cube.

Lemma 9.2 Suppose X⊂ R− S′k. Thenσ̃k+1 is locally affine on XA.

Proof: Sinceσ̃k+1 is continuous onX, it suffices to prove this lemma for a dense
set of kite parametersA. We can chooseA so thatµ+(4+) is dense inXA.

We already know that̃σ1, ..., σ̃k+1 are all defined and continuous onX. We have
already remarked that Equation 9.3 is true by direct inspection. As we have already
remarked in the previous proof,

β0 = π3 ◦ µ+.

Thus we define

β̃0 = 〈π3〉. (9.11)

Both σ̃0 andβ̃0 are locally affine onXA.
Let m ≤ k. The second half of Equation 8.11 tells us thatσ̃m is a locally affine

function of σ̃m−1 and β̃m−1. Below we will prove thatβ̃m is defined onXA and
locally affine, provided that̃σ1, ..., σ̃m are defined and locally affine onXA. The
lemma follows from this claim and induction.

Now we prove the claim. All the addition below is done inR/Z. Sinceµ+(4+)
is dense inXA, we can at least definẽβm on a dense subset ofXA. Define

p = (x,±1), p′ = (x′,±1), τ = µ+(p), τ ′ = µ+(p′), t = x′ − x

2
.

(9.12)
We choosep and p′ so that the pinwheel map is entirely defined.

From Equation 8.23, we have

β̃m(τ
′)− β̃m(τ ) = 〈t λ̂k〉 +

m∑

j=1

〈ξ j × (σ̃ j (τ
′)− σ̃ j (τ ))〉. (9.13)

Hereξ1, ..., ξm are constants that depend onA. Let H be the matrix in Equation
8.8. We haveH (t, t, t) ≡ H (τ ′ − τ ) modZ3 because(t, t, t) ≡ τ ′ − τ mod3.
Our analysis in §8.2 shows that

〈t λ̂k〉 = 〈π ◦ H (t, t, t)− ǫt〉 = 〈(π − ǫπ3) ◦ H (τ ′ − τ )〉. (9.14)

Hereǫ ∈ {0,1} andπ is some coordinate projection. The choice ofǫ andπ depends
onk. We now see that

β̃m(τ
′) = β̃m(τ )+〈(π + ǫ3π) ◦ H (τ ′− τ )〉 +

m∑

j=1

〈ξ j × (σ̃ j (τ
′)− σ̃ j (τ ))〉. (9.15)

The right hand side is everywhere defined and locally affine. Hence we definẽβm

on all of XA using the right hand side of the last equation. 2
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Now we come to a subtle point. We have shown that our functionsare locally
affine when restricted to eachA-slice. We would like to remove this caveat and say
simply that our functions are locally affine even whenA is allowed to vary. The next
result makes a weaker statement along these lines. Once we have this result, we will
use a bootstrap argument to improveanalyticto affine. Note that the setX, defined
above, is an open convex polytope. Thus it makes sense to say that a function is
analytic onX. Logically, we could give our overall proof without Lemma 9.3 below.
However, Lemma 9.3 is a labor-saving device. The analyticity in Lemma 9.3 allows
us to check the identities above on just a fairly small subsetof X.

Lemma 9.3 Suppose X⊂ R− S′k. Thenσk+1 is analytic on X.

Proof: The constantsξ j in Equation 9.13 vary analytically withA. Our argument
in Lemma 9.2 therefore shows thatσk+1 is an affine function onXA whose linear
part varies analytically withA. We just have to check the additive term. SinceXA

is connected, we can compute the additive term ofσk+1 at A from a single point.
We choosep = (ǫ,1), whereǫ is very close to 0. The fact thatA→ σk+1(p, A)
varies analytically follows from the fact that the strips vary analytically. 2

Equations 9.4, 9.5, and 9.6 are formulas forσ̃2, σ̃3, andσ̃4, respectively. Let

fk+1 = σ̃k+1 − σ ′k+1, k = 2,3,4. (9.16)

Hereσ ′k+1 is the right hand side of the identity forσ̃k+1. Our goal is to show that
fk+1 ≡ 〈0〉 for k = 1,2,3. Call a parameterA goodif fk+1 ≡ 〈0〉 on XA. Call a
subsetS⊂ (0,1) substantialif S is dense in some open interval of(0,1).

Lemma 9.4 fk+1 ≡ 0 provided that a substantial set of parameters is good.

Proof: By hypothesis and by continuity,fk+1 vanishes on some open subset ofX.
But the 0-function is the only analytic function that can vanish on an open subset of
X. 2

In the next section we explain how to verify that a parameter is good. If fk+1 were
a locally affine map fromXA into R, we would just need to check thatfk+1 = 0
on some tetrahedron onXA to verify thatA is a good parameter. Since the range of
fk+1 is R/Z, we have to work a bit harder.

Before we launch into the method, we make one more remark about the details
of the verification process. We want to be sure that, at each stage, we can actually
apply Lemma 9.3. Here we explain why we can do this. Observe that, in general,
we have

Sk ⊂ σ̃−1
k+1(〈0〉).

Given Equation 9.3, we see thatX ⊂ R− S′1. Henceσ2 is defined onX. Hence
σ2 is analytic onX and locally affine on eachXA. We use these two properties to
show that Equation 9.4 is true. But thenX ⊂ R− S′2, etc. So, we will know at each
stage of our verification that Lemmas 9.2 and 9.3 apply to the function of interest.
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9.4 IRRATIONAL QUINTUPLES

We will give a construction inR3. When the time comes to use the construction,
we will identify XA as an open subset of a copy ofR3.

Let ζ1, ..., ζ5 ∈ R3 be 5 distinct points. By taking these points 4 at a time, we can
compute 5 volumesv1, ..., v5. Herev j is the volume of the tetrahedron obtained by
omitting the j th point. We say that(ζ1, ..., ζ5) is anirrational quintupleif there is
no rational relation

5∑

i=1

c j ζ j = 0, c j ∈ Q, c1c2c3c4c5 = 0. (9.17)

If we allow all the constants to be nonzero, then there is always a relation.

Lemma 9.5 Let C be an open convex subset ofR3. Let f: C→ R/Z be a locally
affine function. Suppose that there is an irrational(ζ1, ..., ζ5) such thatζ j ∈ C and
f (ζ j ) is the same for all j . Then f is constant on C.

Proof: SinceC is simply connected, we can liftf to a locally affine function
F : C → R. But thenF is affine onC, and we can extendF to be an affine map
from R3 to R. By construction,F(ζi )− F(ζ j ) ∈ Z for all i , j . Adding a constant
to F , we can assume thatF is linear. There are several cases.

Case 1: If F(ζ j ) is independent ofj , then all the points lie in the same plane.
Hence all the volumes are zero. This violates the irrationality condition.

Case 2: Suppose we are not dealing with case 1 and the following is true. For
every indexj there is a second indexk such thatF(ζk) = F(ζ j ). Since there are
5 points total, this means that the set{F(ζ j )} has a total of only 2 values. But this
means that our 5 points lie in a pair of parallel planes51 ∪52, with 2 points in51

and 3 points in52. Let us say that thatζ1, ζ2, ζ3 ∈ 51 andζ4, ζ5 ∈ 52. But then
v4 = v5, and we violate the irrationality condition.

Case 3: If we are not dealing with the above two cases, then we can relabel so
that F(ζ1) 6= F(ζ j ) for j = 2,3,4,5. Let

ζ ′j = ζ j − ζ1.

Thenζ ′1 = (0,0,0) andF(ζ ′1) = 0. But thenF(ζ ′j ) ∈ Z − {0} for j = 2,3,4,5.
Note thatv ′j = v j for all j . For j = 2,3,4,5, let

ζ ′′j =
ζ ′j

F(ζ ′j )
.

Thenv ′′j /v
′
j ∈ Q for j = 2,3,4,5. Note thatF(ζ ′′j ) = 1 for j = 2,3,4,5. Hence

there is a plane5 such thatζ ′′j ∈ 5 for j = 2,3,4,5.
There is always a rational relation among the areas of the 4 triangles defined by 4

points in the plane. Hence there is a rational relation amongv ′′2, v
′′
3, v
′′
4, v
′′
5 . But then

there is a rational relation betweenv2, v3, v4, v5. This contradicts the irrationality
condition. 2
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9.5 VERIFICATION

We consider the(+) case first and discuss the(−) case at the end. Proceeding
somewhat at random, we define

φ j =
(

8 j A+ 1/(2 j ),1

)
, j = 1,2,3,4,5. (9.18)

We check thatφ j ∈ 4+ for A near 1/2. Letting

ζ j = µ+(φ j ), (9.19)

we check that

fk+1(ζ j ) = 〈0〉, j = 1,2,3,4,5. (9.20)

In the next section, we give an example calculation.

Lemma 9.6 (ζ1, ..., ζ5) form an irrational quintuple for a dense set of parameters
A. In fact this is true for the complement of a countable set ofparameters.

Proof: The 5 volumes associated to our quintuple are as follows.

• v5 = 5/24− 5A/12+ 5A2/24.

• v4 = 71/40+ 19A/20− 787A2/120− 4A3.

• v3 = 119/60+ 7A/60− 89A2/15− 4A3.

• v2 = −451/240− 13A/40+ 1349A2/240+ 4A3.

• v1 = −167/80− 13A/40+ 533A2/80+ 4A3.

If there is an open set of parameters for which the first 4 of these volumes has a
rational relation, then there is an infinite set for which thesame rational relation
holds. Since every formula in sight is algebraic, this meansthat there must be a
single rational relation that holds for all parameters. Butthen the parametrized curve
A→ (v5, v4, v3, v2) lies in a proper linear subspace ofR4. We evaluate this curve
at A = 1,2,3,4 and see that the resulting points are linearly independentin R4.
Hence there is no global rational relation. Hence, for a dense set of parameters,
there is no rational relation among the first 4 volumes listed. A similar argument
rules out rational relations among any other 4-tuple of these volumes. 2

The (−) Case: Equations 9.4 and 9.5 do not change, except thatµ− replacesµ+
and all the sets are defined relative to4− andµ−. Equations 9.3 and 9.6 become

σ1 =
〈
1− π3

2

〉
◦ µ− on 4−. (9.21)

σ4 =
〈

A− π1− π2 + π3

2

〉
◦ µ− on 4− − S′3. (9.22)

Lemmas 9.2 and 9.3 have the same proof in the(−) case. We use the same method
as above, except that we use the points

φ j + (2,0); j = 1,2,3,4,5. (9.23)

These points all lie in4− for A near 1/2.
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9.6 AN EXAMPLE CALCULATION

Here we work out by hand one of the cases of Equation 9.20. We dothe rest of the
cases in Mathematica [W]. Consider the casek = 1 and j = 1.

When A = 1/2, the length spectrum forφ1 starts out as(1,1,2,1). Hence this
remains true for nearbyA. Knowing the length spectrum allows us to compute, for
instance, that

E2E1(φ1) = φ1 + V1 + V2 =
(
−3

2
+ 8A,7

)
∈ 62

for A near 1/2. The affine functional

(x, y)→ (x, y,1) ·
(−1, A, A)

2+ 2A
(9.24)

takes on the value 0 on the linex = Ay+Aand the value 1 on the linex = Ay−2−A.
These are the two edges of62. (See §7.1.) Therefore

σ2(φ1) =
(−3

2
+ 8A,7,1

)
· (−1, A, A)

2+ 2A
= 3

4+ 4A
.

At the same time, we compute that

µ+(φ1) = (1/4)(−7+ 24A,1+ 4A,−7+ 16A),

at least forA near 1/2. WhenA is far from 1/2, this point will not lie inRA. We
then compute

1+ A− π2(µ+(φ1))

1+ A
= 3

4+ 4A
.

This shows thatf2(ζ1) = 〈0〉 for all A near 1/2.
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Chapter Ten

Proof of the Master Picture Theorem

10.1 THE MAIN ARGUMENT

First we recall some notation from previous chapters.

• Let S be the singular set defined in Equation 9.2.

• Let Ŝ denote the union of hyperplanes listed in Chapter 6.2.

• Let d denote distance on the polytopeR.

• Let θ(p, A) be the quantity from the Torus Lemma in §8.

Below we will establish the following result.

Lemma 10.1 (Hyperplane) S⊂ Ŝ andθ(p, A) ≥ d(µ+(p, A), Ŝ).

The Hyperplane Lemma essentially says that the singular setis small and simple.
Before we prove the Hyperplane Lemma, we will finish the proofof the Master
Picture Theorem.

Say that aball of constancyin R − Ŝ is an open ballB with the following
property. If(p0, A0) and(p1, A1) are two pairs andµ+(p j , Ak) ∈ B for j = 0,1,
then(p0, A0) and(p1, A1) have the same return pair. Here is a consequence of the
Torus Lemma.

Corollary 10.2 Any pointτ of R− Ŝ is contained in a ball of constancy.

Proof: If τ is in the image ofµ+, this result is an immediate consequence of the
Torus Lemma. In general, the imageµ+(4+× (0,1)) is dense inR. Hence we can
find a sequence{τn} such thatτn → τ andτn = µ+(pn, An). Let 2θ0 > 0 be the
distance fromτ to S. From the triangle inequality and the second statement of the
Hyperplane Lemma,

θ(pn, An) ≥ θ0 = θ1 > 0

for largen. By the Torus Lemma,τn is the center of a ballBn of constancy whose
radius depends only onθ0. In particular – and this is really all that matters in our
proof – the radius ofBn does not tend to 0. Hence, forn large enough,τ itself is
contained inBn. 2
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Lemma 10.3 Let (p0, A0) and (p1, A1) be two points of4+ × (0,1) such that
µ+(p0, A0) andµ+(p1, A1) lie in the same path-connected component of R− Ŝ.
Then the return pair for(p0, A0) equals the return pair for(p1, A1).

Proof: Let L ⊂ R− Ŝbe a path joining points

τ0 = µ+(p0, A0), τ1 = µ+(p1, A1).

By compactness, we can coverL by finitely many overlappingballs of constancy.2

Now we just need to see that the Master Picture Theoremholds for one component
of the partition ofR− Ŝ. Here is an example calculation that does the job. For each
α = j/16, for j = 1, ...,15, we plot the image

µA(2α + 2n), n = 1, ...,215. (10.1)

The image is contained in the slicez= α. We see that the Master Picture Theorem
holds for all these points. The reader can use Billiard King to plot and inspect
millions of points for any desired parameter.

We have really proved only the half of the Master Picture Theorem that deals with
4+ andµ+. The proof of the half that deals with4− andµ− is exactly the same.
In particular, both the Torus Lemma and the Hyperplane Lemmahold verbatim in
the(−) case. The proof of the Hyperplane Lemma in the(−) case differs only in
that the two identities in Equation 9.21 replace Equations 9.3 and 9.6. We omit the
details in the(−) case.

10.2 THE FIRST FOUR SINGULAR SETS

The strip function identites make short work of the first fourpieces of the singular
set.

• Given Equation 9.3,

S0 ⊂ {z= 0} ∪ {z= 1}. (10.2)

• Given Equation 9.4,

S1 ⊂ {y = 0} ∪ {y = 1+ A}. (10.3)

• Given Equation 9.5,

S2 ⊂ {x = 0} ∪ {x = 1+ A}. (10.4)

• Give Equation 9.6,

S3 ⊂ {x + y− z= 1+ A} ∪ {x + y− z= −1+ A}. (10.5)
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10.3 SYMMETRY

We use symmetry to deal with the remaining pieces. Suppose westart with a point
p ∈ 4+. We define the pointsp = p0, p1, ... exactly as in Equation 8.2. However,
this time we do not know a priori that all these points are defined. As we proceed in
our analysis, we will see that these points are defined for increasingly large values of
j . For the purpose of illustration, we will show the case when all points are defined.

Let ρ denote reflection in thex-axis. Then

ρ(69− j ) = 6 j , q j = ρ(p9− j ), j = 1,2,3,4. (10.6)

Here we use the convention that indices repeat mod 8, as in previous chapters.
In Figure 10.1, the disk in the center is included for artistic purposes, to cover

up some messy intersections. In the figure we show the coordinates for the vectors
−V1 and−V2 to remind the reader of their values. It is convenient to write−Vk

rather thanVk because there are far fewer minus signs involved.

(2,−2)

1

p
2

p
3

p
4

q
4

q
3 q

2

q
1

(2+2A,0)
(2,2)

p

Figure 10.1: Reflected points.

Here is a notion we will use in our estimates. Say that a strip6 dominatesa
vectorV if we can translateV so that it is contained in the interior of the strip. This
is equivalent to the condition that we can translateV so that one endpoint ofV lies
on∂6 and the other lies in the interior.
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10.4 THE REMAINING PIECES

10.4.1 The SetS4

Supposep ∈ W4. Thenp5 andq4 are defined, andq4 ∈ ∂64. Given that

V5 = (0,−4)

and they-coordinates of all the points are odd integers, we have

p4− q4 = (0,2)+ k(0,4)

for somek ∈ Z. Given that64 dominatesp4 − q4, we havek ∈ {−1,0}. Hence
p4 = q4± (0,2). If p5 ∈ ∂65, thenq4 ∈ ∂64. Any vertical line intersects64 in a
segment of length 4. From this we see thatp4 lies on the centerline of64. That is,
σ4(p) = 1/2. Given Equation 9.6, we have

S4 ⊂ {x + y− z= A} ∪ {x + y− z= 2+ A}.

10.4.2 The SetS5

Suppose thatp ∈ W5. Thenp6 andq3 are defined, andq3 ∈ ∂63. Given that

V6 = −V4 = (−2,2),

we see that

p3− q3 = ǫ(0,2)+ k(2,2), ǫ ∈ {−1,1}, k ∈ Z.

The criterion that63 dominates a vector(x, y) is that|x + Ay| < 2+ 2A.
63 dominates the vectorq3− p3. If ǫ = 1, then

|2k+ 2+ 2Ak| < 2+ 2A

forcesk ∈ {−1,0}. If ǫ = −1, then the condition

|2k− 2+ 2Ak| < 2+ 2A

forcesk ∈ {0,1}. Hencep3− q3 is one of the vectors(±2,0) or (0,±2). Now we
have a case-by-case analysis.

Suppose thatq3 lies in the right boundary of63. Then we have one of the
following two conditions.

p3 = q3− (2,0), p3 = q3+ (0,2).

Any horizontal line intersects63 in a strip of width 2+ 2A. So, σ3(p) equals
either 1/(1+ A) or A/(1+ A), depending on whether or notp3 = q3 − (2,0) or
p3 = q3 + (0,2). A similar analysis reveals the same two values whenq3 lies on
the left boundary of63. Given Equation 9.5, we have

S5 ⊂ {x = A} ∪ {x = 1}.
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10.4.3 The SetS6

Suppose thatp ∈ W6. Thenp7 andq2 are defined, andq2 ∈ ∂62. We have

p2− q2 = (p3− q3)+ k(2+ 2A,0). (10.7)

The criterion that63 dominates a vector(x, y) is that|x − Ay| < 2+ 2A.
Let X1, ..., X4 be the possible values forp3 − q3 as determined in the previous

section. Using the values of the vectorsX j and the fact that62 dominatesp2− q2,
we see that

p2− q2 = X j + ǫ(2A,2), ǫ ∈ {−1,0,1}, j ∈ {1,2,3,4}. (10.8)

Note that the vector(2A,2) is parallel to the boundary of62. Hence, for the pur-
pose of computingσ2(p), this vector plays no role. Essentially the same calculation
as in the previous section now gives us the same choices forσ2(p) as we had for
σ3(p) in the previous section. Given Equation 9.4, we have

S6 ⊂ {y = A} ∪ {y = 1}.

10.4.4 The SetS7

Suppose thatp ∈ W7. Thenp8 andq1 are defined, andq1 ∈ ∂61. We have

p1− q1 = (p2− q2)+ k(−2,2). (10.9)

Note that the vector(2,2) is parallel to61. For the purpose of findingσ1(p), we can
do our computation mod(2,2). For instance,(2,−2) ≡ (0,4) mod(2,2). Given
Equation 10.8, we have

p1− q1 = ǫ1(0,2)+ ǫ2(2A,2)+ k(0,4) mod (2,2). (10.10)

Hereǫ1, ǫ2 ∈ {−1,0,1}. Given that any vertical line intersects61 in a segment of
length 4, we see that the only choices forσ1(p) are

(k/2)+ 2ǫA, ǫ ∈ {−1,0,1}, k ∈ Z.

Given Equation 9.3, we see thatS7 ⊂ {z= A} ∪ {z= 1− A}.

10.5 PROOF OF THE SECOND STATEMENT

Our analysis above establishes the first statement of the Hyperplane Lemma. For
the second statement, suppose thatd(µ+(p, A), Ŝ) = ǫ. Given Equations 9.3–9.6,
we have

θ j (p) ≥ ǫ, j = 1,2,3,4.

Given our analysis of the remaining points using symmetry, the same bound holds
for j = 5,6,7,8. In these cases,θ j (p, A) is a linear function of the distance from
µ+(p, A) to Sj−1, and the constant of proportionality is the same as for the index
9− j .
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Part 3. Arithmetic Graph Structure Theorems

In this part of the book, we use the Master Picture Theorem to prove most of the
structural results for the arithmetic graph that we quoted in Part 1.

• In Chapter 11, we prove the Embedding Theorem.

• In Chapter 12, we prove some results about the symmetries ofthe arithmetic
graph and the hexagrid.

• In Chapter 13, we prove statement 1 of the Hexagrid Theorem,namely, that
the arithmetic graph does not cross any floor lines.

• In Chapter 14, we prove a variant of statement 1 of the HexagridTheorem. We
call the result the Barrier Theorem. Though we do not need this result until
Part 6, the proof fits best right after the proof of statement 1of the Hexagrid
Theorem.

• In Chapter 15, we prove statement 2 of the Hexagrid Theorem,namely, that
the arithmetic graph crosses the walls only near the doors. The two statements
of the Hexagrid Theorem have similar proofs, though statement 2 has a more
elaborate proof. We think of the proof of statement 2 of the Hexagrid Theorem
as the main event in this part of the book. To make our argumentgo more
smoothly, we defer a technical result, the Intersection Lemma, until the next
chapter.

• In Chapter 16, we prove the Intersection Lemma, the technical result left over
from the proof given in Chapter 15.

Many of the proofs in this part of the book require us to prove various disjointness
results about some 4-dimensional polytopes. We will give short computer-aided
proofs of these disjointness results. The proofs involve only a small amount of
integer linear algebra. To help make the proofs surveyable,we will include computer
images of 2 dimensional slices of our polytopes. These figures, all reproducible on
Billiard King, serve as sanity checks for the computer calculations. We will include
many figures from Billiard King, but it usually goes without saying that the reader
can see much more using the program.
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Chapter Eleven

Proof of the Embedding Theorem

11.1 NO VALENCE 1 VERTICES

Let Ŵ̂ = Ŵ̂α(A) be the arithmetic graph for a parameterA and someα 6∈ 2Z [ A].
The reader will see from our proof that the choice ofα is not important. As a first
step in the proof of the Embedding Theorem, we show that all nontrivial vertices of
Ŵ̂ have valence 2. Dynamically, a vertex of valence 1 corresponds to a pointx ∈ 4
such thatx 6= 9(x) = 9−1(x).

Let p ∈ Z2 be a nontrivial vertex of̂Ŵ. Letq+ andq− be the two neighbors ofp.
We would like to show that̂Ŵ has valence 2 atp. If this fails, then we must have

p 6= q+ = q−. (11.1)

This means that the mapsM+ andM− from §6.6 assign the same vector top. Put
another way, this situation occurs iff there is some nontrivial (ǫ1, ǫ2) ∈ {−1,0,1}
such that

3R+(ǫ1, ǫ2) ∩
(
R−(ǫ1, ǫ2)+ (1,1,0,0)

)
6= ∅. (11.2)

A visual inspection and/or a computer search reveals that atleast one of the two sets
above is empty unless(ǫ1, ǫ2) is one of

(1,1), (−1,−1), (1,0), (−1,0). (11.3)

It follows from Equation 6.17 that Equation 11.2 holds for(ǫ1, ǫ2) if and only if it
holds for(−ǫ1,−ǫ2). Thus we have to deal just with the pairs(1,1) and(1,0).

Below we will give a formal argument, based on a small amount of machine
computation, that rules out the above kind of intersection.Before we do this,
however, we will show some convincing pictures of the relevant sets. As in §6.3,
we show(z, A) slices of polytopes inR+ andR−. We draw the slices ofR+with dark
shading and the slices ofR− with light shading. LetB j denote thej th component
of the base spaceB, as in Figure 6.2.

Over the regionsB2 andB3, at least one ofR+(1,1) or R−(1,1) is empty. Figure
11.1 shows typical slices of

3R+(1,1), 3(R−(1,1)+ (1,1,0,0))

overB0 andB1. In all cases, we see that the interiors of the two kinds of pieces are
disjoint from each other.



book April 3, 2009

102 CHAPTER 11

Figure 11.1: Slices of3R+(1,1) and3(R−(1,1)+ (1,1,0,0)).

Figure 11.2 shows typical slices of

3R+(1,0), 3(R−(1,0)+ (1,1,0,0))

over each of the regionsB0, B1, B2, B3. We see the same disjoint interiors as above.

Figure 11.2: Slices3R+(1,0) and3(R−(1,0)+ (1,1,0,0)).
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Now we give a formal argument. We work inR4, as discussed in §6.7. All the
polytopes of interest are convex integral polytopes. To rule out Equation 11.2, we
need to consider all possible pairs(P1, P2) of integral convex polytopes such that

P1 ⊂ 3R+(ǫ1, ǫ2), P2 ⊂ R−(ǫ1, ǫ2)+ (1,1). (11.4)

We hold the second polytope fixed and move the first one around by the action of
the entire lattice. At first it looks as if we have an infinite calculation, but actually
we will reduce the problem to a finite calculation.

Recall that3 is generated by the three elementsγ1, γ2, γ3. Let3′ ⊂ 3 denote
the subgroup generated byγ1 andγ2. We also define3′10 ⊂ 3′ by the equation

3′10 = {a1γ1 + a2γ2| |a1|, |a2| ≤ 10}. (11.5)

Lemma 11.1 Letγ ∈ 3−3′10.

P1 = γ (Q1), Q1 ⊂ R+(ǫ1, ǫ2), P2 ⊂ R−(ǫ1, ǫ2)+ (1,1,0,0).

Then P1 and P2 have disjoint interiors.

Proof: If γ 6∈ 3′, then the third coordinates of points inP1 lie in [n,n+ 1] for
some integern 6= 0. On the other hand, the third coordinates of points inP2 lie
in [0,1]. HenceP1 andP2 have disjoint interiors in this case. This means that we
have to worry only about elements of3′.

Suppose now thatγ ∈ 3′−3′10. In this case,Q1 is contained in the ball of radius
4 aboutP2, butγ moves this ball entirely off itself. 2

Now we have a finite problem. Given

γ ∈ 3′10, P1 = γ (Q1), Q1 ⊂ R+(ǫ1, ǫ2), P2 ⊂ R−(ǫ1, ǫ2)+ (1,1,0,0),

we produce a vector

w = w(P1, P2) ∈ {−1,0,1}4 (11.6)

such that

max
v∈vtx(P1)

v · w ≤ min
v∈vtx(P2)

v · w. (11.7)

This means that a hyperplane separates the interior ofP1 from P2. In each case
we find v(P1, P2) by a short computer search and perform the verification using
arithmetic with integers.

Remark: It seems rather lucky that we could find such simple hyperplanes sepa-
rating the polytopes. However, every coordinate of every polytope lies in{0,1,2},
and the relevant pairs of polytopes often have several pairsof vertices in common.
This situation makes the existence of the very simple separating hyperplanes less
surprising.
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11.2 NO CROSSINGS

Given that every nontrivial vertex of̂Ŵ has valence 2, and also that the edges ofŴ̂
have length at most

√
2, the only way that̂Ŵ can fail to be embedded is if there is a

situation like the one shown in Figure 11.3.

p1

p2

Figure 11.3: Embedding failure.

Let M+ andM− be the maps from §6.6. Given the Master Picture Theorem, this
situation arises only if

M±(p1) ∈ R±(1,1), M±(p2) ∈ R±(1,−1) (11.8)

This equation implicitly involves 4 cases, depending on thesign choices. Since
p2 = p1+ (0,1), we have

M±(p2) = M±(p1)+ (1,1,1,0)mod3. (11.9)

In particular, the two pointsM(p1) and M(p2) lie in the same fiber ofR over
the(z, A) square. We see by inspection that no fiber intersects bothR+(1,1) and
R+(1,−1). In light of the nature of the partition, we need to only check4 fibers.
(See the discussion following Figure 6.2.) This rules out the(+,+) case. The same
check rules out the(−,−) and(−,+) cases. The only possibility is

M+(p1) ∈ R+(1,1), M−(p2) ∈ R−(1,−1). (11.10)

Modulo3, we have

M−(p2) ≡ M−(p1)+(1,1,1,0) ≡ M+(p1)+(0,0,1,0) ≡ M+(p1)+(1,1,0,0).
In short,

M+(p1) ≡ M−(p2)− (1,1,0,0) mod3. (11.11)

Lettingx ∈ R4 be any representative ofM+(p1), we see that the orbit3x intersects
both sets

R+(1,1), R−(1,−1)− (1,1,0,0).
Hence

3R+(1,1) ∩ (R−(1,−1)− (1,1,0,0)) 6= ∅. (11.12)

We mean that there is a pair(P1, P2) of polytopes, withP1 in the first set andP2 in
the second set, such thatP1 andP2 do not have disjoint interiors. We rule out this
intersection using exactly the same method as in step 2.
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Figure 11.4: Slices of3R+(1,1) and3(R−(1,−1)− (1,1,0,0)).

Here is an illustration just like Figures 11.1 and 11.2. Figure 11.4 shows slices of

3R+(1,1), 3(R−(1,−1)− (1,1,0,0))

overB2 andB3. OverB0 andB1, at least one of the sets is empty.
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Chapter Twelve

Extension and Symmetry

12.1 TRANSLATIONAL SYMMETRY

Referring to §6.6, the mapsM+ and M− are defined on all ofZ2. This gives an
extension of the arithmetic graph to all ofZ2. We denote this full extension bŷŴ.

Figure 12.1 showŝŴ(3/7), as well as the hexagridG(3/7), from §3.1. The bottom
of the shaded parallelogram is the baseline. In the rationalcase, both the arithmetic
graph and the hexagrid are invariant under a certain lattice2 of translations ofZ2.
The shaded parallelogram is the fundamental domain for2. In this section we give
the formulas for the lattice and establish the translational symmetry.

Figure 12.1: Ŵ̂(3/7) andG(3/7).
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Lemma 12.1 The extended arithmetic graph does not cross the baseline.

Proof: The arithmetic graph describes the dynamics of the pinwheelmap8. Note
that8 is generically defined and invertible onR+×{−1,1}. Reflection in thex-axis
conjugates8 to8−1. By the Pinwheel Lemma,8 mapsR+ × {−1,1} into itself.
By symmetry the same goes for8−1. Hence8 and8−1 also mapR− × {−1,1}
into itself. If some edge of̂Ŵ crosses the baseline, then one of8 or8−1 will map
a point ofR+ × {−1,1} into R− × {−1,1}. This is a contradiction. 2

Let λ(p/q) = 1 if p/q is odd and letλ(p/q) = 2 if p/q is even. Define

2 = ZV + ZV ′, V ′ = λ2

(
0,
(p+ q)2

4

)
, λ = λ(p/q). (12.1)

Referring to Figure 12.1, the short edges of the parallelogram are translates of
V and the long edges are translates ofV ′. Thus the shaded parallelogram is a
fundamental domain for the action of2 onR2.

Lemma 12.2 The arithmetic grapĥŴ(p/q) is invariant under2.

Proof: We will consider the odd case. The even case is similar. We have already
seen that̂Ŵ is invariant underV . We just have to show invariance forV ′. Referring
to the notation in §6.6, we have

M±(x + V ′)− M±(x) = (t, t, t) mod3, t = (p+ q)2

4
. (12.2)

By the Master Picture Theorem, it suffices to prove that(t, t, t) ∈ 3. Setting

a = pq, b = pq+ q2

2
, c = t, (12.3)

we express(t, t, t) as an integer combination of vectors in3 as follows.

a

[1+ A
0
0

]
+ b

[1− A
1+ A

0

]
+ c

[−1
−1
1

]
=
[ t

t
t

]
. (12.4)

This completes the proof. 2

Remark: One can probably also see rotational symmetry by looking at Figure 12.1.
We will treat this kind of symmetry below.

Our next result deals with the hexagrid and the arithmetic kiteK(A). Both objects
are defined in §3.1. Recall that the hexagrid consists of a room grid RGand a door
grid DG. HereRG is composed of 2 families of parallel lines andDG is composed
of 4 families of parallel lines. The lines ofRG are all parallel to the two diagonals
of K(A), and the lines ofDG are all parallel to the sides ofK(A). Referring to
Figure 12.1, notice that each corner of the shaded parallelogram lies on 6 lines –
one per family – of the hexagrid. Our proof of the following result is based on this
phenomenon.
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Lemma 12.3 The hexagrid is invariant under the action of2.

Proof: Again, we treat the only odd case. LetG = G(p/q) denote the hexagrid.
By construction,G is invariant under translation byV . We just have to show that
the same holds forV ′. We will show thatV ′ contains 6 lines ofG. Translation by
V ′ then maps each family of parallel lines in the hexagrid to itself, and so the whole
hexagrid is invariant.

Let W be as in Equation 3.2. For convenience, we repeat the formulafor W.

W =
(

pq

p+ q
,

pq

p+ q
+ q − p

2

)
.

We compute that

V ′ = −
p

2
V +

p+ q

2
W. (12.5)

The second coefficient is an integer. Given that the room gridRG is invariant under
the latticeZ [V/2,W], the room gridRG is also invariant under translation byV ′.
This gives 2 linesL1 andL2, one from each family ofRG.

Note that the door gridDG is invariant only underZ [V ], so we have to work
harder. We need to produce 4 lines ofDG that containV ′. Here they are.

• The vertical lineL3 through(0,0) certainly containsV ′. This line extends
the bottom left edge ofK(A) and hence belongs toDG.

• Let L4 be the line containingV ′ and the point

−(p+ q)

2
V ∈ Z [V ] .

We compute that the slope ofL4 coincides with the slope of the top left edge
of K(A). The origin contains a line ofDG parallel to the top left edge of
K(A), and hence every point inZ [V ] contains such a line. HenceL4 belongs
to DG.

• Let L5 be the line containingV ′ and the point

−pV ∈ Z [V ] .

We compute that the slope ofL5 coincides with the slope of the bottom right
edge ofK(A). The same argument as in the previous case shows thatL5

belongs toDG.

• Let L6 be the line containingV ′ and the point

q − p

2
V ∈ Z [V ] .

We compute that the slope ofL6 coincides with the slope of the top right edge
of K(A). The same argument as above shows thatL6 belongs toDG.

The linesL1, ..., L6 are the desired lines. 2
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12.2 A CONVERSE RESULT

Here we show that2 is, in some sense, the maximal group of translational symme-
tries of the arithmetic graphs. LetM± be the map from the Master Picture Theorem.
We state our result for the mapM+, but the argument is the same forM−.

Lemma 12.4 Letv1, v2 ∈ Z2. Then M+(v1) ≡ M+(v2) mod3 iff v1 ≡ v2 mod2.

Proof: As usual,A = p/q. The proof of Lemma 12.2 shows thatv1 ≡ v2 mod2
implies M+(v1) ≡ M+(v2) mod3. We must establish the converse. Suppose that
M+(v1) ≡ M+(v2)mod3. Let

w = v2 − v2 = (m,n). (12.6)

Our hypothesis implies that

(t, t, t) ∈ 3, t = Am+ n. (12.7)

We would like to see that this equation implies thatw ∈ 2. Recall that3 is the
Z-span of the columns of the matrix in Equation 6.3. The bottomrow of this matrix
is (0,0,1). From this we conclude thatt ∈ Z. Since

t = pm

q
+ n, (12.8)

we see thatq dividesm. But now we can subtract multiples ofV = (q,−p) to
arrange thatm = 0. That is, we can assume thatw = (0,n). Hencet = n. Note
that

(n,n,n) ≡ (2n,2n,0) mod 3. (12.9)

Therefore we have the equation
[

2n
2n

]
= a

[
1+ A

0

]
+ b

[
1− A
1+ A

]
. (12.10)

The solutions are

a = 4npq

(p+ q)2
, b = 2nq

p+ q
. (12.11)

Sincep andq are relatively prime,pq is relatively prime to(p+ q)2. Sincea ∈ Z,
we have that(p+ q)2 divides 4n. Hence

n = k
(p+ q)2

4
, k ∈ Z. (12.12)

When p/q is odd, we havew = kV′, by Lemma 12.1. Whenp/q is even, the fact
thatn ∈ Z forcesk = 4k′ for somek′ ∈ Z. Hencew = k′V ′ in this case. 2

Lemma 12.4 has the following immediate corollary.

Corollary 12.5 The maps M+ and M− from the Master Picture Theorem are well
defined and injective onZ2/2.
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12.3 ROTATIONAL SYMMETRY

Let p/q be an odd rational. Letp+/q+ be as in Equation 4.1. Letι be the rotation

ι(m,n) = V+ − (m,n), V+ = (q+,−p+). (12.13)

The fixed point ofι is (1/2)V+. This point lies very close to the baseline ofŴ̂(p/q).
Figure 12.2 showsŴ(7/17) centered on this fixed point.

Figure 12.2: Ŵ̂(7/17) centered on the point(12,−5)/2.

Below we prove thatι(Ŵ̂) = Ŵ̂, as suggested by Figure 12.2. Combining this
result with the translation symmetry above, we see that rotation byπ about any of
the points

β + θ, β = (1/2)V+, θ ∈ 2 (12.14)

is a symmetry of̂Ŵ.

Remark: In particular, there is an involution swapping(0,0) andV+ + kV for
anyk ∈ Z.
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Lemma 12.6 ι(Ŵ̂) = Ŵ̂.

Proof: Let M+ andM− be as in §6.6. We use the offset valueα = 1/(2q). Recall
that RA is the fundamental domain for the action of3 = 3A. Let ρ be reflection
through the midpoint of the spaceRA. Below we will derive the equations

M+(m,n) = ρ ◦ M−(ι(m,n)), M−(m,n) = ρ ◦ M+(ι(m,n)). (12.15)

Given these equations, we verify by inspection that our partition of RA is symmetric
underρ and has the labels appropriate to force the type determined by

ρ ◦ M+(m,n), ρ ◦ M−(m,n)

to be the 180-degree rotation of the type forced by

M−(m,n), M+(m,n).

Indeed, we can determine this with an experiment performed on any rational that is
complicated enough such that all regions are sampled.

Now we derive Equation 12.15. We will derive just the first half. The derivation
of the second half is entirely similar. We have

M+(m,n) = (t, t + 1, t) mod 3, t =
pm

q
+ n+

1

2q
. (12.16)

Next, using the fact thatq+p− p+q = −1, we have

M−(ι(m,n)) = (t ′ − 1, t ′, t ′) mod 3,

t ′ =
(

pq+
q
− p+

)
−
(

pm

q
+ n

)
+ 1

2q
= −

(
pm

q
+ n

)
− 1

2q
= −t .

In short

M−(ι(m,n)) = (−t − 1,−t,−t) mod 3. (12.17)

We compute easily that(2+ A, A,1) ∈ 3. Hence the points

x = (t, t + 1, t), y = (−t − 1,−t,−t)+ (2+ A, A,1) (12.18)

are representatives of the pointsM+(m,n) and M−(ι(m,n)) in R3. We compute
the average.

x + y

2
=

1

2
(1+ A,1+ A,1).

This is the midpoint ofRA. But thenρ interchangesx and y. Sinceρ preserves
the elements of3, we see thatρ interchanges the full orbits3x and3y. But then
ρ interchanges3x ∩ RA with 3y ∩ RA. But these two points areM+(m,n) and
M−(ι(m,n)). This establishes the first half of Equation 12.15. 2



book April 3, 2009

EXTENSION AND SYMMETRY 113

12.4 NEAR-BILATERAL SYMMETRY

Our pictures of arithmetic graphs show near-bilateral symmetry. In this section
we explain how this arises. Looking at Figure 12.2, we see that there is a natural
correspondence between components above the baseline and components below the
baseline. Our first result explains this near-bilateral symmetry. There is a second
kind of bilateral symmetry that meets the eye in Figure 1.5 or12.3. After proving
our first result, we will explain how this other kind of near-bilateral symmetry arises.

Figure 12.3:Ŵ(15/52).

We say that a mapJ from Ŵ̂ to Ŵ̂ is a combinatorial isomorphismif J maps
vertices to vertices and edges to edges.

Recall that a low vertex is one that is above the baseline but within 1 vertical unit
of it. Say that alow componentis a component of̂Ŵ above the baseline that contains
a low vertex. Say that this component isodd if it contains odd low vertices, and
evenif it contains even low vertices. By Lemma 2.6, this notion iswell defined.

Lemma 12.7 For any rational A, there is a combinatorial isomorphismJ: Ŵ̂→ Ŵ̂
that swaps the components ofγ̂ above the baseline with the one below the baseline.
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Proof: Let4± = R± × {−1,1}. Recall that9:4+ → 4+ is the first return map.
We can extend9 so that it is also the return map from4− to4−. We have proved the
Return Lemma and the Pinwheel Lemma for the return map to4+, but essentially
the same arguments work with4− in place of4+. Thus the portion of̂Ŵ below the
baseline tracks the dynamics of the map9:4−→ 4− just as the portion above the
baseline tracks the dynamics of9:4+→ 4+.

Let91/2 be the first return map toR× {−1,1}. If p ∈ 4±, then91/2(p) ∈ 4∓.
The correspondenceξ → 91/2(ξ) gives a bijection between9-orbits in4+ and
9-orbits in4−. The map9 is the square of91/2. We defineJ+(m,n) = (m′,n′),
where(m,n) corresponds toξ and(m′,n′) corresponds to91/2(ξ).

We could setJ = J+ and be finished, but we can somewhat improve the con-
struction. There is a second involution that is just as good as J+. We can match
ξ ∈ 4+ to the point9−1/2(ξ) ∈ 4−. Call this mapJ−. BothJ+ andJ− have the
same action oncomponents, but they have different actions on individual points.

If γ is a component of̂Ŵ above the baseline that is not low, we use (say)J = J+.
For even low components we useJ = J+. For odd low components, we useJ = J−.
This is our combinatorial isomorphism. 2

Lemma 12.7 does not really explain the near-bilateral symmetry we see in Figure
12.3. Here is the explanation. Letι be the symmetry discussed in the previous
section. Thenι ◦ J permutes the components ofŴ̂ above the baseline. In particular,
ι◦J preservesŴ but reverses its direction. This is the symmetry seen in Figure 12.3.

Now we work out a few more properties ofJ. Our first result really uses the
improved version ofJ.

Lemma 12.8 If v is a low vertex, thenJ(v) = v − (0,1).

Proof: Let M be the fundamental map. Let(m,n) be an even low vertex. Let

(x,−1) = M(m,n) ∈ (0,2)× {−1}.

We compute

91/2(x,−1) = ψ2(x,−1) = (x − 2,1) = M(m,n− 1). (12.19)

HenceJ(m,n) = (m,n− 1). Similarly, if (m,n) is an odd low vertex, then

9−1/2(x,1) = ψ−2(x,1) = (x − 2,−1) = M(m,n− 1). (12.20)

HenceJ(v) = v − (0,1) whenv is a low vertex. 2

We say thatJ is pseudolinearif there is a linear isomorphismJ: R2→ R2 such
that J is a bounded distance fromJ (in the sup norm.) IfJ exists,J is unique. We
call J themodelfor J. Since we do not need the final result for any purpose, the
proof will be a bit sketchy.

Lemma 12.9 Jis pseudolinear, modelled on the affine map J such that J(V) = V
and J(W) = −W. Here V and W are as in Equation 3.2.



book April 3, 2009

EXTENSION AND SYMMETRY 115

Proof: (Sketch) Letting(x,1) be a point on4+ aboutN units from the origin,
we roughly trace out the Pinwheel map. First we add some integer multiple of the
vector(0,4), then we add some integer multiple of the vector(−2,2), etc. When
we reach4− we have a vector of the form

x + (2AcN + 2dN,±1).

Here (cN,dN) depends linearly onN up to a uniformly bounded error. Given a
pointv = (m,n), we have

J(v) = v + (cN,dN), N = 2Am+ 2n. (12.21)

This shows thatJ is pseudolinear.
Let J be the linear map on whichJ is modelled. Given the action ofJ on low

vertices, we see thatJ(V) = V . To show thatJ(W) = −W, we consider how the
pair (ck,dk) associated tokW depends onk. Taking the limit ask → ∞, we get
an exact formula that showsJ(W) = −W. We omit the details of this calculation.2
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Chapter Thirteen

Proof of Hexagrid Theorem I

13.1 THE KEY RESULT

The proof of Hexagrid Theorem I is the same in the odd and even cases.
Say that afloor line is a negatively sloped line of the floor grid. Floor lines all

have slope−A. Say that afloor point is a point on a floor line. Such a point need
not have integer coordinates. The mapsM+ andM− from §6.6 are constant on floor
lines. Thus, ifL is a floor line,M±(L) is a single point.

Lemma 13.1 If p is a floor point, then M−(p) ≡ (β,0,0) mod3 for someβ ∈ R.

Proof: Suppose first thatp/q is odd. SinceM− is constant on floor lines, it suffices
to consider floor points of the form

(0, t), t =
k(p+ q)

2
, k ∈ Z. (13.1)

These points are the intersections of the floor lines with they-axis. Note thatt is an
integer becausep+ q is even.

To compute the image of the point(0, t), we just have to subject the pointt to
the reduction algorithm from §6.6. The first 4 steps of the algorithm lead to the
following result.

1. z= t .

2. Z = floor(t) = t becauset is an integer.

3. y = 2t = k(p+ q) = kq(1+ A).

4. Y = floor(y/(1+ A)) = kq.

Hencez= Z andy = (1+ A)Y. Hence

M−(0, t) = (x − (1+ A)X, y− (1+ A)Y, z− Z) = (β,0,0) (13.2)

for some numberβ ∈ R that depends onA andk.
When p/q is even, the floor grid has a different definition: Only the even floor

lines are present in the grid. That is, the numberk in Equation 13.1 is an even
integer. Hence, for the floor lines in the even case, the number t is an integer. The
rest of the proof is the same. 2
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13.2 A SPECIAL CASE

Say that a floor point isspecialif it lies in Z2. For instance,(0,0) is a special floor
point. So are the points in Equation 13.1. In this section we will prove statement 1
of the Hexagrid Theorem for special floor points.

Lemma 13.2 The arithmetic graph rises up above the baseline at a specialfloor
point.

Proof: Let v be a special floor point. By Lemma 13.1, we haveM±(v) ≡ (β,0,0)
mod3. In particular,M±(v) lies in the kind of singular fiber that we considered in
§6.5. The fiber we mean is{z= 0}. The slices as shown in Figure 6.3 determine the
nature of the edges of the arithmetic graph, although the slices currently of interest
to us are not shown there. We are interested in following the method discussed in
§6.5, where we setα = 0 and consider the singular situation. The pointsM−(ζk)
andM+(ζk) both lie in the(0, A) slices of the partitions. Figure 13.1 does for these
slices what Figure 6.3 does for the generic slice. The pointM−(ζk) always lies along
the bottom edge of the fiber, and the pointM+(ζk) just above the edge contained in
the liney = 1. The relevant edges are highlighted.

(Y,−)

(Y,+)(X,+)

(X,−−)
Figure 13.1: The(0, A) slices.

From this figure we can see that the only edges emanating fromζk are those
corresponding to the pairs

(0,1), (1,0), (1,1), (−1,1).

All of these edges point into the half-plane above the relevant floor line. This is
what we wanted to establish.
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13.3 PLANES AND STRIPS

We say that an edgee of the arithmetic graph is acrossing cellif e crosses the
arithmetic graph in an interior point. If statement 1 of the Hexagrid Theorem fails,
then a crossing cell must exist. One vertex of a crossing celllies above a floor line
and one vertex lies below. We shall be interested in the above-lying vertex. Call
this vertex thetop vertexof the crossing cell.

For each pair(ǫ1, ǫ2) ∈ {−1,0,1}2, let6(ǫ1, ǫ2) ⊂ R2 denote the set of points
(m,n) such that some floor line separates(m,n) from (m,n) + (ǫ1, ǫ2). The set
6(ǫ1, ǫ2) is a countable union of open infinite strips, one per floor line. Depending
on the choice of(ǫ1, ǫ2), the strips lie either above the floor lines or below them.
We shall be interested in the above-lying strips. These strips correspond to the pairs

(−1,0), (−1,−1), (0,−1), (1,−1). (13.3)

Lemma 13.3 Let c be a crossing cell and letv be the top vertex of c. Then we have
v ∈ 6(ǫ1, ǫ2) for one of the choices in Equation 13.3.

Proof: This is a tautology. 2

Now we switch gears and talk about the situation inR3. Let5− ⊂ R3 denote the
plane given byz = y. Equivalently,5− is the plane through the origin generated
by the vectors(1,0,0) and(1,1,1). Let5−(0) ⊂ 5− denote the line through the
origin parallel to(1,0,0). Define

5+ = 5− + (1,1,0), 5+(0) = 5−(0)+ (1,1,0). (13.4)

Let5(λ) ⊂ 5± denote the strip bounded by the two lines

5±(0), 5±(0)+ λ(1,1,1). (13.5)

We take the strips to be open in5±, and we always takeλ > 0. We define

λ(ǫ1, ǫ2) = −(Aǫ1+ ǫ2). (13.6)

Lemma 13.4 Letλ = λ(ǫ1, ǫ2). Suppose that(m,n) ∈ 6(ǫ1, ǫ2). Then

M±(m,n) ∈ 5±(λ).

Proof: We consider the case ofM− and the pair(−1,0). In this case,λ(−1,0) = A.
The other cases have essentially the same proof. If(m,n) ∈ 6(−1,0), then there is
somex such that(x,n) lies on a floor line and 0< m− x < 1. Given the definition
of M−, there is some 0< s < A such that

M−(m,n)− M−(m, x) = (s, s, s).
By Lemma 13.1,

M−(m,n) = M−(x,n)+ (s, s, s) ≡ (β,0,0)+ s(1,1,1) mod 3.

This completes the proof. 2
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13.4 THE END OF THE PROOF

Let R± be the polyhedron partition from the Master Picture Theoremassociated
to A. For each pair(ǫ1, ǫ2) above, letR±(ǫ1, ǫ2; A) denote the finite union of
polyhedra corresponding to the pair(ǫ1, ǫ2). In our next result,3R denotes the
orbit of R under the lattice3 = 3A from the Master Picture Theorem.

Lemma 13.5 The following is true for either choice of sign, for any parameter A,
and for any(ǫ1, ǫ2) in Equation 13.3.

5±(ǫ1, ǫ2; A) ∩3R±(ǫ1, ǫ2; A) = ∅.

Proof: Our notation above emphasizes the dependence on the parameter A. We
check the disjointness for all parameters at the same time. Let

5±(ǫ1, ǫ2) =
⋃

A∈(0,1)

(
5±(ǫ1, ǫ2; A)× {A}

)
. (13.7)

Let 5∗(. . .) denote the portion of5(. . .) between the hyperplanes{x = 0} and
{x = 2}. The elementγ1 from Equation 6.14 preserves both5(. . .) and the tiling.
Also, sinceγ translates by at most 2 units in thex-direction,5∗(. . .) contains a
fundamental domain for the action ofγ on5(. . .). Hence, to establish our result,
it suffices to establish

5∗±(ǫ1, ǫ2) ∩3R±(ǫ1, ǫ2) (13.8)

for all relevant choices. HereR±(ǫ1, ǫ2) is one of the convex integral polytopes
described in §6.9. The set5∗±(ǫ1, ǫ2) ⊂ 5 is the interior of a convex integral poly-
hedron inR4. In (−) cases, the vertices of this polyhedronare (perhaps redundantly)




0
0
0
0







2
0
0
0







0
−ǫ2

−ǫ2

0







2
−ǫ2

−ǫ2

0







0
0
0
1







2
0
0
1







0
−ǫ1 − ǫ2

−ǫ1 − ǫ2

1







2
−ǫ1− ǫ2

−ǫ1− ǫ2

1




Using a method just like that in §11.1, we check Equation 13.8for all relevant
choices. 2

Suppose that statement 1 of the Hexagrid Theorem fails for some parameterA.
Then there is some crossing cellc. By the Master Picture Theorem, one of the two
mapsM± (sayM+) is such that

M+(v) ∈ R(ǫ1, ǫ2; A), (13.9)

where(ǫ1, ǫ2) is one of the pairs from Equation 13.3. By Lemma 13.4, we have

M+(v) ⊂ 5+(ǫ1, ǫ2; A). (13.10)

But these last two equations together contradict Lemma 13.5. This contradiction
establishes statement 1 of the Hexagrid Theorem.
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13.5 A VISUAL TOUR

Our computational proof of Lemma 13.5 does not really give a feel for what is going
on. Here we illustrate the result with images taken from Billiard King. To draw
figures, we will identify the planes5± with R2 using the projection

π(x, y, z) = (x, z). (13.11)

In fact, this simple projection will be our constant companion for the rest of this part
of the book. All our constructions depend on the parameterA, but we sometimes
omit A from our notation.

Under the identification, the sets

π(R±(ǫ1, ǫ2; A) ∩5) (13.12)

are rectangles whose sides are parallel to the coordinate axes! Our proof of Lemma
14.3 in the next chapter justifies this claim.

The coordinates of the rectangle vertices are small rational combinations of 1 and
A and can easily be determined by inspection. The whole figure is invariant under
translation by(1+ A,0). The thick line on the left corresponds to5−(0), the black
dot is(A,0), and the white dot is(1+ 2A,0).

The unlabelled rectangles in Figure 13.2 show one period of the tiling of the strip
5(1+ 2A) for the parameterA = 1/3. The shaded and labelled rectangles to the
right of the partition give the shading scheme. For instance, the dark left rectangle
corresponds toR−(−1,−1). The white rectangles have various labels that do not
matter to us. The line corresponding to the label of(ǫ1, ǫ2) indicates the placement
of the top edge of the strip5−(λ(ǫ1, ǫ2)). In each case, the relevant strip lies below
the relevant shaded piece of the partition.

Π(0)

(0,−1)

(−1,0)

(1,−1)

(−1,−1)

Figure 13.2: The(−) case forA = 1/3.

Figure 13.3, taken from Billiard King, shows the partitionsof the strip5−(2) for
several parameters. We show somewhat more of the tiling thanin Figure 13.2. One
can match part of the top right of Figure 13.3 with Figure 13.2.
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Figure 13.3: The(−) case forA = 1/4,1/3,3/5,4/5.

Figures 13.4 and 13.5 show the same thing for the(+) case. Here the black dot
is (0,0) and the white dot is(1+ A,0). These figures are not as interesting. Only
the levels(−1,−1) and(−1,0) play a role, and there are no close calls.

Π(0)

(0,−1)

(−1,0)

(−1,−1)

(1,−1)

Figure 13.4: The(+) case forA = 1/3.
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Figure 13.5: The(+) case forA = 1/4,1/3,3/5,4/5.
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Chapter Fourteen

The Barrier Theorem

14.1 THE RESULT

Let p/q be an even rational. LetV = (q,−p). Referring to Equation 4.1, one of
the two rationalsp±/q± is even and one is odd. Letp′/q′ denote whichever of these
rationals is odd. (We allow the case whenp′/q′ = 1/1.) We call p′/q′ the odd
predecessorof p/q. We say that thebarrier is the line parallel toV that contains
the point

(
0,

p′ + q′

2

)
. (14.1)

Theorem 14.1 (Barrier) Let e be an edge of̂Ŵ(p/q) that crosses the barrier line.
Then there is some k∈ Z such that the translate e+ kV is an edge ofŴ(p/q).
Moreover, there are only two such edges modulo translation by Z [V ].

We will not need the Barrier Theorem until Part 6 of the book. The reader who is
interested in only the Erratic Orbits Theorem can skip this chapter. The reason that
we prove the Barrier Theorem here is that the proof involves amodification of the
argument we gave in the last chapter. Also, our proof of statement 2 of the Hexagrid
Theorem uses some of the ideas we present first in the proof of the Barrier Theorem.
Compare §16.5.

The interested reader can observe, using Billiard King, that the Barrier Theorem
and the Hexagrid Theoremare specially related: The arithmetic graph always crosses
the barrier line within 1 unit of a line from the door grid. We will not establish this
fact because we do not need it for any purpose.

We have stated the precise version of the Barrier Theorem that we need for our
applications, but the Barrier Theorem is really part of a more robust general theorem.
If we replaceA′ by some parameterA∗ that is close toA in the sense of Diophantine
approximation, then we get the general result that the corresponding “barrier line”
is not frequently crossed bŷŴ. The basic reason is that3∗ serves as a kind of
memory of the Hexagrid Theorem for the parameterA∗. The two graphŝŴ andŴ̂∗

mainly agree along3∗, and the only crossings take place at the few mismatches in
the graphs.

Figure 14.1 illustrates the Barrier Theorem for the parameter A = 12/47. The
bottom straight line in the figure is the baseline. The top straight line is the barrier.
The black component isŴ(12/47). The reader can see other parameters using
Billiard King.
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Figure 14.1: Components of̂Ŵ(12/47) and the barrier.

Before we give the formal proof of the Barrier Theorem, we indicate the main
idea. In the previous chapter we saw thatM− mapped the points ofZ2 of interest
to us, namely those contained in the strip

6(ǫ1, ǫ2),

into a strip

5−
(
λ(ǫ1, ǫ2)

)
⊂ R3. (14.2)

We then showed that

5−
(
3(ǫ1, ǫ2)

)
∩ R−(ǫ1, ǫ2) = ∅ (14.3)

for the relevant pairs. We did the same thing for(+) in place of(−). In all, we had
8 cases to consider.

For the Barrier Theorem, we have a similar setup. This time, however, the strips
we get are slight translates of those in Equation 14.2. The small translation causes the
intersection in Equation 14.3 to be nonempty but quite small. The tiny intersections
give rise to the crossings we see in the Barrier Theorem. The main point is to bound
the number of potential new crossings.
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14.2 THE IMAGE OF THE BARRIER LINE

Let 3 be the barrier line. Here we prove an analog of Lemma 13.1 fromthe
previous chapter. There is one result forA′ > A and one result forA′ < A. We
will concentrate on the caseA′ > A. At the end of the chapter, we will deal with
the other case.

Lemma 14.2 Suppose that A′ > A. There is some realβ such that

M−(3) =
(
β,1/q,0

)
. (14.4)

Proof: The key fact here is that

q′(A′ − A) = 1/q. (14.5)

Since3 is parallel to the baseline,M− is constant on3. Hence we just have to
compute

M−(0, t ′), t ′ = p′ + q′

2
.

To compute the image of the point(0, t ′), we just have to subject the pointt ′ to
the reduction algorithm from §6.6. The first 4 steps of the algorithm lead to the
following result.

1. z= t ′.

2. Z = floor(t ′) = t ′ becauset ′ is an integer.

3. y=2t= p′+ q′=q′(1+ A′)=q′(1+ A)+ q′(A′− A)=q′(1+ A)+ (1/q).

4. Y = floor(y/(1+ A)) = q′.

Hencez= Z andy = (1+ A)Y + (1/q). Hence

M−(0, t) = (x − (1+ A)X, y− (1+ A)Y, z− Z) = (β,1/q,0) (14.6)

for some numberβ ∈ R that depends onA andk. 2

For any relevant setX ⊂ R3, we define

X′ = X + (0,1/q,0). (14.7)

We define the strips6(ǫ1, ǫ2) exactly as in the previous chapter, except that we use
the barrier line3 as the bottom of the strips rather than the floor lines. We are just
translating the strips. Now that we know Lemma 14.2, the sameargument as in the
previous chapter shows that

M±
(
6(ǫ1, ǫ2)

)
= 5′±

(
λ(ǫ1, ǫ2)

)
. (14.8)

We draw figures using the projection map

π(x, y, z) = (x, y), (14.9)
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just as in the previous chapter. Note thatπ(X′) = π(X). Therefore the composition
π ◦ M± maps6(ǫ1, ǫ2) to precisely the same planar set as in the previous chapter.
Even though the domains have changed, the ranges have not.

What changes is the projection of the intersection of5′± with the partitionR±.
That is, there is a difference between the two planar patterns of rectangles:

π(5± ∩ R±), π(5′± ∩ R±). (14.10)

Say that the planes cutting out the partition ofR± are thepartition planes. These
planes belong to 4 families and are listed in §6.2. The following result explains how
the rectangle pattern changes. Incidentally, this result explains why we really do
get a pattern of rectangles.

Lemma 14.3 Let W be a partition plane. Then the two linesπ(W ∩ 5±) and
π(W ∩5′±) either coincide or are exactly1/q apart in the plane.

Proof: The result depends on only the normals of the planes involvedand not on
the (initial) positions. Thus we can work with5− and with 4 planes through the
origin, each parallel to one of the partition planes in the 4 different families. For
ease of notation, let5 = 5− and lets= 1/q. Here are the 4 cases.

• Let W = {z = 0}. The mapX → X′ preservesW. Therefore we have
5′ ∩W = (5 ∩W)′. But thenπ(5′ ∩W) = π(5 ∩W). We remark that
5 ∩W is the line through the origin parallel to(1,0,0). Henceπ(5 ∩W)
is a horizontal line.

• Let W = {z = 0}. The mapX → X′ preservesW, and the same argument
works as in the previous case. We remark that5 ∩W is the line through the
origin parallel to(0,0,1). Henceπ(5 ∩W) is a vertical line.

• Let W = {y = 0}. In this case,W ∩5 is thex-axis andW ∩5′ is parallel
to thex-axis but contains the point

(0,0,−s) = (0, s,0)− s(1,1,1)+ s(1,0,0).

In this case,5 ∩W and5′ ∩W are exactlys units apart and the mapπ is
an isometry. The images underπ are parallel horizontal lines exactlys units
apart from each other.

• Let W = {x+ y− z= 0}. In this case, we compute thatW ∩5 andW ∩5′
are the lines given by the parametric equations

t (0,1,1), (−s, s,0) + t (0,1,1).

The corresponding linesπ(W∩5) andπ(W ∩5′) are parallel vertical lines
exactlys units apart.

This completes the proof. 2
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14.3 AN EXAMPLE

We consider the parameterA = 4/15. We consider the plane5− and its corre-
sponding translate5′−. Here we illustrate Lemma 14.3 in action.

Figure 14.2 shows one period for the parameter 4/15. The left hand side of Figure
14.2 showsπ(5− ∩ R−), and the right hand side showsπ(5′− ∩ R−).

(8,−3)(4,6)

Figure 14.2: The slices5− and5′−.

Comparing the right hand side with the left hand side, we notice several changes.
First, 3 new regions have become visible. Two of these regions are long and thin,
and one of them is a little square. The common width of these regions is 1/15.
Second, some of the other regions have slightly changed their positions. In all cases
when an edge moves, the offset is by 1/15, as predicted by Lemma 14.3.

We compute that the two relevant crossings occur at the points(4,6) and(8,−3).
Figure 14.2 illustrates the locations of the pointsM−(4,6) andM−(8,−3) and the
corresponding crossings of the barrier that arise from these images. The tall thin
region, which gets labelled(0,−1), causes a downward crossing at(4,6). The
leftmost shaded region, which is labelled(−1,0), has shifted downward slightly
so as to meetM−(8,−3) and cause a leftward crossing. Were we to analyze the
figure relative to the parameterA′ = 3/11, these offendingpoints would be assigned
noncrossing edges.
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14.4 BOUNDING THE NEW CROSSINGS

In the new setting, our analysis for statement 1 of the Hexagrid Theorem does not
completely succeedbecause of the emergence of the new regions and the slight
perturbations of the existing regions. Let us analyze the failures. Referring to the
right side of Figure 14.2, the images of the relevant vertices all lie on a diagonal line
of slope 1. This line starts somewhere on the bottom edge of the tiled rectangle and
wraps around when it hits the right edge. Considered mod 1+ A, the difference in
thex-coordinates between successive points is 1/q.

The bottom of each modified rectangle is at most 1/q units lower than the orig-
inal. Since the original rectangle was disjoint from the relevant strip, the modified
rectangle intersects only the top 1/q rim of the same strip. Thus each modified
rectangle gives rise to at most one new crossing. The horizontal lines bounding a
new region come from partition planes in different families. Looking at the cases
in the proof of Lemma 14.3, we see that one of these lines movesand one does not.
Thus a new region has width exactly 1/q. Likewise, a new region has height exactly
1/q. Therefore each new region gives rise to at most 1 crossing.

Looking carefully at which shaded regions actually move down when5− is
replaced by5′−, we arrive at the 4 shaded regions shown in Figure 14.3. Here is a
trick to get down to 2.

Figure 14.3: Some of the shaded rectangles.

Note that any diagonal line intersects at most 2 of the 4 relevant rectangles.
Therefore what seems like 4 potential crossings is just 2. The argument works much
the same for other parameters. Figure 14.4 shows the picturefor 3 other parameters.
In each row, the left hand side shows the slice correspondingto statement 1 of
the Hexagrid Theorem, and the right hand side shows the perturbed slice we are
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interested in here.

Figure 14.4: The(−) figure for A = 3/19,8/19,15/19.

The figure for5+ is easier to analyze. Recall from the proof of the Hexagrid
Theorem that all the relevant rectangles were well above therange of the corre-
sponding vertices. See Figures 13.3 and 13.4. Thus we only have to worry about
the emergence of new rectangles. The only new rectangle to emerge within range
is a rectangle labelled(−1,0) that emerges at the very bottom. Hence there is at
most 1 crossing. See Figure 14.5.
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Figure 14.5: The bottom row of5+ and5′+.

All in all, there are at most 3 barrier crossings within one period. Also, the number
of barrier crossings is even because every component is a polygon. Hence there are
exactly 2 barrier crossings. The major components do cross the barrier, and hence
this accounts for the 2 crossings.

14.5 THE OTHER CASE

An analysis similar to thte one above takes care of the case whenA′ < A. However,
we will take a different approach based on symmetry. Let3+ denote the barrier
line. There is nothing special about the fact that3+ lies above the baseline. We
could consider the corresponding line3− below the baseline. Here3− is parallel
to V and contains

P− =
(

0,
−p′ + q′

2

)
. (14.11)

Actually, to do things exactly right, we think of3+ and3− lying infinitesimally
near, but below, the lines we have defined. Thus, in particular, P− lies above3−.

We compute that

M(P−) =
(
β,1/q,0

)

for someβ ∈ R. Thus, by considering3− in place of3+, we have returned to the
case already analyzed. But now we can apply the rotational symmetryι considered
in §12.3. Assuming thatι(3−) = 3+, the result for3+ follows from the result for
3−.

It is not quite true thatι(3−) = 3+. In fact,ι(3−) is parallel to3+ and exactly
1/q vertical units beneath3−. Thus we have actually proved the Barrier Theorem
for a barrier that is lower by a tiny bit. This result suffices for all purposes.

To obtain the stated result right on the nose, we note thatP− is the only point
adversely affected:ι(P−) lies beneath3+, whereasP− lies on3−. However, recall
that we consider these lines to be infinitesimally beneath the lines through integer
points. Thus, as mentionedabove,P− lies above3−. So, even thoughι(3−) 6= 3+,
all the relevant lattice points lie on the correct sides.

This completes the proof of the Barrier Theorem.



book April 3, 2009

Chapter Fifteen

Proof of Hexagrid Theorem II

We will prove statement 2 of the Hexagrid Theorem for odd rationals. The even case
has an essentially identical proof. Here we remark on one small difference. Call a
point in R2 bad if it has the form(m, y), wherey is a half-integer. According to
statement 3 of Lemma 15.1 below, a door cannot be a bad point inthe odd case. In
the even case, we simply declare that a door cannot be a bad point. See the definition
in Chapter 3. Having ruled out the bad points in both cases, our proof is practically
independent of parity.

15.1 THE STRUCTURE OF THE DOORS

Our proof of statement 2 of the Hexagrid Theorem requires a careful analysis of
the doors. In this first section, we will establish a technical result about the doors.
Say that awall line is a line of positive slope in the room grid. These lines are all
parallel to the vectorW, from Equation 3.2. Recall that2 is the lattice, from §12.1.
We distinguish two special kinds of points inR2.

• Type 1:(aq,b/p), with a,b ∈ Z.

• Type 2:(ap,b/q), with a,b ∈ Z.

A point could have both types. Here is our structural result.

Lemma 15.1 The following are true.

1. Any two wall lines are equivalent mod2.

2. The only points ofZ2 lying on wall lines are elements of2.

3. Every door on L0 has type 1 or type 2 (or both).

Proof: Statement 1: Recall that2 is generated byV andV ′, the vectors from
Equation 12.1. Modulo translation byZ [V ], any wall line is equivalent toL0 or
L1. We just need to show that these two wall lines are equivalentto each other mod
2. We check explicitly that the following equation holds.

V ′ + p+ 1

2
V ∈ 2 ∩ L1.

Hence addition by some vector in2 carriesL0 to L1. HenceL0 andL1 are equiv-
alent mod2.
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Statement 2: By statement 1, it suffices to consider the case when(m,n) ∈ L0.
Any point in L0 is a real multiple ofW. Such a point has the form

sW= s

2(p+ q)
(2pq, (p+ q)2− 2p2). (15.1)

In order for this point to lie inZ2, the first coordinate must be an integer. Hence

s =
k(p+ q)

pq
, k ∈ Z. (15.2)

Hence

n = k× pq+ (q2− p2)/2

pq
∈ Z. (15.3)

Sincep andq are relatively prime, the numerator and denominator of the rational
on the right side of Equation 15.3 are relatively prime. Hence pq dividesk. Hence
(m,n) is an integer multiple of the point

(p+ q)W =
(

pq,
(p+ q)2

2
− p2

)
= 2V ′ + pV ∈ 2.

HereV andV ′ are the vectors generating2, as in Equation 12.1.

statement 3: Let K denote the arithmetic kite associated to the parameter. Call
a line in the door gridtop if it is parallel to one of the top two edges ofK. Call a line
in the door gridbottomif it is parallel to one of the bottom two edges ofK. Call a
doortop if it lies on a top door line, andbottomif it lies on a bottom door line.

Our argument crucially uses the pointU in Figure 3.1. We have

U =
(

p,
q2− p2 + 2pq

2q

)
. (15.4)

The bottom doors are evenly spaced onL0. Two consecutive ones are

(0,0),
q

p
U =

(
q,

q2− p2+ 2pq

2p

)
=
(

q,
b

p

)
. (15.5)

Every bottom door onL0 is a multiple of the nontrivial one we have listed. Hence
every bottom door has type 1.

The top doors are evenly spaced onL0. Two consecutive ones are

(0,0), U = (p,b/q). (15.6)

Every top door onL0 is an integer multiple of the nontrivial one we have listed.
Hence such doors have type 2. 2

Remark: In the even case, statement 1 of Lemma 15.1 has a trivial proof: Any two
wall lines are equivalent modulo translations by integer multiples of V .
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15.2 ORDINARY CROSSING CELLS

The bijection between crossing cells and doors described instatement 2 of the
Hexagrid Theorem commutes with the action of the symmetry group2. The point
is that2 preserves both the hexagrid and the arithmetic graph. Hence, by statement
1 of Lemma 15.1, it suffices to consider those crossing cells that crossL0.

We first deal with two trivial cases. Recall that the point(0,0) gives rise to two
doors. One of the doors, which we denote(0,0)+, is attached to the wall above
(0,0). The other door, which we denote(0,0)−, is attached to the wall below
(0,0). Any door lying in2 is equivalent to one of these, by statement 2 of Lemma
15.1. One of the crossing cells has vertices(−1,1), (0,0), and(1,1). We associate
(0,0)+ to this crossing cell. Another crossing cell has vertices(0,−1) and(−1,0).
We associate the door(0,0)− to this cell.

Henceforth we consider crossing cells that crossL0 but are not equivalent mod2
to either of the ones we have just described. We call these remaining crossing cells
ordinary cells. Given an ordinary cellc, let vc denote the vertex ofc that lies to the
right of L0. (The first statement of the next lemma justifies the existence ofvc.)

Lemma 15.2 An ordinary cell c has a single edge that crosses L0 in its interior.
Moreover,vc + (ǫ1, ǫ2) 6∈ L0 for any choice of(ǫ1, ǫ2) ∈ {−1,0,1}2.

Proof: Let c be a crossing cell. If an edge ofc fails to crossL0 at an interior point,
then a vertex ofc lies onL0. But thenc ≡ (0,0)mod2, by statement 2 of Lemma
15.1. Ifvc+ (ǫ1, ǫ2) ∈ L0, thenvc ≡ (−ǫ1,−ǫ2)mod2, by statement 2 of Lemma
15.1. Hence(−ǫ1,−ǫ2) is the right vertex of a crossing cell. This happens for(1,1)
and(0,−1), but these are the special crossing cells we have already handled. The
only point in L0 within reach of either(1,−1) or (1,0) is (0,0), and we already
know that(0,0) does not connect to these points. The remaining 4 choices lieto
the left ofL0. This rules out all cases. 2

Now we describe the bijection between ordinary crossing cells and doors. Below
we will prove the following result.

Lemma 15.3 (Separation)Let c be an ordinary cell and letvc be the right vertex
of c. Then L0 separatesvc from vc + (0,1).

We writevc = (m,n). Letθ ∈ (n,n+1) be the point such that(m, θ) ∈ L0. We
define

ϒ(c) = (n, θ). (15.7)

Lemma 15.4 (Door) Let v be an ordinary crossing cell. Thenϒ(c) is a door.

The mapc → ϒ(c) is certainly injective. To finish our proof of the Hexagrid
Theorem, we will prove the following result.

Lemma 15.5 (Surjection) The mapϒ is a surjective map from the set of ordinary
crossing cells to the set of doors on L0 that do not lie in2.
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15.3 NEW MAPS

The key to our proof is to use variants of the mapsM+ andM− from Equation 6.6.
Let3 be the lattice from the Master Picture Theorem. We will produce maps1+
and1−, which have, mod3, the same action asM+ andM− on Z2. However, the
action of1± on all ofR2 is quite different from the action ofM± onR2.

Now we give the definition. LetA ∈ (0,1) be any parameter. Define

5 = {x + y = A}. (15.8)

The plane5 plays the same role in the proof of Hexagrid Theorem II that the
similarly named plane plays in the proof of Hexagrid TheoremI.

For (m,n) ∈ R2, we define

1+(m,n) = (x, y, z),

x = 2A(1−m+ n)−m, y = A− x, z= Am. (15.9)

We also define

1−(m,n) = 1+(m,n)+ (−A, A,0). (15.10)

Note that1±(m,n) ∈ 5. Indeed,1± is an affine isomorphism fromR2 onto5.
We found the maps1± after considerable trial and error.

Lemma 15.6 Suppose that(m,n) ∈ Z2. Then1±(m,n) and M±(m,n) are equiv-
alent mod3.

Proof: Let v1, v2, v3 be the three columns of the matrix defining3. So,

v1 = (1+ A,0,0), v2 = (1− A,1+ A,0), v3 = (−1,−1,1).

Let

c1 = −1+ 2m, c2 = 1−m+ 2n, c3 = n.

We compute directly that

M+(m,n)−1+(m,n) = c1v1 + c2v2 + c3v3.

M−(m,n)−1−(m,n) = c1v1 + (c2 − 1)v2 + c3v3.

This completes the proof. 2

We introduce the vector

ζ = (−A, A,1) ∈ 3. (15.11)

Referring to the proof of our last result, we haveζ = v2 + v3. This explains why
ζ ∈ 3. Note that5 is invariant under translation byζ .

Below we will specialize to the case whenA = p/q is an odd rational. Also,
we will extend1± so that it acts linearly onR2. Now we will see the difference
between1± andM±. We will see that1± is specially adapted to the wall lines.

Let L0 denote the wall line through the origin.
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Lemma 15.71±(L0) is parallel toζ and contains(−2A, A,0).

Proof: We refer to the points in Figure 3.1. The pointsW and(0,0) both lie onL0.
We compute

1+(W)−1+((0,0)) =
p2

p+ q
ζ.

Hence1+(L0) is parallel toζ . We compute that1+(0,0) = (2A,−A,0). 2

We introduce the notation5(x) to denote the line in5 that is parallel toζ and
contains the point(x, A− x,0). For instance,

1+(0,0) ∈ 5(2A), 1−(0,0) ∈ 5(A). (15.12)

Let5(r, s) denote the infinite strip bounded by the lines5(r ) and5(s).
For each pair of indices(ǫ1, ǫ2) ∈ {−1,0,1}2, we let6(ǫ1, ǫ2) denote the set of

points(m,n) such thatL0 separates(m,n) from (m+ ǫ1,n + ǫ2). We care only
about the integer points in6(ǫ1, ǫ2), but our definition allows(m,n) ∈ R2 − Z2

as well. Note that6(ǫ1, ǫ2) is an infinite strip whose left boundary isL0. Now we
define constants

1. λ(0,1) = 2A,

2. λ(−1,−1) = 1+ 0A− A2,

3. λ(−1,0) = 1+ 2A− A2,

4. λ(−1,+1) = 1+ 4A− A2.

We have included 0A = 0 above to make the pattern more clear.

Lemma 15.8 Let (ǫ1, ǫ2) be any of the4 pairs listed above. Letλ = λ(ǫ1, ǫ2).
Then

1+(6(ǫ1, ǫ2)) = 5(2A−λ,2A), 1−(6(ǫ1, ǫ2)) = 5(A−λ, A). (15.13)

Proof: Given that1− = 1++ (−A, A,0), it suffices to establish the first equation.
In light of Lemma 15.7 and the fact that1+ is an affine isomorphism fromR2 to5,
it suffices to check what happens to a single point on the rightboundary component
of 6(ǫ1, ǫ2). Indeed, in all cases, we can chose the point(−ǫ1, ǫ2). We compute

1. 1+(0,−1) = (0, A,0) ∈ 5(0) = 5(2A− λ(0,1)).

2. 1+(1,1) = (−1+2A,1−A, A) ∈ 5(A2+2A−1) = 5(2A−λ(−1,−1)).

3. 1+(1,0) = (−1,1+ A, A) ∈∗ 5(1− A2) = 5(2A− λ(−1,0)).

4. 1+(1,−1) = (−1−2A,1+3A, A) ∈ 5(A2−2A−1) = 5(2A−λ(−1,1)).

This completes the proof. 2
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15.4 INTERSECTION RESULTS

Here we describe some intersection results that we prove in the next chapter.
For ease of notation, we define

5+((ǫ1, ǫ2; A)) = 5(2A− λ(ǫ1, ǫ2),2A), (15.14)

5−((ǫ1, ǫ2; A)) = 5(A− λ(ǫ1, ǫ2), A). (15.15)

To be precise, we take5±((ǫ1, ǫ2)) to be the interior (relative to5) of the strip.
These strips correspond to those in Lemma 15.8.

As usual,3R denotes the orbit ofR under the lattice3. In the next result,Xo

denotes the interior ofX. We prove the following result in Chapter 16.

Lemma 15.9 (Intersection) The following hold for all A∈ (0,1).

1. For each pair(ǫ1, ǫ2) from Lemma 15.8,

5±((ǫ1, ǫ2; A)) ∩3Ro
±(ǫ1, ǫ2; A) ≡ (0,0).

2. Let(ǫ1, ǫ2) be either(−1,−1) or (−1,1). Then

5±((ǫ1, ǫ2; A)) ∩3R±(ǫ1, ǫ2; A) ⊂ ∂5±((0,1)).

3. Let(ǫ1, ǫ2) be either(−1,0) or (0,1). Then

5±((ǫ1, ǫ2; A)) ∩3R±(ǫ1, ǫ2; A) ⊂ 5o
±(0,1).

Remark: Let5old denote the plane we considered in the proof of Hexagrid Theo-
rem I. By construction, the vector(1,1,1) is contained in5old. Thus, when we use
the method of §6.5 to implement the Master Picture Theorem, we need only look
at how5old intersects theinteriors of the polyhedra in the partitions. On the other
hand,(1,1,1) is not contained in the plane5new = 5. It turns out that5 does
intersect the lower boundaries of some of the polyhedra in the partition, and this
creates the crossings. In other words, case 3 of the Intersection Lemma is nontrivial.

Proof of the Separation Lemma: Supposec is an ordinary crossing cell. Let
v = vc be the right vertex. Suppose that the left vertex isv + (ǫ1, ǫ2). There is
some choice of sign (say+) such that

1+(v) ∈ 5+((ǫ1, ǫ2; A)) ∩3R+(ǫ1, ǫ2; A). (15.16)

The first containment comes from Lemma 15.8. The second containment comes
from the Master Picture Theorem. Applied directly, the Master Picture Theorem
refers to the mapsM±, but Lemma 15.6 lets us replaceM± with 1±.

The intersection in Equation 15.16 is empty in case 1 of the Intersection Lemma.
By Lemma 15.2, we havev 6∈ 6±(0,1). Hence1+(v) 6∈ ∂5+(0,1). Hence case
2 of the Intersection Lemma does not apply here. We must have case 3. By case 3,
we havev ∈ 5±(0,1). But then, by Lemma 15.8, we havev ∈ interior(6(0,1)). 2
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To prove the Door Lemma and the Surjection Lemma, we need to describe how
5±((0,1)) intersectsR±(−1,0) and R±(0,1). The plane5 = {x + y = A} is
transverse to all the planes listed in §6.2. Hence5 does not share any faces with
the polyhedra in the partition. We find the edges by inspecting the partition. We
see the figure by plotting the intersection of the partition with the slightly perturbed
plane.

5+ (s, s, s) (15.17)

Whenǫ is small, we see some very thin rectangles. Taking the limit as s→ 0, we
find the edges. See §16.5 for detailed figures.

To show the final answer, we will use the projection

π(x, y, z) = (x, z). (15.18)

Once again,π maps all intersections to rectangles having horizontal andvertical
sides. We have

π(ζ ) = π(−A, A,1) = (−A,1). (15.19)

Thus, translation by the vector(−A,1) identifies the top points and the bottom
points in Figures 15.1 and 15.2. These figures are meant to be infinite, and invariant
under translation by(−A,1). We show just one period.

We give two labels to the vertices in Figures 15.1 and 15.2. The label(x, y)
denotes the coordinates of the vertex. The label((ǫ1, ǫ2)) pair associated to the
point. We also label the lines by((ǫ1, ǫ2)). If a setX is labelled by((ǫ1, ǫ2)) on the
left hand side, it means that

1+(p) ∈ X H⇒ x ∈ R+(ǫ1, ǫ2). (15.20)

The labels on the right hand side have the same interpretation, with (−) replacing
(+). The gray vertices correspond to1±(0,0). The white dots are labelled((0,0)).

((−1,0))

((−1,1))((−1,1))

(0,0) (A,0) (2A,0)
(0,0)

((0,0))

((1,1))

(0,1)
((0,1)) ((−1,0))

((0,1))

Figure 15.1: The edge intersections forA = 1/3.
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Figure 15.2 shows the result of superimposing the left and right hand sides of
Figure 15.1.

((−1,0))((0,1))

((−1,0))

(A,1)(−A,1) (0,1)

((0,1))

(A,0) (2A,0)(0,0)

((−1,0))((0,1))

Figure 15.2: Superimposed figures

Lemma 15.10 Let c be an ordinary crossing cell. Letvc be the right vertex of c.
Thenπ ◦1+(vc) lies in one of the labelled segments of Figure 15.2.

Proof: Our proof starts out exactly as in the Separation Lemma, and we use the
notation there. From the Separation Lemma, we conclude thatv ∈ 6(0,1). Let
us suppose first that, as in the proof of the Separation Lemma,the choice of sign is
(+), so that

1+(v) ∈ 5+((0,1)) ∩ R+((ǫ1, ǫ2)). (15.21)

Then1+(v) must lie in one of the open segments on the left hand side of Figure
15.2. The black and gray dots correspond to the special crossing cells we have
already analyzed, and the white dot is labelled((0,0)).

Now suppose that the choice of sign is(−). Then

1−(v) ∈ 5−((0,1)) ∩ R−((ǫ1, ǫ2)). (15.22)

We get all the same conclusions for1− in place of1+, using the right hand side of
Figure 15.1 instead of the left hand side. Hence1−(v) lies in the vertical segment
in the right hand side of Figure 15.1. However, since

π ◦1−(v) = π ◦1+(v)− (A,0),

this means that1+(v) lies on the right hand vertical segment of Figure 15.2.2
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15.5 THE END OF THE PROOF

Proof of the Door Lemma: Let v = (m,n) be the right vertex of an ordinary
crossing cell. Letϒ(c) = (m, θ). Heren is the floor ofθ . Let

1+(v) = (x, y, z). (15.23)

There are two cases to consider. Supposeπ ◦ 1+(v) lies in one of the open
horizontal segments of Figure 15.2. Then

(x, y, z) ≡ (t, A− t,0) mod 3, t ∈ (0, A) ∪ (A,2A). (15.24)

By Equation 15.24, the third coordinate of1+(v) is an integer. By the definition of
1+, we haveAm= pm/q ∈ Z. Henceq dividesm. Hencev = (kq,n) for some
k ∈ Z. Hencev lies in the intersection ofL0 with a door line. Hencev is a door.

Supposeπ ◦ 1+(v) lies in a vertical segment in Figure 15.2. Looking at the
positions of the vertical line segments in Figure 15.2, we have

x = k A, k ∈ Z. (15.25)

From the definition of1+, we have

2(1−m+ n)−
m

A
=

x

A
∈ Z. (15.26)

Hencem/A ∈ Z. Hencem = kp. But then the first coordinate ofϒ(c) coincides
with the first coordinate of a door onL0, by statement 3 of Lemma 15.1. Since
ϒ(c) ∈ L0, we now see thatϒ(c) is a door. 2

Proof of the Surjection Lemma: We would like to see that each door actually
arises in our construction above. There are two cases.

Type 1: By statement 3 of Lemma 15.1, each type 1 door has the form(aq,b/p),
wherea ∈ Z and b/p is not a half-integer. Letn be the floor of(b/p), let
v = (aq,n), andet(x, y, z) = 1+(v). We will show thatv is the right vertex
of an ordinary crossing cell.

Since the first coordinate ofv has the formaq, we havex ∈ Z. Sincev ∈ 6(0,1),
we have1+(v) ∈ 5(0,2A). Hence Equation 15.24 holds. We rule out the case
that t = A becauseb/p is not a half-integer. Hence1+(v) lands in a horizontal
strip in Figure 15.2. Hence one of the edges ofŴ̂ emanating fromv is either(0,1)
or (−1,0). This edge crossesL0 becausev ∈ 6(0,1) ⊂ 6(−1,0). Hencev is the
right vertex of a crossing cell.

Type 2: By symmetry, it suffices to consider the type 2 doors onL0. By state-
ment 3 of Lemma 15.1, such a door has the form(ap,b/q). Let v = (ap,n), as in
the first case. With the same notation as above,

x = 2A(1− ap− n)− aq A= a′A (15.27)

for somea′ ∈ Z. Also, 1+(v) ∈ 5(0,2A). Hence1+(v) lands in one of the
vertical strips of Figure 15.2. The same argument as in the previous case finishes
the proof. 2
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15.6 THE PATTERN OF CROSSING CELLS

Our proof is finished (modulo the Intersection Lemma), but wewould like to say
more about the beautiful order of the crossing cells. We present these final details
without proof. They can be gleaned from what we have said above. First of all,
there are two crossing cells consisting of edges of slope±1. These crossing cells
correspond to the black and gray corner dots in Figure 15.2. These are the trivial
cases we ruled out first.

The remaining crossing cells correspond to the labelled open segments in Figure
15.2. There are exactlyp+ q crossing cells mod2. These cells are indexed by the
value ofθ − n. The possible numbers are

0,
1

p
, ...,

p− 1

p
,

1

q
, ...,

q − 1

q
,1.

Excluding 0 and 1, we have the ordinary crossing cells. We canenhance Figure 15.2
by locating the images of these crossing cells. Figure 15.3 shows the pattern for
p/q = 3/5. The general case is similar. The lines inside the dots showthe nature
of the crossing cell. The dashed grid lines in the figure are present to delineate the
structure.

One can think of the index values in the following way. Sweep across the plane
from right to left by moving a line of slope−5/3 parallel to itself. (The diagonal
line in Figure 15.3 is one such line.) The indices are orderedaccording to how the
moving line encounters the vertices. The lines we are using correspond to the lines
in 5 that are parallel to the vectorζ .

2/3

0

1

4/5

3/5

1/5

2/5

1/3

Figure 15.3: The pattern of crossing cells
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Proof of the Intersection Lemma

16.1 DISCUSSION OF THE PROOF

One way to prove the Intersection Lemma is just by inspection. One can play with
Billiard King and see that the result is true. Given the simple nature of the partitions
involved, a falsehood in the lemma would be easily detectable by a small amount
of experimentation.

Rather than just appeal to experimentation, we will explaina proof that involves
finding the intersection patterns of finitely many convex lattice polytopes inR4. The
proof we give is similar to that presented in previous chapters. Previously, e.g., in
§11.1, our method was straightforward. Here there is a technical complication that
we need to address. This chapter is really about dealing withthis complication.

Let X(. . . ; A) ⊂ R3 denote some subset ofR3 that depends on the parameterA.
For such an object, we define

X(. . .) =
⋃

A

(
X(. . . ; A)× {A}

)
. (16.1)

For instance, the setsR±(ǫ1, ǫ2) are exactly the convex polytopes from §6.7.
Let S⊂ R3 denote the infinite slab bounded by the planes{z = 0} and{z = 1}.

Let

6∗±(ǫ1, ǫ2; A) = 6±(ǫ1, ǫ2; A) ∩ S. (16.2)

We include the boundary pieces6(. . .) ∩ ∂S. Thus we are including the tops
and bottoms of the parallelogram but not its sides. Figure 15.2 provides a good
impression of what this parallelogram looks like.

The set6∗±(ǫ1, ǫ2) is contained in a hyperplane ofR3. Unfortunately, this set is
not a polyhedron. For instance, the vertices vary quadratically with the parameter.
Thus our method breaks down: We cannot control6∗±(ǫ1, ǫ2) just by its vertices in
R4.

The trick is to cover6(. . . ; A) by 2 quadrilateralsQ1(. . . ; A) and Q2(. . . ; A)
whose vertices vary linearly with the parameter. The linearvariation in itself is not
enough to guarantee that the corresponding unionsQ1(. . .) andQ2(. . .) are convex,
but it turns out that these unions are indeed convex integralpolyhedra. When we
useQ1(. . .) and Q2(. . .) in place of6(. . .), we create no new interesections – at
least not in the interiors. Thus], we prove the IntersectionLemma for these larger
sets by the same method we used in §11.1. When we are finished weinterpret the
results in terms of the original sets.



book April 3, 2009

144 CHAPTER 16

16.2 COVERING PARALLELOGRAMS

16.2.1 Two Methods

As a first step in making the quadrilateral covering, we describe an entirely planar
construction in which we cover a planar parallelogram by 2 rectangles. After we
set up the construction, we will relate it to the Intersection Lemma. The only nod
we give to the Intersection Lemma in this subsection is that we insist on working in
thexz-plane. This is the range of the projectionπ we used in the last chapter.

Let A ∈ (0,1). All the parallelograms we consider have the following properties.

• Their bottom side lies in the line{z= 0}.

• Their top side lies in the line{z= 1}.

• Their other sides have slope−A.

All the rectangles we consider always have their sides parallel to the coordinate
axes.

Figure 16.1 shows a very simple method for coveringP with 2 rectangles. The
gray dot in this figure has second coordinateA. It seems easier just to amalgamate
these rectangles into a single one, but we prefer to always cover the parallelograms
with 2 rectangles. This allows us to have more uniform notation.

Figure 16.1: Covering a parallelogram with a rectangle.

Figure 16.2 shows a different covering ofP with 2 rectangles.

Figure 16.2: Covering a parallelogram with 2 rectangles.

Our geometric construction is determined by the following information.

1. The gray dot lies on the left edge ofP. Thez (meaning second) coordinate
of this dot isA.

2. The line connecting the 2 white dots is parallel to the sides of P.

We will give 4 examples of these constructions in action. We continue working
with the parameterA. The reader will recognize the constants from Lemma 15.8
and its proof. LetP(r, s) denote the parallelogram, as above, such that the bottom
vertices are(r,0) and(s,0).
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16.2.2 Example 1

Consider the paralleogramP(0,2A). Using the first method, we coverP(0,2A)
with rectanglesQ1 andQ2. The vertices ofQ1 are

(0,0), (0, A), (2A,0), (2A, A). (16.3)

The vertices ofQ2 are

(0, A), (0,1), (2A, A), (2A,1). (16.4)

Compare item 1 in the proof of Lemma 15.8.

16.2.3 Example 2

Let λ = λ(−1,−1) = 1− A2. We coverP(2A− λ,2A) with 2 rectanglesQ1 and
Q2 using the method above. The coordinates ofQ1 are

(−1+ 2A,0), (−1+ 2A, A), (2A,0), (2A, A). (16.5)

The coordinates ofQ2 are

(−1+ A, A), (−1+ A,1), (2A, A), (2A,1). (16.6)

Compare item 2 in the proof of Lemma 15.8. Note that the coordinates of parallel-
ogramP vary quadratically withA, whereas the coordinates of the rectangles vary
linearly.

16.2.4 Example 3

Let λ = λ(−1,0) = 1+ 2A− A2. We coverP(2A− λ,2A) with 2 rectanglesQ1

andQ2 using the method above. The coordinates ofQ1 are

(−1,0), (−1, A), (2A,0), (2A, A). (16.7)

The coordinates ofQ2 are

(−1− A, A), (−1− A,1), (2A, A), (2A,1). (16.8)

Compare item 3 in the proof of Lemma 15.8.

16.2.5 Example 4

Let λ = λ(−1,1) = 1+ 4A− A2. We coverP(2A− λ,2A) with 2 rectanglesQ1

andQ2 using the method above. The coordinates ofQ1 are

(−1− 2A,0), (−1− 2A, A), (2A,0), (2A, A). (16.9)

The coordinates ofQ2 are

(−1− 3A, A), (−1− 3A,1), (2A, A), (2A,1). (16.10)

Compare item 4 in the proof of Lemma 15.8.
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16.3 PROOF OF STATEMENT 1

The projectionπ(x, y, z) = (x, z) is an isomorphism from the plane5 to the
xz-plane. The inverse map is given by

π−1(x, z) = (x, A− x, z). (16.11)

For any pair(ǫ1, ǫ2) considered in the previous section, we defineQ j ,+(ǫ1, ǫ2; A)
to be the inverse image of the relevant version ofQ j constructed above.

Example: The vertices ofQ2,+(−1,−1; A) are

(−1− 3A,4A+ 1, A), (−1− 3A,4A+ 1,1), (2A,−A, A), (2A,−A,1).

Once we make this construction, we have

6+(ǫ1, ǫ2; A) ⊂
2⋃

j=1

Q j ,+(ǫ1, ǫ2; A). (16.12)

To find the covering for6−(. . .) we simply add the vector(−A, A,0) to all the
coordinates.

We can easily work out the vertices of the corresponding 4-dimensional polytopes.
We just compute the vertices atA = 0 and atA = 1 and take the convex hull. Thus
the vertices ofQ2,+(−1,−1) are



−1
1
0
0






−1
1
1
0







0
0
0
0







0
0
1
0






−4
5
1
1







2
−1
1
1


 .

Working out the remaining 7 polytopes for the(+) case is similar. Once we
have these, we find the polytopes for the(−) case by adding(−1,1,0,0) to all the
vertices. These polytopes are stored in Billiard King.

We use the same method as in §11.1 to show that the 2 polytopes

Q j ,±(ǫ1, ǫ2), γ
(
R±(ǫ1, ǫ2)

)

have disjoint interiors for allγ ∈ 3 and all possible choices. This time we need to
use vectors in{−2,−1,0,1,1}4 to separate out the polytopes. This shows that the
2 regions

6∗±(ǫ1, ǫ2), γ
(
R±(ǫ1, ǫ2)

)

have disjoint interiors for all choices.
There is one last detail to check. Recall thatS ⊂ R3 is the slab between the

planes{z= 0} and{z= 1}. We still have the a priori possibility that the 2 sets

6(. . . ; A)∗ ∩ ∂S, R(. . . ; A)

are not disjoint for someA and some set of choices. In this case, a point in the
interior of the infinite strip6(. . . ; A) lies in the interior ofR(. . . ; A). But then
some point in the interior of6∗(. . . ; A) also lies in the interior ofR(. . . ; A). We
have already ruled this out.
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The proof we have given hides the pretty relationships between the various sets.
The reader can get a better feel for why the Intersection Lemma is true using the
hexagrid demo in Billiard King.

Here we show some representative images from this demo. We consider the pair
(−1,−1) in the (−) case. Figure 16.3 shows the parallelogram6∗−(−1,−1; A)
and the tilingR− ∩ 6. The slanting lines are part of the parallelogram and so are
the top and bottom of the figure. The top is the line{z = 1}, and the bottom is the
line {z= 0}. We use the usual planar projection to draw the figures. The rectangles
R−(−1,−1; A) are darkly shaded. The rest of the tiling is lightly shaded. Notice
the exact fit.

Figure 16.3:6∗−(−1,−1; A) andR−(A) for A = p/5. Herep = 1,2,3,4.

The picture is similar for other parameters and other choices of an(ǫ1, ǫ2) pair.
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16.4 PROOF OF STATEMENT 2

Recall that

5A = {x + y = A} ⊂ R3

for each parameter. Here we write5A to emphasize the dependence onA. The
hyperplane

5 =
⋃

A

(
5A × {A}

)
(16.13)

is perpendicular to(1,1,0,−1).
Say that a vector inR4 is positiveif it lies on the same side of5 as the vector

(1,1,1,0). Say that a convex integral polytope inR4 is semipositiveif all of its
vertices either lie on5 or else are positive.

Lemma 16.1 Let PA be a polyhedron in the orbit3R±(ǫ1, ǫ2; A). Let P be the
corresponding polytope. If

5±(ǫ1, ǫ2; A) ∩ PA 6= ∅, (16.14)

then P is semipositive.

Proof: Let XA = 5±(ǫ1, ǫ2; A). By statement 1 of the Intersection Lemma,XA is
disjoint from the interior ofPA. However,XA is not disjoint from∂PA. Moreover,
XA is an open set in5A. From these properties, we see thatPA cannot have vertices
on both sides of5A. Let xA ∈ PA ∩ XA. By definitionxA + (s, s, s) ∈ PA for
smalls. Let x = xA× {A}. Thenx ∈ ∂P andx+ (s, s, s,0) ∈ P. This is possible
only if P has some positive vertices. 2

To finish the proof, it is just a matter of listing the semipositive polytopes and
examining the vertices that lie on5. As in §11.1, it suffices to examine a large but
finite part of the orbit. Recall that3 is generated by the three elementsγ1, γ2, γ3.
Let310 ⊂ 3 be the set

310 = {a1γ1+ a2γ2 + a3γ3| |a1|, |a2|, |a3| ≤ 10}. (16.15)

An argument similar to that in Lemma 11.1 shows that any intersection of the kind in
Equation 16.14 forP ∈ 3R is equivalent mod3 to an intersection withP ∈ 310R.

Examining all the vertices of these finitely many polytopes,we find that the
intersection points of

5+(−1,1; A) ∩310R+(−1,1; A)

are all equivalent mod3 to (0, A,0) ∈ ∂5+(0,2A), and moreover that there are no
intersection points in the other cases. This establishes statement 2 of the Intersection
Lemma.
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16.5 PROOF OF STATEMENT 3

We prove statement 3 by the same method that we used for statement 2. Inspecting
the vertices, we find exactly the pattern shown in Figure 15.2. Rather than dwell on
this calculation, we show some figures from Billiard King. Define

5
(k)
A = 5A + 2−k(1,1,1). (16.16)

This is a slightly perturbed plane.
In Figure 16.4, we fix the parameterA = 1/3 and we plot the intersection of

5(k) with the tiling for k = 3,4,5,6. The lightly shaded rectangles correspond to
the label(0,1). The darkly shaded rectangles correspond to the label(−1,0). The
figure evidently converges to what we have on the left hand side of Figure 15.1. The
right hand side of Figure 15.1 is similar.

Figure 16.4: Perturbed slices.
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In Figure 16.5, we keepk = 5 and show the parametersA = p/5 for p =
1,2,3,4. The detail outside the parallelogram, though interesting, is irrelevant for
our purposes.

Figure 16.5: Perturbed slices.
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Part 4. Period-Copying Theorems

In this part of the book, we will establish some results on period-copying. Our
efforts culminate in the proof of Theorem 4.2, the final result needed for the proof
of the Erratic Orbits Theorem. In Parts 5 and 6 we will use someof the other results
we prove in this part.

• In Chapter 17, we prove some results about Diophantine approximation.
There are two main topics. The first is an analysis of the inferior and su-
perior sequences from Chapter 4, including a proof of the Superior Sequence
Lemma. The second is the analysis of a device we call theDiophantine
constant. We introduce the Diophantine constant in §17.4 and it playsan im-
portant role in our subsequent results. The reader interested only in Lemma
4.3 can skip everything in this chapter except §17.4.

• In Chapter 18, we prove the Diophantine Lemma. This result is the source
of most of our period-copying results. As a quick application, we use the
Diophantine Lemma to prove Lemma 4.3, the final ingredient inthe proof of
the Erratic Orbits Theorem for almost every parameter. The reader who is
satisfied with the Erratic Orbits Theorem for almost every parameter can stop
reading the book after this chapter.

• In Chapter 19, we state and prove the Decomposition Theorem. This theorem
is an enhancement of the Room Lemma in §3.3. Our proof of the Decom-
position Theorem is somewhat more tedious than we would like, but it turns
out that Theorem 4.2 requires only a part of the Decomposition Theorem that
is easier to prove. When the time comes, we will indicate whatis necessary
and what is not. We do need the full Decomposition Theorem forour work
in Parts 5 and 6, however.

• In Chapter 20, we prove Theorem 4.2 by combining the Diophantine Lemma
and the Decomposition Theorem.
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Chapter Seventeen

Diophantine Approximation

17.1 EXISTENCE OF THE INFERIOR SEQUENCE

We will describe a hyperbolic geometry construction of the inferior sequence defined
in §4.1. Our proof is similar to that for ordinary continued fractions. See [BKS].
Also, see [Be] for background on hyperbolic geometry, and [Da] for the classic
theory of continued fractions.

Our model for the hyperbolic plane is the upper half-planeH2 ⊂ C. The group
SL2(R) acts isometrically by linear fractional transformations.The geodesics are
vertical rays or semicircles centered onR. TheFarey graphis a tiling of H2 by
ideal triangles. We joinp1/q1 andp2/q2 by a geodesic iff|p1q2− p2q1| = 1. The
resulting graph divides the hyperbolicplane into an infinite symmetric union of ideal
geodesic triangles. The Farey graph is one of the most beautiful constructions in
mathematics. Figure 17.1 shows some of the edges of the Fareygraph. The vertical
lines in Figure 17.1 represent geodesics connecting 0 and 1 to∞.

Figure 17.1: The Farey graph.

We modify the Farey graph by erasing all the geodesics that connect even fractions
to each other. In Figure 17.1 these geodesics are shown in gray. The remaining edges
partitionH2 into an infinite union of ideal squares. The(2,∞,∞)-triangle group
mentioned in Theorem 1.5 is the full isometry group of the Farey graph that respects
the shadings in Figure 17.1.
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We say that abasic squareis one of these squares that has all vertices in the
interval (0,1). Each basic square has two opposing vertices that are labelled by
positive odd rationalsp1/q1 and p2/q2. These odd rationals satisfy

|p1q2 − p2q1| = 2. (17.1)

Ordering so thatq1 < q2, we call p1/q1 theheadof the square, andp2/q2 the tail
of the square. We draw an arrow in each odd square that points from the tail to the
head, as inp1/q1 ← p2/q2. We call the odd squareright-biasedif the rightmost
vertex is an odd rational, andleft-biasedif the leftmost vertex is an odd rational.
Figure 17.2 shows a prototypical right-biased ideal square.

1/3 1/2 1/10/1
Figure 17.2: A right-biased ideal square.

The general form of a right-biased square is

◦a1

b1
, •2a1+ a2

2b1+ b2
, ◦a1+ a2

b1+ b2
, •a2

b2
. (17.2)

The general form of a left-biased square is

•a1

b1
, ◦a1+ a2

b1+ b2
, •a1+ 2a2

b1+ 2b2
, ◦a2

b2
. (17.3)

The rightmost vertex in a right-biased square is the head. The leftmost vertex in a
left-biased square is the head.

For an irrational parameterA, we simply drop the vertical line down from∞
to A and record the sequence of basic squares we encounter. To form the inferior
sequence, we list the heads of the encountered squares and weed out repeaters.
Every time we encounter a new rational on our list, this rational and its predecessor
are the two odd vertices of an ideal square. The nesting properties of the squares
guarantee convergence.
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17.2 STRUCTURE OF THE INFERIOR SEQUENCE

Now suppose that{pn/qn} is the inferior sequence approximatingA. Referring to
Equation 4.1, we writeAn = pn/qn and(An)± = (pn)±/(qn)±. We have

(An)− < An < (An)+, (17.4)

and these numbers form 3 vertices of an ideal square.An is the tail of the square.

Lemma 17.1 The following are true for all indices m.

1. Let N> m. Then Am−1 < Am iff Am−1 < AN .

2. If Am−1 < Am, then(qm)− = qm−1+ (qm)+.

3. If Am−1 > Am, then(qm)+ = qm−1+ (qm)−.

4. Either Am < A < (Am)+ or (Am)− < A < Am.

Proof: Statement 1 follows from the nesting properties of the idealsquares encoun-
tered by the vertical geodesicγ as it converges toA.

For statement 2, note thatAm−1 < Am iff these two rationals participate in a
left-biased basic square, which happens iff(qm)+ < (qm)−. By definition,

qm−1 = |(qm)− − (qm)+|.
When(qm)+ < (qm)−, we can simply remove the absolute value symbol and solve
for (qm)−. statement 3 is similar.

For statement 4, we will consider the case whenAm < Am−1. The other case is
similar. At some point,γ encounters the basic square with vertices

(Am)− < Am < (Am)+ < Am−1.

If Am+1 < Am, thenγ exitsS between(Am)− andAm. So,

(Am)− < A < Am.

If An+1 > Am, thenγ exitsS to the right ofAm. If γ exitsS to the right of(Am)+,
thenγ next encounters a basic squareS′ with vertices

(Am)+ < O < E < Am−1,

whereO andE are odd and even rationals, respectively. But thenAm would not be
the term in the sequence afterAm−1. The term afterAm−1 would lie in the interval[
O, Am−1). This is a contradiction. 2

Let [x] denote the floor ofx. Let dn be as in Equation 4.5. That is,

dn =
[

qn+1

2qn

]
, n = 0,1,2,3...

Relatedly, define

δn =
[

qn+1

qn

]
, n = 0,1,2,3... (17.5)
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Now we come to our main technical result about inferior sequences. This result
is similar to results one sees for the successive terms of continued fraction approx-
imants. See [Da]. Before we give the result, we make several clarifying remarks
about it.

Remarks:
(i) In the result below, the notationAm−1 < Am > Am+1 means thatAm−1 < Am

andAm > Am+1, and similarly for the other lines.
(ii) There is a basic symmetry in the result below. If we swap all inequalities, then
the signs(+) and(−) all switch. This symmetry swaps cases 1 and 3 and likewise
swaps cases 2 and 4.
(iii) The same results hold forp in place ofq. We usedq just for notational conve-
nience.

Lemma 17.2 The following are true for any index m≥ 1.

1. If Am−1 < Am < Am+1, then

• δm is odd,

• (qm)+ < (qm)−,

• (qm+1)+ = dmqm + (qm)+,

• (qm+1)− = (dm + 1)qm+ (qm)+.

2. If Am−1 > Am < Am+1, then

• δm is even,

• (qm)− < (qm)+,

• (qm+1)+ = dmqm − (qm)−,

• (qm+1)− = dmqm + (qm)+.

3. If Am−1 > Am > Am+1, then

• δm is odd,

• (qm)− < (qm)+,

• (qm+1)+ = (dm + 1)qm+ (qm)−,

• (qm+1)− = dmqm + (qm)−.

4. If Am−1 < Am > Am+1, then

• δm is even,

• (qm)+ < (qm)−,

• (qm+1)+ = dmqm + (qm)−,

• (qm+1)− = dmqm − (qm)+.
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Proof: Cases 3 and 4 follow from cases 1 and 2 by symmetry. We will consider
case 1 in detail, and case 2 briefly at the end.

In case 1, the vertical geodesicγ to A passes through the basic squareS with
vertices

Am−1 < (Am)− < Am < (Am)+.

SinceAn < Am+1, the geodesicγ next crosses through the geodesicαm connecting
Am to (Am)+. Following this,γ encounters the basic squaresS′k for k = 0,1,2, ...
until it crosses a geodesic that does not haveAm as a left endpoint. By Equation
17.3 and induction, we get the following list of vertices forthe squareS′k.

pm

qm
<
(k+ 1)pm+ (pm)+

(k+ 1)qm+ (qm)+
<
(2k+ 1)pm+ 2(pm)+

(2k+ 1)qm+ 2(qm)+
<

kpm+ (pm)+

kqm+ (qm)+
. (17.6)

HereS′k is a left-biased square. But then there is somek such that

pm+1

qm+1
= (2k+ 1)pm+ 2(pm)+

(2k+ 1)qm+ 2(qm)+
,

(pm+1)+

(qm+1)+
= kpm+ (pm)+

kqm + (qm)+
. (17.7)

Since(qm)+ < (qm)−, we have

2(qm)+ < qm. (17.8)

But then we have
pm+1

qm+1
−

pm

qm
=

2

(2k+ 1)q2
m+ 2qm(qm)+

∈
(

2

(2k + 2)q2
m

,
2

(2k+ 1)qm

)
. (17.9)

Hence

δm = (2k + 1) ≡ 1 mod 2.

Herek = dm. This takes care of the second implication. Equation 17.7 isthe
formula for(qm+1)+. Lemma 17.1 now gives the formula for(qm+1)−.

In case 2, the vertical geodesicγ again encounters the basic squareS. This time
γ exits S through the geodesic joining(Am)− to Am. This fact follows from the
inequality

Am > Am−1 > (Am)−,

a result of Lemma 17.1. Following this,γ encounters the basic squaresS′′k , for
k = 0,1,2, ... until it crosses a geodesic that does not haveAm as a right endpoint.
The coordinates for the vertices ofS′′k are just like those in Equation 17.7, except
that all the terms have been reversed and each(·)+ is switched to(·)−. The rest of
the proof is similar. 2

Remark: An important corollary of Lemma 17.2 is that either of the following data
determines the inferior sequence uniquely.

• The sequence{δn}.

• The sequence{dn} and the sequence{σn}, whereσn is the sign ofAn+1− An.

The sequence{dn} in itself does not have enough information to determine the
inferior sequence uniquely.
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17.3 EXISTENCE OF THE SUPERIOR SEQUENCE

The following result completes the proof of the Superior Sequence Lemma.

Lemma 17.3 dm ≥ 1 infinitely often.

Proof: We can sort the indices of the sequence into 4 types, depending on which
case holds in Lemma 17.2. If this lemma is false, thenn eventually has odd type.
But it is impossible forn to have type 1 and forn + 1 to have type 3. Hencen
eventually has constant type, say type 1. (The type 3 case hasa similar treatment.)
Looking at the formula in case 1 of Lemma 17.2, we see that the sequence{(qn)+}
eventually is constant. But then

r = lim
n→∞

(qn)+pn

qn

exists. Since

(qn)+ pn ≡ −1 mod qn,

qn →∞, we must haver ∈ Z. But then limpn/qn ∈ Q, and we have a contradic-
tion. 2

Lemma 17.4 If dm ≥ 1, then
∣∣∣∣

pN

qN
−

pm

qm

∣∣∣∣ <
2

dmq2
m

∀N > m,

∣∣∣∣A−
pm

qm

∣∣∣∣ ≤
2

dmq2
m

.

Proof: The first conclusion implies the second. We will consider thecase when
Am < Am+1. By Lemma 17.1, we have

|AN − Am| ≤ |(Am+1)+ − Am| =
1

qm(qm+1)+
. (17.10)

If m is an index of type 1, then

(qm+1)+ = dmqm+ (qm)+ > dmqm. (17.11)

If m is an index of type 2, then Lemma 17.2 tells us that

(qm+1)+ = (qm+1)− − qm = dmqm+ (qm)+ − qm >

(
dm −

1

2

)
qm ≥

1

2
dmqm.

(17.12)
Combining Equations 17.10–17.12 we obtain the result. 2

Remark: The superior sequence has Diophantine approximation properties similar
to those of the sequence of continued fraction approximants. While these two
sequences are related, they are generally not the same. For one thing, the superior
sequence involves only odd rationals. We can, for example, certainly find irrationals
whose sequence of continued fraction approximants consists of only even rationals.
In this case, the two sequences are forced to be different.
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17.4 THE DIOPHANTINE CONSTANT

17.4.1 Basic Definition

We have two odd rationalsA1 = p1/q1 andA2 = p2/q2. We define the real number
a = a(A1, A2) by the formula

∣∣∣∣
p1

q1
− p2

q2

∣∣∣∣ =
2

aq2
1

. (17.13)

We call(A1, A2) admissibleif a(A1, A2) > 1.
Define

λ1 =
(q1)+

q1
∈ (0,1). (17.14)

If A1 < A2, we define

� = floor
(
(a/2)− λ1

)
+ 1+ λ1. (17.15)

If A1 > A2, we define

� = floor
(
(a/2)+ λ1

)
+ 1− λ1. (17.16)

Remark: The only fact relevant for Lemma 4.3 is thata > 4 implies that� > 2.
The reader who cares mainly about Lemma 4.3 can skip the rest of this chapter.

17.4.2 Meaning of the Constant

Let [x] denote the floor ofx. We say that an integerµ is good if

[µA1] = [µA2] . (17.17)

Our next result is meant to apply when(A1, A2) is admissible. Also, we consider
the case whereA1 < A2.

Lemma 17.5 (Goodness)If µ ∈ (−q1,�q1) ∩ Z, thenµ is a good integer.

We will prove this result in two steps.

Lemma 17.6 If µ ∈ (−q1,0), thenµ is good.

Proof: Sinceq1 is odd, we have unique integersj andM such that

µA1 = M + ( j/q1), | j | < q1/2 (17.18)

By hypotheses,a > 1. Hence

|A2 − A1| < 2/q2
1 (17.19)

in all cases. If this result is false, then there is some integer N such that

µA2 < N ≤ µA1. (17.20)

Referring to Equation 17.18, we have

| j |
q1

< µA1 − N ≤ µA1− µA2 <
2|µ|
q2

1

<
2

q1
. (17.21)
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If j = 0, thenq1 dividesµ, which is impossible. Hence| j | = 1. If j = −1, then
µA1 is 1/q1 less than an integer. HenceµA1− N ≥ (q1 − 1)/q1. This is false, so
we must havej = 1.

From the definition ofλ1, we have the following implication.

µ ∈ (−q1,0) and µp1 ≡ 1 mod q1 H⇒ µ = −λ1q1.
(17.22)

Equation 17.18 implies
µp1

q1
− 1

q1
∈ Z.

But thenµp1 ≡ 1 modq1. Equation 17.22 now tells us thatµ = −λ1q1. Hence
|µ| < q1/2. But now Equation 17.21 is twice as strong and gives| j | = 0. This is a
contradiction. 2

Lemma 17.7 If µ ∈ (0,�q1), thenµ is good.

Proof: We observe that� < a, by Equation 17.15. If this result is false, then there
is some integerN such thatµA1 < N ≤ µA2. If µA2 = N, thenq2 dividesµ. But
then

µ ≥ q2 ≥ aq1 > �q1.

This is a contradiction. Hence

µA1 < N < µA2. (17.23)

Referring to Equation 17.18, we have
| j |
q1
≤ N − µA1 < µ(A2− A1) =

2µ

aq2
1

<
2

q1
. (17.24)

Suppose thatj ∈ {0,1} in Equation 17.18. Then

1− 1

q1
≤ N − µA1 ≤ µA2− µA1 <

1

q1
,

a contradiction. Hencej = −1. Henceµ > aq1/2.
Since j = −1, Equation 17.18 now tells us thatµp1+ 1≡ 0 modq1. But then

µ = kq1+ (q1)+ (17.25)

for somek ∈ Z. On the other hand, from Equation 17.15 and the fact thatµ < �q1,
we have

µ < k′q1+ (q1)+, k′ =
(
floor

(
(a/2)− λ1

)
+ 1

)
. (17.26)

Comparing the last two equations, we havek ≤ k′ − 1. Hence

k ≤
(
floor

(
(a/2)− λ1

))
. (17.27)

Therefore

µ ≤
(
floor

(
(a/2)− λ1

))
q1 + λ1q1 ≤ aq1/2.

But we have already shown thatµ > aq1/2. This is a contradiction. 2
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17.5 A STRUCTURAL RESULT

Now we will explain how the Diophantine constant interacts with the inferior se-
quence we defined above. LetA = p/q be an odd rational. We say thatA′ is anear
predecessorof A if A′ precedesA in the inferior sequence but does not precede the
superior predecessor ofA. The inferior and superior predecessors ofA are the two
extreme examples of near predecessors ofA. Here is a nice characterization of the
Diophantine constant for these pairs of rationals.

Lemma 17.8 If A′ is a near predecessor of A, then the following are true.

1. If A′ < A, then�q′ = q′ + q+.

2. If A′ > A, then�q′ = q′ + q−.

Proof: There is a finite chain

A′ = A1← · · · ← Am = A. (17.28)

Referring to Equation 4.5, we have

d1 ≥ 0, d2 = · · · = dm−1 = 0.

By Lemma 17.1,A1 < A2 iff A′ < A. We will consider the case whenA1 < A2.
The other case is similar. Recall that

A− A′ = 2

a(q′)2
, � = floor

(
a

2
− λ

)
+ 1+ λ, λ =

q′+
q′
. (17.29)

Hence

�q′ = q′(N + 1)+ q′+, N = floor
(
(a/2)− λ

)
. (17.30)

There are two cases to consider, depending on whetherδ1 is odd or even. Here
δ1 is as in Equation 17.5. Ifδn is odd, then we have case 1 of Lemma 17.2. In this
case, we will show below thatd1 = N. By case 1 of Lemma 17.2, we have

(q2)+ = d1q1+ (q1)+ = Nq1 + (q1)+. (17.31)

If δn is even, then we show below thatd1 = N + 1. By case 2 of Lemma 17.2, we
have

(q2)+ = d1q1 − (q1)− = (d1− 1)q1+ q+ = Nq1 + (q1)+. (17.32)

We obtain the same result in both cases.
Repeated applications of Lemma 17.2, case 1, give us

q+ = (qm)+ = ... = (q2)+ =
Nq′ + q′+ =

(N + 1)q′ − q′ + q′+ =
�q′ − q′.

Rearranging this gives statement 1. 2

We have some unfinished business from the previous result. Asabove, we define

λ =
q′+
q′
, N = floor

(
a

2
− λ

)
(17.33)

Also, the sequences{δn} and{dn} are as in Lemma 17.2.
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Lemma 17.9 If A1 < A2 andδ1 is odd, then d1 = N.

Proof: Rearranging the basic definition ofa(A′, A) and usingA′ = A1 andA = Am

in Equation 17.28, we have

a

2
= 1

q2
1|A1− Am|

.

By Lemma 17.1 and monotonicity, we have

1

q2
1|A1− (A2)+|

<
a

2
<

1

q2
1|A1− A2|

. (17.34)

After some basic algebra, we have

d1+ λ1 =∗
(q2)+

q1
<

a

2
<

q2

2q1
. (17.35)

The starred inequality is case 1 of Lemma 17.2. The lower bound gives us

d1 < (a/2)− λ1 (17.36)

Hereλ1 is the same asλ in Equation 17.29. Sinced1 ∈ Z, we obtaind1 ≤ N. On
the other hand, the upper bound gives us

N = floor

(
a

2
− λ1

)
≤ floor

(
q2

2q1
− λ1

)
≤ d1. (17.37)

In short,N ≤ d1. Combining the two halves givesN = d1. 2

Lemma 17.10 If A1 < A2 andδ1 is even, then d1 = N + 1.

Proof: The proof is very similar to that for the other case. Here we mention the
2 changes. The first change is that(d1 − 1) + λ1 occurs on the left hand side of
Equation 17.35, by case 2 of Lemma 17.2. This gives us

d1 ≤ N + 1.

The second change occurs on the right hand side of Equation 17.37. By case 2 of
Lemma 17.2, we know that floor(q2/q1) is even. Henceq2/(2q1) has a fractional
part less than 1/2. But, also by case 2 of Lemma 17.2,λ1 has a fractional part
greater than 1/2. Hence

floor

(
q1

2q1
− λ1

)
= floor

(
q1

2q1

)
− 1 ≤ d1 − 1.

This gives us the boundN ≤ d1−1, orN+1≤ d1. Putting the two halves together,
we haved1 = N + 1. 2
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Chapter Eighteen

The Diophantine Lemma

18.1 THREE LINEAR FUNCTIONALS

Let p/q be an odd rational.
Consider the following linear functionals.

F(m,n) =
(

p

q
,1

)
· (m,n). (18.1)

G(m,n) =
(

q− p

p+ q
,
−2q

p+ q

)
· (m,n). (18.2)

H (m,n) =
(
−p2+ 4pq+q2

(p+ q)2
,

2q(q− p)

(p+ q)2

)
· (m,n). (18.3)

We haveF = (1/2)M, whereM is the fundamental map from Equation 2.10.
We can understandG andH by evaluating them on a basis.

H (V) = G(V) = q; H (W) = −G(W) = q2

p+ q
. (18.4)

HereV = (q,−p)andW are the vectors from Equation 3.2. We can also understand
G by evaluating on a simpler basis.

G(q,−p) = q; G(−1,−1) = 1. (18.5)

We can also (further) relateG and H to the hexagrid in Chapter 3. A direct
calculation establishes the following result.

Lemma 18.1 The fibers of G are parallel to the top left edge of the arithmetic
kite. The fibers of H are parallel to the top right edge of the arithmetic kite. Also,
‖∇G‖ ≤ 3 and‖∇H‖ ≤ 3.

Here∇ is the gradient.
Given any intervalI , define

1(I ) = {(m,n)| G(m,n), H (m,n) ∈ I } ∩ {(m,n)| F(m,n) ≥ 0}. (18.6)

This set is a triangle whose bottom edge is the baseline ofŴ(p/q).
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18.2 THE MAIN RESULT

Lemma 18.2 (Diophantine) Let (A1, A2) be an admissible pair of odd rationals.

1. If A1 < A2, let I = [−q1+ 2,�q1− 2].

2. If A1 > A2, let I = [−�q1+ 2,q1− 2].

ThenŴ̂1 andŴ̂2 agree on11(I ) ∪12(I ).

Figure 18.1 illustrates our result forA1 = 7/25 andA2 = 11/39. We have plotted
the arithmetic graphs for both parameters and then superimposed them. The “lines”
that stick out in the figure are the places where the graphs disagree. These “lines”
are essentially parallel to the lines of the hexagrid for either graph. (For the two
graphs, the respective hexagrid lines are nearly parallel to each other on account of
the nearness of the two rationals involved.) The shaded region is11(−q1,�q1), a
set very slightly larger than11(I ). The sets11(I ) and12(I ) are almost identical.

Figure 18.1: The Diophantine Lemma for 7/25 and 11/39.
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18.3 A QUICK APPLICATION

Here we use the Diophantine Lemma to prove Lemma 4.3. This completes our
proof of the Erratic Orbits Theorem for almost every parameter, as we indicated in
Part 1. The reader who is satisfied with this result can stop reading the book at the
end of this chapter.

We will prove Lemma 4.3 whenA1 < A2. The other case is similar. By hypoth-
esis, we have

a(A1, A2) > 4. (18.7)

From Equation 17.15, we get

� > 2. (18.8)

Let R1 = R(A1) be the parallelogram from the Room Lemma. Let

u = W1, w = V1 +W1 (18.9)

denote the top left and right vertices ofR1. We compute

G1(u) = −
q2

1

p1+ q1
> −q1+ 2, H1(w) =

q2
1

p1+ q1
+ q1 < �q1− 2.

(18.10)
The inequalities hold oncep1 is sufficiently large. Given the description of the fibers
of G, we have

G(u) ≤ G(v) ≤ H (v) ≤ H (w), ∀v ∈ R1. (18.11)

The middle inequality uses the fact thatF(v) ≥ 0. In short, we have made the
extremal calculations. This calculation shows thatv ∈ 11(I ) for all v ∈ R1. The
Diophantine Lemma now shows thatŴ1 andŴ2 agree inR1.

Whenv lies in the bottom edge ofR1, we have

G1(v), H1(v) ∈ [0,q1] . (18.12)

Given the gradient bounds‖∇G1‖ ≤ 3 and‖∇H1‖ ≤ 3, we see that

G1(v), H1(v) ∈ [−q1+ 2,�q1+ 2] , (18.13)

provided thatv is within q1/4 of the bottom edge ofR1. HenceŴ1 andŴ2 agree in
theq1/4 neighborhood of the bottom edge ofR1.

By the Room Lemma,Ŵ1
1 ⊂ R1. HenceŴ1

1 ⊂ Ŵ2. The calculation involving the
bottom edge ofR1 shows thatŴ1+ǫ

1 ⊂ Ŵ2 for ǫ = 1/4. Since the right endpoint of
Ŵ1

2 is far to the right of any point onŴ1+ǫ
1 , we haveŴ1+ǫ

1 ⊂ Ŵ1
2, as desired.

Remark: We proved Lemma 4.3 forǫ = 1/4 rather thanǫ = 1/8, which is
what we originally claimed. We do not care about the value ofǫ as long as it is
positive.
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18.4 PROOF OF THE DIOPHANTINE LEMMA

We will establish the case whenA1 < A2. The other case has a nearly identical
proof. Recall that an integerµ is good if

[µA1] = [µA2] (18.14)

We callµ 1-good if µ + ǫ is good for allǫ ∈ {−1,0,1}. We can subject a
lattice point(m,n) to the reduction algorithm in §6.6. Forθ ∈ {1,2}, we perform
the algorithm relative to the parameterAθ . This produces integersXθ , Yθ , andZθ .
Below we prove the following result.

Lemma 18.3 (Agreement)Suppose, for at least one choice ofθ ∈ {1,2}, that the
following numbers are all1-good.

• m

• m− Xθ

• m− Yθ

• m+ Yθ − Xθ .

ThenŴ̂1 andŴ̂2 agree at(m,n).

Next, we prove the following result.

Lemma 18.4 (Good Integer) If (m,n) ∈ 11(I ) ∪ 12(I ), then the integers in the
Agreement Lemma all lie in(−q1+ 1,�q1− 1) for at least1 choice ofθ ∈ {1,2}.

By the Goodness Lemma in §17.4, all the numbers in the Agreement Lemma are
1-good. The Diophantine Lemma now follows immediately.

Remarks:
(i) As one can see in Figure 18.1, the Diophantine Lemma also works for points
below the baseline. One can give a proof for points below the baseline that is nearly
identical to the proof we give for points above the baseline.We have stated only the
“above” case because the restriction makes our argument a bit easier and this is the
only case we need for applications. In light of the symmetry results we established
in §12.3 and §12.4, the fact that the result holds symmetrically above and below the
baseline should not be surprising.
(ii) As one can see from Figure 18.1, the Diophantine Lemma isquite sharp. We
think that the sharp version runs as follows. The two arithmetic graphs agree at any
point in11(−q1,�q1) that is not adjacent to a point that lies outside11(−q1,�q1).
The slight fudging of the boundaries is an artifact of our proof. Our proof of the
Decomposition Theorem in Chapter 19 would go easier if we hadthe sharp version
of the Diophantine Lemma at our disposal, but the result we prove here is the best
we can do.
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18.5 PROOF OF THE AGREEMENT LEMMA

Lemma 18.5 Letµ, ν, N j ∈ Z and

N j =
[
µA j + ν
1+ A j

]
.

Suppose there is someθ ∈ {1,2} such that bothµ− Nθ andµ− Nθ + 1 are good.
Then N1 = N2.

Proof: Here [ ] is the floor function, as above. For the sake of contradiction, assume
without loss of generality. thatN1 < N2. Then

µA1+ ν < N2(A1+ 1), (µ− N2)A1 < N2 − ν

N2(A2+ 1) ≤ µA2+ ν, N2 − ν ≤ (µ− N2)A2.

The first equation implies the second in each case. The seconditems imply that
µ− N2 is not good. On the other hand, we have

µA1 + ν < (N1 + 1)(A1+ 1), A1(m− N1 + 1) < N1 + 1− n.

(N1 + 1)(1+ A2) ≤ µA2+ ν, A2(m− N2 + 1) ≥ N1 − 1+ n.

The first equation implies the second in each case. The seconditems imply that
µ− N1 + 1 is not good. Now we have a contradiction. 2

Corollary 18.6 Referring to the Agreement Lemma,(X1,Y1, Z1) = (X2,Y2, Z2).

Proof: We apply the reduction algorithm from §6.6. We focus on the(−) case,
indicating the small differences for the(+) case as we go along.

1. Letz j = A j m+ n.

2. Let Z j = floor(z j ). Sincem is good, we haveZ1 = Z2. Call this common
integerZ.

3. y j = z j + Z j = z j + Z. Hencey j = m Aj + n′ for somen′ ∈ Z. [We have
y j = z j + Z + 1 in the(+) case.]

4. Recall thatYj = floor(y j /(1+ A)). To see thatY1 = Y2 we apply Lemma
18.5 to (µ, ν, N j ) = (m,n′,Yj ). Here we use the fact thatm − Yθ and
m − Yθ + 1 are good. We setY = Y1 = Y2. [We apply Lemma 18.5 to
(µ, ν, N j ) = (m,n′ + 1,Yj ) in the(+) case.]

5. Letx j = y j − Y(1− A j )− 1. Hencex j = (m+ Y)A j + n′′.

6. Recall thatX j = floor(x j /(1+ A)). To see thatX1 = X2, we apply Lemma
18.5 to(µ, ν, N j ) = (m+Y,n′′, X j ). Here we use the fact thatm+Y− Xθ

andm+ Y − Xθ + 1 are good integers. 2
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In the next result, all quantities exceptA1 andA2 are integers.

Lemma 18.7 If µ− d N− ǫ1 is good, then the statement

(µA j + ν)− N(d Aj + 1) < ǫ1A j + ǫ2

is true or false independent of j= 1,2.

Proof: Assume without loss of generality. that the statement is true for j = 1 and
false for j = 2. Then

(µ− d N− ǫ1)A1 < ǫ2 + N − ν ≤ (µ− d N− ǫ1)A2,

a contradiction. 2

Let M+ andM− be as in §6.6. By the Master Picture Theorem, it suffices to show
that the two imagesM+(m,n) andM−(m,n) land in the same polyhedra for both
A1 and A2. We have already seen that the basic integers(X,Y, Z) are the same
relative to both parameters. Here we recall the planes from §6.2.

• Z, the union{z= 0} ∪ {z= A} ∪ {z= 1− A} ∪ {z= 1}.

• Y, the union{y = 0} ∪ {y = A} ∪ {y = 1} ∪ {y = 1+ A}.

• X , the union{x = 0} ∪ {x = A} ∪ {x = 1} ∪ {x = 1+ A}.

• T , the union{x + y− z= A+ j } for j = −2,1,0,2,1.

LettingS stand for one of these partitions, we say thatS is good if, for both sign
choices and both parameters, the pointsM±(m,n) land in the same component of
R± − S. Here we setR± = R3/3, the domain of the mapsM±. By the Master
Picture Theorem,Ŵ1 andŴ2 agree at(m,n), provided all the partitions are good.
The proof works the same for the(+) and the(−) cases.

• ForZ, we apply Lemma 18.7 to(µ, ν,d, N) = (m,n,0, Z) to show that the
statementz j − Z < ǫ1A j + ǫ2 is truly independent ofj for ǫ1 ∈ {−1,0,1}
andǫ2 ∈ {0,1}. The relevant good integers arem− 1 andm andm+ 1.

• ForY, we apply Lemma 18.7 to(µ, ν,d, N) = (m,n′,1,Y) to show that the
statementz j − Z < ǫ1A j + ǫ2 is truly independent ofj for ǫ1 ∈ {0,1} and
ǫ2 ∈ {0,1}. The relevant good integers arem− Y andm− Y − 1.

• For X , we apply Lemma 18.7 to(µ, ν,d, N) = (m + Y,n′′,1, X). The
relevant good integers arem+ Y − X andm+ Y − X − 1.

• ForT , we define

σ j = (x j − X(1+ A j ))+ (y j − Y(1+ A j ))− (z j − Z).

We haveσ j = (m− X)A j + n′′′ for somen′′′ ∈ Z. Let h ∈ Z be arbitrary.
To see that the statementσ j < A j + h is truly independent ofj , we apply
Lemma 18.7 to(µ, ν,d, N) = (m− X,n′′′,1,0). The relevant good integer
is m− X − 1.

Remark: Our proof does not use the fact thatm− X + 1 is a good integer. This
technical detail is relevant for Lemma 18.10.
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18.6 PROOF OF THE GOOD INTEGER LEMMA

We will assume that(m,n) ∈ 1θ (I ), for one of the two choicesθ ∈ {1,2}. HereI
is as in the Diophantine Lemma. Our proof works the same forθ = 1 andθ = 2.
We setp = pθ andq = qθ , etc.

We will show that all the integers that arise in our proof of Lemma 18.3 lie in
(−q1,�q1). These integers have the formN + ǫ for ǫ ∈ {−1,0,1}. We will show,
for all relevant integers (except one), thatN ∈ J:= (−q1 + 1,�q1 − 1). For the
exceptional case, see the remark following Lemma 18.10.

Lemma 18.8 m ∈ J .

Proof: We havez= Am+ n ≥ 0. We compute

−q1+ 2 ≤ G(m,n) = m− 2z

1+ A
≤ m. (18.15)

�q1− 2 ≥ H (m,n) = m+ 2z(1− A)

(1+ A)2
≥ m. (18.16)

These inequalities establish thatm ∈ J. 2

Lemma 18.9 m− Y ∈ J .

Proof: We haveY ≥ 0. Hencem− Y ≤ m ≤ �q1 − 2. We just need the lower
bound and worry about the lower bound onm−Y. We first deal with the algorithm
in §6.6 for the(−) case. LetG = G(m,n). We havey = z+ Z ≤ 2z. By the
definition ofY, we have

Y ≤ y

1+ A
≤ 2z

1+ A
, Y <

2z

1+ A
. (18.17)

At least one of the first two inequalities is sharp. This givesus the second inequality.
Now we know that

m− Y > m− 2z

1+ A
= G ≥ −q1+ 2. (18.18)

The last equality comes from Equation 18.15. In the(+) case, we add 1 toY, giving
m− Y > −q1+ 1. 2

Lemma 18.10 m− X ∈ J ∪ {�q1− 1}.

Proof: The condition thatF(m,n) ≥ 0 implies thaty ≥ Y ≥ 0. Hence

x = y− Y(1− A)− 1 ∈ [−1, y− 1] . (18.19)

HenceX ∈ [−1,Y − 1]. Hence

m− X ∈ [m− Y + 1,m+ 1] ⊂ J ∪ {�q1− 1},
by the two previous results. 2

Remark: As we remarked at the end of the proof of Lemma 18.3, the integer
m− X+ 1 does not arise in our proof of Lemma 18.3. The relevant integersm− X
andm− X − 1 are good, by the result above.
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Lemma 18.11 m+ Y − X ∈ J .

Proof: Our proof works the same in the(+) and(−) cases. Lemma 18.10 gives us
Y − X ≥ 0. Hence

m+ Y − X ≥ m> −q1+ 1.

This takes care of the lower bound. Now we treat the upper bound. We have

Y = floor

(
y

1+ A

)
≤ y

1+ A
, 1+ X = floor

(
1+ x

1+ A

)
≥ x

1+ A
.

Hence

Y − X − 1 ≤
y− x

1+ A
=1

Y
1− A

1+ A
+

1

1+ A
<∗

2z
1− A

(1+ A)2
+ 1

1+ A
=2

H −m+ 1

1+ A
<

H −m+ 1.

The first equality comes from Equation 18.19. The second equality comes from
Equation 18.16. The starred inequality comes from the upperbound in Equation
18.17. Addingm to both sides, we have

m+ Y − X < H + 1 ≤ �q1− 1.

This completes the proof. 2
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The Decomposition Theorem

19.1 THE MAIN RESULT

The Room Lemma confines one period ofŴ(p/q) to a certain parallelogramR(p/q)
when p/q is odd. In this section we explain a sharper result, along thesame lines,
that confines one period ofŴ(p/q) to a union of two parallelograms. The reader
might want to glance at Figure 19.1 before reading the definitions that follow.

Given an odd rationalA = p/q, we construct the even rationalsA± = p±/q±.
We letA′ be the inferior predecessor ofA, and we letA∗ be the superior predecessor,
as in §4.1. For each rational, we use Equation 3.2 to construct the corresponding
V andW vectors. For instance,V+ = (q+,−p−) andV∗ = (q∗,−p∗). Now we
define the following lines.

• L−0 is the line parallel toV and containingW.

• L−1 is the line parallel toV and containingW∗.

• L− is the line parallel toV through(0,0).

• L+0 is the line parallel toW through(0,0).

• If q+ > q−, thenL+1 is the line parallel toW through−V−.

• If q+ < q−, thenL+1 is the line parallel toW through+V+.

• If q+ > q−, thenL+2 is the line parallel toW through+V+.

• If q+ < q−, thenL+2 is the line parallel toW through−V−.

The lines with the(−) superscript have negative slope, and the lines with the(+)
superscript have positive slope. All the(−) lines are parallel to each other, and all
the(+) lines are parallel to each other. Now we define the following parallelograms:

• R1 is the parallelogram bounded byL− andL−1 andL+0 andL+1 .

• R2 is the parallelogram bounded byL− andL−0 andL+0 andL+2 .

The parallelogramR2 is the larger of the two parallelograms. It is both wider
and taller. Note that translation byV carries the leftmost edge ofR1 ∪ R2 to the
rightmost edge.

Here is the main result of this chapter.
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Theorem 19.1 (Decomposition)R1 ∪ R2 contains a period ofŴ.

Figure 19.1: Ŵ(29/69) andR1(29/69) andR2(29/69).

Figure 19.1 shows the exampleA = 29/69. In this case,

A− = 21/50, A+ = 8/19, A′ = A∗ = 13/31.

Sinceq+ < q−, the smallerR1 lies to the right of the origin. The ratio between the
heights of the two parallelograms isq∗/q = 31/69. The ratio between the widths
is q+/q− = 19/50.

We would like to point out two features of this figure.

• The containment is very efficient. Notice that we cannot lower the tops of the
parallelograms at all and still contain the polygonal arc.

• The arcsŴ ∩ R1 andŴ ∩ R2 have approximate bilateral symmetry. This is
another indication that the decomposition is somehow canonical. The results
in §12.4 explain this near-bilateral symmetry.

The interested reader can see the same phenomena for any other smallish odd rational
using Billiard King.
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19.2 A COMPARISON

The Room Lemma has two purposes. One purpose is to show that the graphŴ(p/q)
rises upO(q) units away from the baseline. The second purpose is to confinethe
graphŴ(p/q) to a small region in the plane. As we saw in the proof of Lemma 4.3,
such a confinement result is necessary if we want to use the Diophantine Lemma.
The Diophantine Lemma shows that a pair of arithmetic graphsagree in a certain
region, and we must know that the portions of the graphs of interest to us actually
lie in these regions.

Figure 19.2: Two results compared.

It turns out that the Room Lemma is not a sufficiently strong result to give us
the period copying we need in the general case. Figure 19.2 illustrates what we
are talking about. Both parts show the region1 from the Diophantine Lemma
corresponding to the pair of rationals 11/31← 23/65. The top also shows the
region from the Decomposition Theorem. This region lies entirely inside1. Thus,
from the top part, we conclude thatŴ(23/65) copies the same period ofŴ(11/31).
The bottom part shows the roomR(11/31). From this figure we cannot conclude
thatŴ(23/65) copies a full period ofŴ(11/31). At the same time, the translate
R(11/31) − V(11/31) that would lie just to the left ofR(11/31) also sticks out
of 1. Thus, from the bottom part, we cannot conclude thatŴ(23/65) copiesany
period ofŴ(11/31).
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19.3 A CROSSING LEMMA

Now we begin the proof of the Decomposition Theorem. For easeof exposition, we
treat the case whenq− < q+. The other case has essentially the same proof. Recall
thatv ∈ Z2 is a low vertex if the baseline separatesv from v − (0,1).

Lemma 19.2 (Crossing)Ŵ crosses each of L+1 and L+2 only once and at a low
vertex.

Proof: Figure 19.3 illustrates our proof. LetL denote the line of slope−A through
the origin – i.e., the baseline.6+ (respectively,6−) is the infinite strip bounded by
L and the first ceiling line above (respectively, below)L. By Theorem 1.10, there
is one infinite component of̂Ŵ in 6±. We call this componentŴ±. HereŴ+ = Ŵ is
the component of interest to us.

L0
+

L1
+

Γ

Γ+
y+

−

+

Σ

L

y

(0,0)

Σ

V
x

Figure 19.3: Applying rotational symmetry.

The pointx = (1/2)V+ is the fixed point ofι, the rotation from Equation 12.13.
We have

ι(L+0 ) = L+1 , ι(Ŵ−) = Ŵ+, ι(L) ↓ L . (19.1)

The last piece of notation means thatι(L) lies (very slightly) beneathL.
By the Hexagrid Theorem,(0,0) is the door corresponding to the point where

Ŵ+ crossesL+0 and also to the pointy− whereŴ− crossesL+0 . This point is
the intersection ofL+0 with the edge connecting(0,−1) to (−1,0). The image
y+ = ι(y−) ∈ ι(L+0 ) = L+ is the only point whereι(Ŵ−) = Ŵ+ crossesL+. This
point is less than 1 unit fromL becauseι(L) lies beneathL. HenceŴ = Ŵ+ crosses
L+ only once, within 1 unit ofL. SinceL+1 = L+2 ± V andŴ is invariant under
translation byV , it suffices to prove the result for one of the lines, as we havefin-
ished. 2
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19.4 MOST OF THE PARAMETERS

Let A = p/q be an odd rational and letA′ = p′/q′ be the superior predecessor. For
Theorem 4.2, all we need is the following result.

Corollary 19.3 The Decomposition Theorem holds ifmin(p′,q′) is sufficiently
large.

In this section we will prove the following explicit versionof Corollary 19.3.

Lemma 19.4 The Decomposition Theorem holds as long as p′ ≥ 3 and q′ ≥ 7.

We will prove Lemma 19.4 through a series of smaller results.By the Crossing
Lemma, we can divide a period ofŴ into the union of two connected arcs. One of
the these lies in what we callR0 and the other lies inR2. Each arc connects points
near the bottoms of the boxes and otherwise does not cross theboundaries. Figure
19.4 is a schematic figure. HereR0 is the union of the two shaded regions. Our
main goal is to show thatŴ ∩ R0 ⊂ R1.

0

1 L

L 2 L 0 L1
L 0

L 1

+ + +

R

R

2
?

Figure 19.4: Dividing Ŵ1 into two arcs.

Let A′ = p′/q′ denote the superior predecessor ofA. Let� = �(A′, A). We
consider the case whenA′ < A.

Lemma 19.5 The second coordinate of any point in R1 lies in (0,�q′1− 1).

Proof: By convexity, it suffices to consider the vertices ofR1. The bottom vertices
of R1 have first coordinates 0 andq+, whereas�q′ = q+ + q′. This takes care
of the bottom vertices. Letu = (u1,u2) be the top left vertex ofR1. SinceR1

is a parallelogram, we can finish the proof by showing thatu1 ∈ (0,q′ − 1). Let
y = (p′ + q′)/2 ≤ q′ − 1. Note thatu lies on a line of slope in(1,∞) through
the origin. Since the top edge ofR1 has negative slope and contains(0, y), we have
u2 < y. Henceu1 < y as well. 2
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Lemma 19.6 Let A′ denote the superior predecessor of A. Suppose that A′ 6= 1/1.
ThenŴ′ ∩ R0 ⊂ R1.

Proof: Let γ = Ŵ′ ∩ R0. Sinceγ starts out inR1 (at the origin), we just need to see
thatγ never crosses the top edge ofR1. The top edge ofR1 is contained in the line
λ = L−1 of slope−A though the pointX = (0, (p′+q′)/2). By the Room Lemma,
γ does not cross the (nearly identical) lineλ′ = (L−0 )′ of slope−A′ throughX.

If γ crosses the top edge ofR1, then there is a lattice point(m,n) betweenλ and
λ′ and within 1 unit ofR1. But then

floor(Am) 6= floor(A′m), m ∈ (−1,q′ + q+) = (−q′,�q′). (19.2)

The second equation comes from our previous result. Our lastequations contradict
Lemma 17.5. 2

Corollary 19.7 Suppose thatŴ andŴ′ agree in R1. Then the Decomposition The-
orem holds for A.

Proof: Let us traceŴ ∩ R0 from left to right, starting at(0,0). By hypothesis, this
arc does not cross the top ofR1 until it leavesR0. OnceŴ ∩ R0 leavesR0 from the
right, it never reenters. This is a consequence of Lemma 19.2. 2

By Corollary 19.7, it suffices to prove thatŴ′ andŴ agree inR1.

Lemma 19.8 Ŵ′ ∩ R1 andŴ ∩ R1 have the same outermost edges.

Proof: The leftmost edge of both arcs is the edge connecting(0,0) to (1,1). Look-
ing at the proof of Lemma 19.2, we see that the rightmost edgeeof Ŵ∩R0 connects
V+ + (0,1) to V+ + (1,0). HereV+ = (q+,−p+). Applying Lemma 19.2 toŴ′,
we see that some edgee′ of Ŵ′ connectsV ′+ + (0,1) to V ′+ + (1,0). But repeated
applications of case 1 or case 2 of Lemma 17.2 tell us thatV+ = V ′++kV′ for some
k ∈ Z. SinceŴ′ is invariant under translation byV ′, we see thate is also an edge
of Ŵ′. 2

Mismatch Principle: Lemma 19.8 has the following corollary. IfŴ′ andŴ fail to
agree inR1, then there are 2 adjacent vertices ofŴ′ ∩ R1 where the two arithmetic
graphŝŴ andŴ̂′ do not agree. One can see this by tracing the 2 curves from left
to right, starting at the origin. Once we get the first mismatch onŴ′ the arcŴ has
veered off, and the next vertex onŴ′ is also a mismatch.

In our analysis below, we will treat the case whenA′ < A. The other case is
similar. The bottom right vertex ofR1 lies on a line of slope in(1,∞) that contains
the pointV+. The pointV+ has the same first coordinate as the very nearby point

Ṽ+ =
q+
q

V. (19.3)
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Indeed, the 2 points differ by exactly 1/q. Let R̃1 denote the slightly smaller
parallelogram whose vertices are

(0,0), u, Ṽ+, w̃ = u+ Ṽ+. (19.4)

If the Decomposition Theorem fails forA, then at least one of the adjacent vertices
of mismatch will lie in R̃1. (There are not 2 adjacent vertices between the nearly
identical right edges ofR1 andR̃1.)

As in the previous chapter, it suffices to make the extremal calculations

G(u) ≥ −q′ + 2, H (w̃) ≤ �q′ − 2= q′ + q+ − 2. (19.5)

The Diophantine Lemma then finishes the proof.
We first need to locateu. There is somer such thatv1 = rW. Letting M be the

map from Equation 2.10, relative to the parameterA, we have

M(v1) = M(rW) = p′ + q′.

Solving forr gives

v1 =
(

p′ + q′

p+ q

)
W. (19.6)

We compute

G(u)= p′ + q′

p+ q
G(W)

=− p′ + q′

p+ q
× q2

p+ q

= −(1+ A′)q′

(1+ A)2

>
−q′

1+ A′
. (19.7)

H (w̃)=H (u)+ (q+/q)H (V)

= (1+ A′)q′

(1+ A)2
+ q+

<
q′

1+ A′
+ q+. (19.8)

The last inequality in each case uses the fact that 0< A′ < A. Notice the great
similarity between these two calculations. One can ultimately trace this symmetry
back to the affine symmetry of the arithmetic kiteK(A) defined in Chapter 3.

The conditions in Equation 19.5 are simultaneously met, provided

−q′

1+ A′
≥ −q′ + 2,

(
⇐⇒

1

p′
+

1

q′
≤

1

2

)
. (19.9)

The equation on the right is equivalent to the one on the left.We easily see that it
holds as long asp′ ≥ 3 andq′ ≥ 7.

In the next two sections we will make a more detailed study of the few exceptions
to Lemma 19.3. The reader mainly interested in the Erratic Orbits Theorem can
stop reading here.
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19.5 THE EXCEPTIONAL CASES

19.5.1 Case 1

We use the notation from the previous section. We assume firstthat A′ 6= 1/1 is
one of the rationals not covered by Theorem 19.3. Our argument uses the linear
functionalsG′ andH ′ associated toA′ in place of the linear functionalsG andH
used above. Before we begin our argument, we warn the reader thatG′ is not the
derivative ofG. We will denote the partial derivatives ofG′ by ∂xG′ and∂yG′.

Lemma 19.9 G′(v) ≥ −q′ + 2 for all v ∈ R1.

Proof: We have to worry only about points near the top left corner ofR1. Such
points lie on the first period ofŴ′ to the right of the origin. Call this periodβ ′. When
A′ ∈ {3/5,3/7,5/7}, we check this result explicitly for every point onβ ′. When
A′ = 1/q′, we note that∂xG′ > 0 and∂yG′ < 0. We also note that all points inR1

have positive first and second coordinates of at most(q′−1)/2. Thus the point that
minimizesG′ is v = (1, (q′ − 1)/2). We compute

G′(v)+ q − 2= q′ − 3

q′ + 1
≥ 0.

The extreme case occurs whenq′ = 3. 2

H ′ is tougher to analyze because the points of interest to us arenear the top right
corner ofR1, and this corner can vary drastically with the choice ofA. We will
use rotational symmetry to bring the points of interest backinto view, so to speak.
Let ι be the isometric involution that swaps(0,0) andV+. Repeated applications of
Lemma 17.2 show thatV+ = V ′+ + kV′ for somed ∈ Z. Henceι is a symmetry of
Ŵ̂′. See the remark following Equation 12.14.

The infinite arcι(Ŵ′) is the open component of̂Ŵ′ that lies just beneath the baseline.
One period ofι(Ŵ′) connects(0,−1) to (q′,−p′− 1). Let us denote this period by
β ′. Compare the proof of Lemma 19.2. The points ofR1 near the top right corner
correspond to points onβ ′. To evaluateH ′ on the points near the top right corner
of R1, we evaluateH ′ on points ofβ ′ and then relate the results.

Lemma 19.10 For anyv ∈ R2, we have

|H ′(v)+ H ′(ι(v))− q+| < 2/q′.

Proof: SinceH ′ is a linear functional, it suffices to prove the result forv = (0,0).
In this case, we must demonstrate that|H ′(V+) − q+| < 2/(q′). We have already
remarked thatV+ = V ′++kV′. Henceq+ = q′++kq′. From Lemma 18.1, we have
H ′(kV′) = kq′. Hence the equality is equivalent to

|H ′(V ′+)− q′+| < 2/q′. (19.10)

The pointV ′+ lies on the same vertical line as the pointu′ = (q′+/q′)V ′ and exactly
1/q′ units away. Equation 19.10 now follows from the next 3 facts.

H ′(u′) = q′+, |∂yH ′| < 2, ‖u′ − V ′+‖ = 1/q′. (19.11)
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The first fact comes from Lemma 18.1. The second fact is an easycalculus ex-
ercise. The third fact, already mentioned, is an easy exercise in algebra that uses
|q′p′+ − p′q′+| = 1. 2

The bound

H ′(v) ≤ �q′ − 2= q′ + q+ − 2

fails only for points very near the top right vertex ofR1. Any such point has the
form ι(v) for somev ∈ β ′. Thus, to establish the above bound, it suffices to prove
that

H ′(v) ≥ −q′ + 2+ 2/q′. (19.12)

This inequality can fail for very small choices ofq′. However, from the Mismatch
Principle, the inequality must fail for at least 2 vertices on β ′, and this does not
happen.

We check all cases withq′ ≤ 7 by hand. This leaves onlyA′ = 1/q′ for
q′ ≥ 9. Reasoning as we did in Lemma 19.9, we see that the extreme point is
v = (0, (1− q)/2). We compute

H ′(v)−
(
− q′ + 2+ 1

q′

)
= 2(q′2− 2q′ − 1)

(1+ q′)2
− 2

q′
> 0. (19.13)

The last equation is an easy exercise in calculus. This completes our proof of the
Decomposition Theorem for all parametersA such thatA′ 6= 1/1.

19.5.2 Case 2

Now we deal with the case whenA′ = 1/1 is the superior predecessor ofA. We
have the following structure.

1

1
← A1 =

2k− 1

2k+ 1
← · · · ← Am = 1. (19.14)

Herek ≥ 1. For instance, whenA = 17/21, we have 1/1 ← 9/11← 17/21.
Figure 19.5 showsŴ(17/21). In this caseŴ ∩ R1 is the line segment connecting
(0,0) to (−5,5) = (−k, k). We will establish this structure in general.

Figure 19.5: Ŵ(17/21).
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R1 is the very short and squat parallelogram on the far left sideof Figure 19.5.
This time R1 lies to the left of the origin. The right side of Figure 19.5 shows a
closeup of this parallogram superimposed on the integer grid. The left side ofR1

lies in L+1 . Repeated applications of Lemma 17.2 show that(−k, k − 1) ∈ L+1 .
The right side ofR0 lies in L+0 , the parallel line through the origin. The top ofR1

contains(0,1) and is parallel to the baseline.
Let γ = Ŵ ∩ R0. The rightmost vertex ofγ is (0,0), and the rightmost edge of

γ connects(0,0) to (−1,1). Compare the proof of the Room Lemma.

Lemma 19.11 The leftmost edge ofγ connects(−k, k) to (−k+ 1, k− 1).

Proof: By Lemma 19.2, there is a unique edgee of Ŵ that crossesL+1 . Looking at
the proof of Lemma 19.2, we seee = ι(e′), wheree′ connects(0,−1) to (−1,0)
andι is the order 2 rotation about the point

(−q−
2
,

p−
2

)
=
(−k

2
,

k − 1

2

)
. (19.15)

From this, we conclude thate connects(−k, k) to (−k + 1, k − 1). The leftmost
edge ofγ crossesL+1 . This edge must bee. 2

Lemma 19.12 The line segmentγ ′ connecting(0,0) to (−k, k) lies beneath L−0 .
Henceγ ′ ∩ R0 ⊂ R1.

Proof: Letting F(m,n) = Am+ n, we haveF(0,1) = 1. HenceF(x) = 1 for
all x ∈ L−0 . On the other hand, we compute thatF(0,0) = 0 andF(−k, k) =
2k/(2k+ 1) < 1. By convexity,F(y) < 1 for all y ∈ γ ′. 2

To finish our proof, we just have to show thatγ ′ = γ . The first and last edges
of γ andγ ′ agree, and these edges are±(1,−1), with the sign depending on which
way we orient the curves. Letp j = (− j , j ) for j = 2, ..., k− 1. By Lemma 17.1,
we have

(A1)− =
(

k− 1

k

)
< A <

(
k

k+ 1

)
= (A1)+,

1

k + 1
< 1− A <

1

k
.

(19.16)
The first equation implies the second. We compute

M+(p j ) = (x j , y j , z j ) = j (1− A,1− A,1− A)+ (0,1,0) mod3. (19.17)

Equation 19.16 combines with the fact thatj ∈ {1, ..., k− 1} to give

x j = z j ∈ [1− A, A) , x j + y j − z j = y j ∈ (1,1+ A) ⊂ (A,1+ A).
(19.18)

We check that these inequalities always specify the edge(−1,1). Henceγ ′ andγ
are both line segments. Henceγ = γ ′. This takes care of the case whenA′ = 1/1.

Our proof of the Decomposition Theorem is complete.
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Chapter Twenty

Existence of Strong Sequences

In this chapter, we prove Theorem 4.2. For the sake of efficiency, our proof will be
essentially algebraic. However, a clear geometric pictureunderlies our construc-
tions. We discussed this geometric picture in §19.2. The reader might want to reread
that section before going through the proof here. Also, the reader might want to
review the proof we gave of Lemma 4.3 in §18.3. Our proof here is similar to the
one given there.

20.1 STEP 1

Let A be any irrational parameter. Let{pn/qn} denote the superior sequence asso-
ciated toA. Let S be a monotone subsequence of the superior sequence. We will
treat the case whenS is monotone increasing. The other case is entirely similar.

By Corollary 19.3, we can cut off finitely many terms ofS, leaving a sequence
for which the Decomposition Theorem always holds. This is what we will do.

For any odd rationalp/q, let R∗(p/q) denote the rectangle with vertices

−V

2
, −V +W

2
,

V +W

2
,

V

2
. (20.1)

HereV andW are as in Equation 3.2. The parallelogramR∗ is just as wide asR
but half as tall. Also, the bottom edge ofR∗ is centered on the origin.

Lemma 20.1 If A1← A2 and p1 is sufficienly large, thenŴ1 andŴ2 agree in A1.
Moreover,Ŵ1 andŴ2 agree in the q1/8 neighborhood of the bottom edge of R∗1.

Proof: The proof works the same way regardless of the sign ofA1− A2. The main
point is that� > 1. Note that(A1, A2) is admissible. We use the linear functionals
G1 andH1 associated toA1. Let

u = −V +W

2
, w = V +W

2

denote the top left and right vertices ofR∗1, respectively. We compute

−G1(u) = H1(w) =
q1(p1+ 2q1)

2p1+ 2q1)
< q1− 2< �q1− 2. (20.2)

The same argument as in Lemma 4.3 now finishes the proof. 2

Remark: We have not yet used the Decomposition Theorem.
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20.2 STEP 2

Now we are really going to use the Decomposition Theorem, as discussed in §19.2.

Lemma 20.2 Suppose that A1 < A2 and A1 is the superior predecessor of A2. If
A1 has sufficiently large complexity, thenŴ1+ǫ

1 ⊂ Ŵ1
2.

Proof: If � > 2, we have the same proof as in Lemma 4.3. Equation 17.15 does
not allow� = 2. We just need to consider the case� < 2. By Equation 17.15, we
must have

floor(a/2− λ1) = 0. (20.3)

Sincea > 1, we must have

λ1 > 1/2. (20.4)

Sinceλ1 = (q1)+/q1 andq = q+ + q−, we must have

(q1)− < (q1)+. (20.5)

This seemingly minor fact is crucial to our argument.
Let R(A1) denote the parallelogram from the Room Lemma. In contrast, let

R1(A1) and R2(A2) denote the smaller parallelograms from the Decomposition
Theorem. Since(q1)− < (q−)+, we see thatR2(A1) lies to the left ofR1(A1). By
the Decomposition Theorem,

Ŵ1 ∩ R(A1) ⊂ R2(A1) ∪ (R1(A1)+ V1) (20.6)

Figure 20.1 is a schematic picture.

2

R1

2

1 1

1

R

R

+ V

wu

w

Figure 20.1: R2(A1) andR1(A1)+ V1.

The vertices shown in Figure 20.1 are

u = W1, w1 ≈ W1 + λ1V1, w2 ≈ V1+ µW1. (20.7)

Hereµ = q0/q1 < 1/2, whereA0 = p0/q0 is the superior predecessor ofA1. Also,
λ1 = (q1)+/(q1), as in Equation 17.15.

The approximation sign means that the distance between the two points is at most
1 unit. For instance,w1 is the intersection of the line parallel toW1 and containing
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V+ with the line parallel toV1 and containingW1. The pointV+ is O(q−2
1 ) of the

point λ1V1. Hencew1 is within O(q−2
1 ) of W1 + λ1V1. The argument forw2 is

similar.
As in the proof of Lemma 4.3, we haveG1(u) > −q1+ 2 oncep1 is large. The

computations forH1(w1) and H1(w2) are the interesting ones. Case 1 of Lemma
17.2 gives(q2)+ ≥ (q1)+. Hence, forp1 sufficiently large, we have the following
inequalities.

2+ H1(w1)≤(
2+ ‖∇H‖

)
+ H1(W1)+ λ1H1(V1)≤

5+ q2
1

p1+ q1
+ (q1)+<

q1+ (q1)+≤
q1+ (q2)+=

�q1. (20.8)

Here we use the bound‖∇H‖ ≤ 3. We have already remarked that(q2)+ ≥ (q1)+.
We also know that(q1)+ > q1/2. Hence

�q1 = q1+ (q2)+ > (3/2)q1. (20.9)

For p1 large, we have

2+ H1(w2)≤(
2+ ‖∇H‖

)
+ H1(V1)+ µH1(W1)<

5+ H1(V1)+ (1/2)H1(W1)=

5+ q1+
q2

1

2(p1+ q1)
<

(3/2)q1<

�q1. (20.10)

These arguments show thatv ∈ 11(I ) for all v ∈ Ŵ1
1. The rest of the proof is just

like the proof of Lemma 4.3. 2

20.3 STEP 3

SupposeA′1 < A′2 are two consecutive terms inS when we have a finite chain

A′1 = A1← A2← · · · ← An = A′2, A1 < An, q2 > 2q1. (20.11)

The following result finishes the proof of Theorem 4.2.

Lemma 20.3 Ŵn+ǫ
1 ⊂ Ŵ1

n.

Proof: We will change our notation slightly from the previous result. We let
R1 = R(A1) denote the parallelogram from the Room Lemma. Likewise, we let
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R∗k = R∗(Ak) denote the parallelogram from Theorem 20.1. For any parallelogram
Rk, let X Rk denote the union ofRwith the points withinqk/8 units from the bottom
edge ofRk. Likewise, defineX R∗k .

SinceA1 < An, we haveA1 < A2 by Lemma 17.1. We now have

Ŵ1+ǫ
1 ⊂ Ŵ1 ∩ X R1 ⊂ Ŵ2. (20.12)

The first containment comes from the Room Lemma and the definition ofŴ1+ǫ
1 . The

second containment is Theorem 20.2. Theorem 20.1 gives us

Ŵk ∩ X R∗k ⊂ Ŵk+1, k = 2, ...,n− 1. (20.13)

Let us compareR1 andR∗k for k ≥ 2.

1. The sides ofR1 have lengthO(q1).

2. The slope of each side ofR1 is within O(q−2
1 )of the slope of the corresponding

side ofR∗k . This comes from Lemma 17.4.

3. Each side ofR1 is less than half as long as the corresponding side ofR∗k . This
follows from the first two facts and from the fact that 2q1 < q2 ≤ qk. Indeed,
the quantityq2− 2q1 tends to∞ with the complexity ofA1.

These properties give us

X R1 ⊂ X R∗k , k = 2, ...,n− 1. (20.14)

Figure 20.2 is a schematic picture.

*Rk 1R

Figure 20.2: R1 andR∗k for anyk ≥ 2.

We already know thatŴ1∩ X R1 ⊂ Ŵ2. SupposeŴ1∩ X R1 ⊂ Ŵk for somek ≥ 2.
Then

Ŵ1 ∩ X R1 ⊂ Ŵk ∩ X R1 ⊂ Ŵk ∩ X R∗k ⊂ Ŵk+1. (20.15)

Hence, by induction,Ŵ1+ǫ
1 ⊂ Ŵn. The right endpoint ofŴ1

n lies far to the right of
any point onŴ1+ǫ

1 . HenceŴ1+ǫ
1 ⊂ Ŵ1

n. 2

This completes the proof of Theorem 4.2. Our proof of the Erratic Orbits Theorem
is finished as well.



book April 3, 2009

Part 5. The Comet Theorem

In this part of the book, we prove the Comet Theorem and its corollaries. As we did
in Part 1, we defer the proofs of many of the auxilliary results. In Part 6, we take
care of all the remaining details.

• In Chapter 21, we prove some further results about the inferior and superior
sequences. We list the basic results in the first section and then spend the rest
of the chapter proving these results.

• In Chapter 22, we prove Theorem 1.8. We also build a rough model for the
way the orbitO2(1/qn,−1) returns to the intervalI = [0,2] × {−1}. Our
work here depends on two technical results, the Copy Theoremand the Pivot
Theorem, which we establish in Part 6.

• In Chapter 24, we prove the Comet Theorem, modulo some technical details
that we handle in Part 6.

• In Chapter 24, we deduce a number of dynamical consequencesof the Comet
Theorem, including minimality of the set of unboundedorbits. We also define
the cusped solenoids and explain how the time-one map of their geodesic flow
models the outer billiards dynamics.

• In Chapter 25, we analyze the structure of the Cantor setCA from the Comet
Theorem. This chapter has a number of geometric results, such as a formula
for dim(CA) whenA is a quadratic irrational.
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Chapter Twenty-One

Structure of the Inferior and Superior Sequences

21.1 THE RESULTS

Let{pn/qn} be the inferior sequence associated to an irrational parameter A ∈ (0,1)
and let{dn} be the sequence obtained from Equation 4.5. We call{dn} the inferior
renormalization sequence. We call the subsequence of{dn} corresponding to the
superior terms thesuperior renormalization sequenceor just therenormalization
sequence. Referring to the inferior sequences, we havedn = 0 if and only if n is
not a superior term. In this case, we calln aninferior term. So, the renormalization
sequence is created from the inferior renormalization sequence simply by deleting
all the 0s.

For any odd rationalp/q ∈ (0,1), define

p∗ = min(p−, p+); q∗ = min(q−,q+). (21.1)

Herep∗/q∗ is one of the rationalsp±/q±. It is convenient to define

p∗0
q∗0
= 1

0
. (21.2)

Given the superior sequence{pn/qn}, we define

λn = |Aqn − pn|; λ∗n = |Aq∗n − p∗n|; (21.3)

Note that

λ∗0 = 1. (21.4)

For the purpose of making a clean statement, we defineλ−1 = +∞. All our results
are meant to apply to the superior sequence for indicesn ≥ 0.

dnλn < 2q−1
n , (21.5)

q2n > (5/4)nD2n, (21.6)

∞∑

k=n

dkλk = λ∗n < λn−1. (21.7)

Note that Equation 21.5 is an immediate consequence of Lemma17.4. The rest of
the chapter is devoted to proving Equations 21.6 and 21.7.
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21.2 THE GROWTH OF DENOMINATORS

Here we establish some terminology.

• Referring to Equation 17.5,we call{δn} theenhanced inferior renormalization
sequence(EIRS).

• We call the subsequence corresponding to the superior indices theenhanced
renormalization sequence.

The reason for the terminology is that we can determine the inferior renormalization
sequence from the EIRS, but not vice versa.

Say that a parameterA is superior toa parameterA′ if the EIRS forA′ is obtained
by inserting some 1s into the EIRS forA. For instance,

√
5− 2 has EIRS

3,1,2,1,2, ...,

and
√

2− 1 has EIRS sequence

3,2,2,2, ....

Hence
√

2− 1 is superior to
√

5− 2.

Lemma 21.1 Suppose that A is superior to A′. Then qn ≤ q′n for all n.

Proof: The EIRS determines the inferior sequence. We havep0 = δ0 − 2 and
q0 = δ0. Then, by Lemma 17.2, each(qn+1)± is a nonnegative integer linear
combination of(qn)±, and the coefficients are determined by{δn}. Call this the
positivity property.

Consider the operation of inserting a 1 into themth position in the EIRS forA
and recomputing{An}. Call this new sequence theA∗-sequence. We have

(q∗m+1)± ≥ (qm)±.

By induction, and the positivity property, we have

(q∗n+1)± ≥ (qn)±.

Now let us delete the(m+ 1)th term from theA∗-sequence. Call the new sequence
theA′-sequence. We haveq′n ≥ qn for all n. Our result now follows from induction.
2

Call A superiorif the corresponding inferior sequence has no inferior terms. That
is, the EIRS has no 1s in it. For instance,

√
2−1 is a superior parameter. If we want

to find a lower bound on the growth of denominators, it sufficesto consider only the
superior parameters. Equation 21.6 follows from inductionand our next lemma.

Lemma 21.2 Suppose that A1, A2, A3 are 3 consecutive terms in the superior se-
quence. Let d1,d2,d3 be the corresponding terms of the renormalization sequence.
Then q3 > (5/4)(d1+ 1)(d2+ 1)q1.
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Proof: It suffices to assume thatA is a superior parameter, so thatA1, A2, A3 are
(also) 3 consecutive terms in the inferior sequence.

First of all, the estimates

qn+1 > 2dnqn, qn+1 > δnqn (21.8)

follow directly from the definitions. Our notation is as in Lemma 17.2. Now we
have 3 cases.

Case 1:Suppose that min(d1,d2) ≥ 2. Then

q3 > 4d1d2q1 > (4/3)(d1+ 1)(d2+ 1)q1. (21.9)

Case 2:Now suppose thatd1 = d2 = 1 and min(δ1, δ2) ≥ 3. Then

q3 > 6q1 = (3/2)(d1+ 1)(d2+ 1)q1. (21.10)

Case 3:Suppose finally thatd1 = d2 = 1 andδ1 = δ2 = 2. We will deal with the
case whenA1 < A2. The other case is similar. In this case, we must have

A0 > A1 < A2 > A3, (21.11)

by Lemma 17.2.
By case 2 of Lemma 17.2,

(q2)− = q1+ (q1)+, (q2)+ = (q1)+. (21.12)

By case 4 of Lemma 17.2,

(q3)+ = q2+ (q2)−, (q3)− = (q2)−. (21.13)

Hence

q3 = (q3)+ + (q3)− = q2 + 2(q2)− =∗ q2 + 2q1+ 2(q2)+. (21.14)

The starred equality comes from Lemma 17.1 sinceA1 < A2.
SinceA0 > A1, Lemma 17.2 says that

2(q1)+ > (q1)+ + (q1)− = q1. (21.15)

Combining Equations 21.12, 21.14, and 21.15, we have

q3 = q2+ 2q1+ 2(q1)+ > q2+ 3q1 > 5q1. (21.16)

Hence

q3 > (5/4)(d1+ 1)(d2+ 1)q1. (21.17)

This completes our proof. 2

21.3 THE IDENTITIES

We first verify the identity in Equation 21.7. In this identity,we sum over the superior
indices. However, notice that we get the same answer when we sum over all indices.
The point is thatdn = 0 whenn is an inferior index. So, for our derivation, we work
with the inferior sequence. Let{pn/qn} be the inferior sequence associated toA.
Define

1(n, N) = |pNqn − qN pn|, 1∗(n, N) = |pNq∗n − qN p∗n|, N ≥ n.
(21.18)
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Lemma 21.31∗(n, N) −1∗(n+ 1, N) = dn1(n, N).

Proof: The quantities relevant to the casen = 0 are

A0 =
1

1
, A∗0 =

1

0
, A∗1 =

d0 − 1

d0
< A1 =

2d0− 1

2d0+ 1
.

In this case, a simple calculation checks the formula directly.
Now supposen ≥ 1. We suppose thatAn−1 < An. The other case requires a

similar treatment. Letr stand for eitherp or q. There are two cases, depending on
whether the indexn has type 1 or type 4.

Case 1:Whenn has type 1, Lemma 17.2 gives

r ∗n = (rn)+, r ∗n+1 = (rn+1)+, r ∗n = dnrn − r ∗n+1. (21.19)

We have1∗(n, N) = |a1− a2|, where

a1 = dn pNqn − dnqN pn = dn1(n, N),

a2 = pNq∗n+1 − qN p∗n+1 = −1∗(n+ 1, N). (21.20)

The sign fora1 is correct becauseAN > An. The sign fora2 is correct because, by
Lemma 17.1, we haveAN < (An+1)+ = A∗n+1. The identity in this lemma follows
immediately.

Case 2:Whenn has type 4, Lemma 17.2 gives

r ∗n = (rn)+, r ∗n+1 = (rn+1)−, r ∗n = dnqn − r ∗n+1.

Hence1∗(n, N) = |a1 + a′2|, wherea′2 = −a2. The sign changes fora′2 because
AN > (An+1)− = A∗n+1. In this case, we get the same identity. 2

Dividing the equation in Lemma 21.3 byqN , we have

|AN p∗n − q∗n| − |AN p∗n+1− q∗n+1| = dn|AN pn − qn|. (21.21)

Taking the limit asN →∞, we get

λ∗n − λ∗n+1 = dnλn. (21.22)

Summing this equation fromn+ 1 to∞ gives the equality in Equation 21.7.
Now we will verify the inequality in Equation 21.7.

Lemma 21.4 λ∗n+1 < λn.

Proof: There are two cases to consider, depending on whetherAn < A or An > A.
We will consider the case whenAn < A. The other case requires a similar treatment.
By Lemma 17.1, we haveAn < An+1. Therefore, by Lemma 17.2 (applied to
m= n+1), we have(qn+1)+ < (qn+1)−. But this means thatA∗n+1 = (An+1)+. By
Lemma 17.1, we have

An < A < A∗n+1. (21.23)



book April 3, 2009

STRUCTURE OF THE INFERIOR AND SUPERIOR SEQUENCES 191

Given the above ordering, we have

λn = |Aqn − pn| = Aqn − pn

and

λ∗n+1 = |Aq∗n+1− p∗n+1| = p∗n+1− Aq∗n+1.

Hence

λn − λ∗n+1 = A(qn + q∗n+1)− (pn + p∗n+1). (21.24)

But

qn + q∗n+1 = qn + (qn+1)+ =
(
qn+1)− − (qn+1)+

)
− (qn+1)+ = (qn+1)−.

Likewise,

pn + p∗n+1 = (pn+1)−.

Combining these identities with Equation 21.24, we have

λn − λ∗n+1 = A(qn+1)− − (pn+1)− = (qn+1)−(A− (An+1)−) > 0.

This completes the proof. 2
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Chapter Twenty-Two

The Fundamental Orbit

22.1 MAIN RESULTS

We will assume thatp/q = pn/qn, thenth term in a superior sequence. We call
O2(1/qn,−1) thefundamental orbit. Let Cn denote the set from Theorem 1.8. Let

C′n = O2(1/qn,−1) ∩ I , I = [0,2]× {−1}. (22.1)

Theorem 1.8 says thatCn = C′n. In this chapter, we will prove Theorem 1.8 and
establish some geometric results about how the orbits return toCn.

After we prove Theorem 1.8, we will establish a coarse model for how the points
of O2(1/qn) return toCn. Statement 2 of the Comet Theorem is s kind of geomet-
ric limit of the Discrete Theorem, and statement 3 of the Comet Theorem is the
“geometric limit” of the coarse model we build here.

Let5n denote the truncation of the space defined in Equation 1.7. Let

χ :5n→ Cn (22.2)

denote the mapping that is implicit in the statement of Theorem 1.8. There is an
ordering on5n such thatχ(κ) returns toχ(κ+), whereκ+ is the successor ofκ in
the ordering. We will describe this ordering.

Here we will define two natural orderings on the sequence space5n associated
to pn/qn. Let {dn} be the renormalization sequence.

Reverse Lexicographic Ordering: Given two finite sequences{ai } and{bi } of
the same length, letk be the largest index, whereak 6= bk. We define{ai } ≺′ {bi }
if ak < bk, and{bi } ≺′ {ai } if ak > bk. This ordering is known as thereverse
lexicographicordering.

Twist Automorphism: Given a sequenceκ = {ki } ∈ 5n, we definek̃i = ki if
Ai < An, andk̃i = di − ki if Ai > An. We defineκ̃ = {k̃i }. The mapκ → κ̃ is an
involution on5n. We call this involution thetwist involution.

Twirl Ordering: Any ordering on5n gives an ordering onCn via the formula
in Theorem 1.8. Now we describe the ordering that comes from the first return map.
Given two sequencesκ1, κ2 ∈ 5n, we defineκ1 ≺ κ2 if and only if κ̃1 ≺′ κ̃2. We
call the ordering determined by≺ the twirl ordering. We think of the word twirl
as a kind of acronym fortwisted reverse lexicographic. We will give an example
below.
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Lemma 22.1 When Cn is equipped with the twirl order, each element of Cn except
the last returns to its immediate successor, and the last element of Cn returns to the
first.

Our last goal in this chapter is to understandO2(1/qn,−1) far away fromI . Let
h1(κ) denote the maximum distance the forward9-orbit ofχ(κ) gets from the kite
vertex(0,1) before returning asχ(κ+). Let h2(κ) denote the number of iterates it
takes before the forward9-orbit of χ(κ) returns asχ(κ+).

Let ind(κ) be the largest indexk such that the sequences corresponding toκ and
κ+ differ in the kth position. Here ind(κ) ∈ {0, ...,n − 1}. Finally, we define
ind(κ) = n if κ is the last element of5n.

Lemma 22.2 Let m= ind(κ). Then

qm/2− 4< h1(κ) < 2qm+ 4, h2(κ) < 5q2
m.

Example: The table below encodes the example from the introduction.

p0

q0
= 1

1
>

1

3
<

5

13
>

19

49
= p3

q3
.

The first 3 columns indicate the sequences. The 4th column indicates the first co-
ordinate of 49χ(κ). The first point ofC3 is (65/49,−1). The 5th column shows
(m) = ind(κ). The last column showsqm.

1 0 1 −→ 65 (0) 1
0 0 1 −→ 5 (1) 3
1 1 1 −→ 81 (0) 1
0 1 1 −→ 21 (1) 3
1 2 1 −→ 97 (0) 1
0 2 1 −→ 37 (2) 13
1 0 0 −→ 61 (0) 1
0 0 0 −→ 1 (1) 3
1 1 0 −→ 77 (0) 1
0 1 0 −→ 17 (1) 3
1 2 0 −→ 93 (0) 1
0 2 0 −→ 33 (3) 49

For instance, the the9 orbit of 37/49 wanders between

13/2− 4= 5/2

and

2 ∗ 13+ 4= 30

units away before returning to 61/49 in less than 5× (132) steps. The results in the
table are not very inspiring. A larger table would show more dramatic results.
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22.2 THE COPY AND PIVOT THEOREMS

Here we describe the technical results that we will establish in Part 6.
Relative to the parameterA, we associate a sequence ofpairs of pointsin Z2. We

call these points thepivot points. We make the construction relative to the inferior
sequence.

DefineE±0 = (0,0) andVn = (qn,−pn). Define

An < An+1 H⇒ E−n+1 = E−n , E+n+1 = E+n + dnVn. (22.3)

An > An+1 H⇒ E−n+1 = E−n − dnVn, E+n+1 = E+n . (22.4)

We have setAn = pn/qn. Here is an example.

1

1
>← 3

5
>← 17

29
<← 37

63
<← 57

97
>← 379

645
.

The inferior renormalization sequence is 2,2,1,0,3. We compute

• E+1 = E+0 = (0,0).

• E+2 = E+1 = (0,0) .

• E+3 = E+2 + 1(29,−17).

• E+4 = E+3 + 0(97,−57) = (29,−17).

• E+(379/645) = E+5 = E+4 .

• E−1 = E−0 − 2(1,−1) = (−2,2).

• E−2 = E−1 − 2(5,−3) = (−12,8).

• E−3 = E−2 = (−12,8).

• E−4 = E−3 = (−12,8).

• E−(379/645) = E−5 = E−4 − 3(97,−57) = (−303,197).

This procedure gives an inductive way to define the pivot points for a pair of odd
rationals. We define thepivot arc PŴ of Ŵ to be the arc whose endpoints areE+

and E−. It turns out that the pivot arc is well defined – this is something we will
prove simultaneously with our Copy Theorem below. This is tosay thatE+ and
E− are both vertices ofŴ. In Part 6 we prove the following result.

Theorem 22.3 (Copy) If A1← A2, then PŴ2 ⊂ Ŵ1.

Figure 22.1 illustrates the Copy Theorem. The first 3 frames are ofŴ(57/97),
drawn in black andPŴ(57/97) drawn in gray. The last frame shows several periods
of Ŵ(17/29).
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Figure 22.1: PŴ(57/97) ⊂ Ŵ(17/29).

Now we turn to the statement of the Pivot Theorem. Given an oddrational
parameterA = p/q, let V be the vector from Equation 3.2. LetZ [V ] denote the
group of integer multiples ofV = (q,−p). In Part 6 we prove the following result.

Theorem 22.4 (Pivot) Every low vertex ofŴ is equivalent modZ [V ] to a vertex
of PŴ. That is, PŴ contains one period’s worth of low vertices onŴ.

The Pivot Theorem makes a dramatic statement. Another way tostate this theorem
is to say that there are no low vertices on the complementary arc γ − PŴ. Hereγ
is the arc just to the right ofPŴ such thatPŴ ∪ γ is one full period ofŴ. A glance
at Figure 22.1 will make this clear. We will prove the Pivot Theorem in Part 6. We
will also prove the following easy estimate. See §26.2.

Lemma 22.5

−q

2
< π1(E

−) < π1(E
+) <

q

2
.
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22.3 HALF OF THE RESULT

We will prove thatCn ⊂ C′n. This is almost an immediate consequence of the Copy
Theorem.

For convenience, we recall the definition ofCn. Letµi = |pnqi − qn pi |.

Cn =
⋃

κ∈5n

(
Xn(κ),−1

)
, Xn(κ) =

1

qn

(
1+

n−1∑

i=0

2kiµi

)
. (22.5)

It is convenient to write

Ṽk = sign(Ak+1 − Ak)Vk = ±(qk,−pk). (22.6)

When 1/1← A, the pivot arcPŴ(A) contains the points

kṼ0, k = 0, ...,d1, Ṽ0 = (−1,1). (22.7)

This is a consequence of the argument in §19.5.
In general, supposeA1 ← A2 are two parameters. Then, by construction, the

pivot arcPŴ2 contains all points

v + kṼ1 k ∈ {0, ...,d}, d = floor(q2/2q1). (22.8)

Herev is any vertex ofPŴ1. It now follows from induction thatPŴn contains all
points of the form

n−1∑

j=0

k j Ṽj , k j ∈ {0, ...,d j }. (22.9)

Let M denote the map from Equation 2.10. Usually we takeM so thatM(0,0) =
0, but for the proof here, we adjust so that

M(0,0) = (1/qn,−1). (22.10)

(This makes no difference; see the discussion surrounding the definition ofM in
§2.5.) Call a lattice pointevenif the sum of its coordinates is even. Note thatṼj

is even for all j . Hence all points in Equation 22.9 are even. The images of these
points underM have their second coordinate equal to−1. We just have to worry
about the first coordinate. We have

M(Ṽj ) =
1

qn
+ 2|Aqj − p j | =

1

qn
+

1

qn
2|pnq j − qn p j |. (22.11)

The absolute value in the equation comes from the sign choicein the definition of
Ṽj .

It now follows from the affine nature ofM and from the definition ofCn that

Cn ⊂ O2(1/qn,−1). (22.12)

It follows from the casen = 0 of Equation 21.7 thatCn ⊂ [0,2]× {−1}.
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22.4 THE INHERITANCE OF LOW VERTICES

The rest of Theorem 1.8 follows from the Pivot Theorem and from what we have
done by applying the information contained in the Pivot Theorem to what we did
in the previous section. To make the argument work, we first need to deal with a
tedious technical detail, which we take care of in this section.

Let A1← A2 be two odd rationals. As usual, we have

d1 = floor(q2/2q1). (22.13)

Let v1 be a vertex on the pivot arcPŴ1. Define

v2 = v1 + kṼ1, k ∈ {0, ...,d1}. (22.14)

Here we mean to choose some arbitraryk. The argument we give will work for any
choice. Notice that, ask ranges over all possibilities, we are considering exactly the
same vertices as in §22.3. Now we want to take a close look at these vertices. Here
is the main result of this section.

Lemma 22.6 v1 is low with respect to A1 iff v2 is low with respect to A2.

Proof: There are two cases to consider,depending on whetherA1 < A2 or A2 < A1.
We will consider the former case. The latter case has essentially the same treatment.
In our case, we havẽV1 = V1. Let E±j be the pivot points forŴ j . Say that a vertex
is high if it is not low.

We will first suppose thatv1 is low with respect toA1 and thatv2 is high with
respect toA2. This will lead to a contradiction. We writev j = (m j ,n j ). Let M j be
the fundamental map from Equation 2.10. Sincev1 is low andv2 is high, we have

2A1m1 + 2n1 +
1

q1
= M1(v1) ≤ 2− 1

q1
,

2A2m2+ 2n2 +
1

q2
= M2(v2) ≥ 2+ 1

q2
.

Rearranging terms,

2

(
p2

q2
m2 + n2

)
− 2

(
p1

q1
m1 + n1

)
≥ 2

q1
. (22.15)

Plugging in the relationsm2 = m1 + kq1 andn2 = n1 − kp1 and simplifying, we
have

(m1+ kq1)(p2q1 − p1q2)

q1q2
≥ 1

q1
. (22.16)

SinceA1← A2 andA1 < A2, we have

p2q1− p1q2 = 2. (22.17)

Hence

m1 + kq1 ≥ q2/2. (22.18)
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Combining Equations 22.3 and 22.18, we have

E+1 (A2) = E+1 (A1)+ d1q1 ≥∗ m1+ kq1 > q2/2>∗ E+1 (A2).

This is a contradiction. The first starred inequality comes from the Pivot Theorem
and the fact thatk ≤ d1. The second starred inequality comes from Corollary 22.5.

Now we will suppose thatv1 is high with respect toA1 andv2 is low with respect
to A2. This also leads to a contradiction. LetM1 denote the first coordinate of the
fundamental map relative to the parameterA1, adjusted so thatM1(0,0) = 1/q1.
That is,

M1(m,n) = 2A1m+ 2n+ (1/q1). (22.19)

Sincev1 is high, we have the following dichotomy.

M1(v) ≥ 2+ 1

q1
, M1(v) > 2+ 1

q1
H⇒ M1(v) ≥ 2+ 3

q1
. (22.20)

We will consider these two cases in turn.

Case 1:If M1(v1) = 2+ 1/q1, then

M1(m1,n1 − 1) = 1/q1 = M1(0,0).

But then

(m1,n1 − 1) = jV1

for some integerj . But then|m1| ≥ q1. Sincev1 ∈ PŴ1, this contradicts Corollary
22.5. Hence

v1 = (0,1), v2 = kV1+ (0,1).

If v2 is low, then

0= 2k(A1q1 − p1) < 2k(A2q1− p1) = M2(v2)− M2(0,1) ≤ 0.

This is a contradiction. The first inequality comes fromA1 < A2.

Case 2: If M1(v1) ≥ 2 + 3/q, then the same reasoning as in Equations 22.15–
22.17 (but with signs reversed) leads to

m1+ kq1 < −3q2. (22.21)

But then

−q2

2
<
−q1

2
<∗ m1 ≤ m1+ kq1 < −3q2.

The starred inequality comes from Corollary 22.5. Again we have a contradiction,
this time by a wide margin. 2
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22.5 THE OTHER HALF OF THE RESULT

Now we finish the proof of Theorem 1.8.
We revisit the construction in §22.3 and show that actuallyCn = C′n. Let 3n

denote the set of low vertices ofPŴn. By the Pivot Theorem, every low vertex on
PŴn is equivalent to a point of3n modZ [Vn].

Lemma 22.7 For any n≥ 0, we have

3n+1 =
dn⋃

k=0

(3n + kṼn).

Proof: Induction. Forn = 0 we have

E−1 = (−d0,d0), E+1 = (0,0).

In this case, the right hand side of the equation precisely describes the set of points
on the line segment joining the pivot points. The casen = 0 therefore follows
directly from the Pivot Theorem.

Let3′n+1 denote the right hand side of the main equation. SinceŴn is invariant
under translation byVn, every vertex of3′n+1 is low with respect toAn. Hence, by
Lemma 22.6, every vertex of3′n+1 is low with respect toAn+1. Combining this fact
with Equation 22.8, we see that

3′n+1 ⊂ 3n+1. (22.22)

By Lemma 22.6 again, everyv ∈ 3n+1 is also low with respect toAn. Hence

v = v ′ + kṼn, k ∈ Z (22.23)

for somev ′ ∈ 3n. If k 6∈ {0, ...,dn}, thenv lies either to the left of the left pivot
point ofŴn+1 or to the right of the right pivot point ofŴn+1. Hencek ∈ {0, ...,dn}.
This proves that

3n+1 ⊂ 3′n+1. (22.24)

Combining the two facts completes the induction step. 2

We proved Lemma 22.7 with respect to the inferior sequence. However, notice
that, if dn = 1, then3n+1 = 3n. Thus we get precisely the same result for
consecutive terms in the superior sequence. We have shown that v ∈ Ŵn is low if
and only ifv ∈ 3n modZ [V ]. But then

O2(1/qn,−1) ∩ I = M(3n), I = [0,2]× {−1}. (22.25)

HereM is the fundamental map. Recognizing3n as the set from Equation 22.9,
we get precisely the equality in Theorem 1.8.

There is one last detail. One might worry thatM maps some points of3n to
points on [0,2]×{1} (rather than to [0,2]×{−1}). However, all points in3n have
even parity. Hence this does not happen.

This completes the proof of Theorem 1.8.
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22.6 THE COMBINATORIAL MODEL

Here we prove Lemmas 22.1 and 22.2.

22.6.1 Combinatorics of the Return Map

Let6n denote the union of all points in Equation 22.9. We have

M(6n) = Cn. (22.26)

The ordering on6n determines the ordering of the return dynamics toCn. We set
60 = {(0,0)} for convenience. We can determine the ordering on6n+1 from the
ordering on6n and the sign ofAn+1 − An. When An < An+1, we can write the
relation

6n + kVn ≺ 6n + (k + 1)Vn, k = 0, ..., (dn − 1) (22.27)

to denote that each point in the left hand set precedes each point in the right hand
set. Within each set, the ordering does not change. WhenAn > An+1, we can write
the relation

6n − (k+ 1)Vn ≺ 6n − kVn, k = 0, ..., (dn − 1). (22.28)

Lemma 22.1 follows from these facts and induction.

22.6.2 Geometry of the Return Map

Let βn denote the arc ofPŴn, chosen so thatPŴn ∪ βn is one period ofPŴn. Let
Ln be the line of slope−An through the origin.

Lemma 22.8 No point ofβm lies more than qm vertical units away from Lm, and
some point ofβm lies at least qm/4 vertical units away from Lm.

Proof: By the Room Lemma,βm ⊂ R(Am). The upper bound follows immediately
from this containment. For the lower bound, recall from the Room Lemma that
PŴm crosses the centerlineL of R(Am) once, and this crossing point lies at least
(pm + qm)/4 > qm/4 vertical units fromLm. By Lemma 22.5 and symmetry, the
left endpoint ofβm lies to the left ofL and the right endpoint ofβm lies to the right
of L. Henceβm contains the crossing point we have mentioned. For an alternative
argument, we note that no point on the pivot arc crosses the line parallel to the floor
and ceiling ofR(Am) and halfway between them, whereas the crossing point lies
above this midline. 2

Notice that the lineLn replaces the lineLm in the next lemma.

Lemma 22.9 Let m≤ n and qm > 10. Then some point ofβm lies at least qm/4−1
vertical units from Ln. Moreover, no point ofβm lies more than qm+1vertical units
away from Ln.
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Proof: Some pointv of βm is at leastqm vertical units fromLm, by the previous
result. From Lemma 17.4, we have

|Am − An| < 2/(q2
m). (22.29)

On the other hand, by the Room Lemma and by construction,PŴm is contained in
two consecutive translates ofR(Am), one of which isR(Am) itself. HencePŴm

lies entirely inside the ballB of radius 4qm about the origin. By Equation 22.29, the
Hausdorff distance between the seqmentsLm ∩ B andLn ∩ B is less than 1 once
m> 10. By construction, the vertical line segment starting atv and dropping down
qm − 1 units is disjoint fromLn ∩ B. But this segment is disjoint fromLn − B as
well. Hencev is at leastqm/2− 1 vertical units fromLn. The upper bound has a
similar proof. 2

Lemma 22.10βm has length at most5q2
m.

Proof: βm is contained in one period ofPŴm. Hence it suffices to bound the length
of any one period ofPŴm. By the Room Lemma, one such period is contained in
R(Am). We compute easily that the area ofR(Am) is much less than 5q2

m. Hence
there are fewer than 5q2

m vertices inR(Am). Hence the length of one period ofPŴm

is less than 5q2
m. 2

Suppose now thatκ andκ+ are two consecutive points of6n. By this we mean
that there is a portion ofPŴn connectingκ to κ+ when it is oriented from left to
right.

We want to understand the arc ofPŴn that joins κ and κ+. Suppose that
ind(κ) = m. It follows from induction and from the Copy Theorem that there
is some translationT such thatT(κ) andT(κ+) are the endpoints of the arcβm.
The arc joiningκ to κ+ has the same length asβm, and this length is less than 5q2

m.
This gives us the estimate forh2.

Now we deal withh1. We check the result by hand forqn < 10. So, suppose
thatqn > 10. All the verticesκ , κ+, T(κ), andT(κ+) lie within 1 vertical unit of
the baselineLn. We know that the vertical distance from some point ofβm to Ln is
at leastqm/2− 1. Hence the vertical distance from some point onT(βm) to Ln is
at leastqm/2− 2. Similarly, the vertical distance from any point ofβm to Ln is at
mostqm+ 2. If two points inZ2 have vertical distanced, then the images of these
points under the fundamental mapMn have horizontal distance 2d. In short, the
fundamental map doubles the relevant distances. This fact gives us the estimate for
h1.

This completes the proof of Lemma 22.2. 2

Remark: We have tried to give fairly precise estimates in our arguments, but actu-
ally we do not use these estimates for any purpose.
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22.7 THE EVEN CASE

Here we discuss Theorem 1.8 in the even case. For each even rational A1 ∈ (0,1),
there is a unique odd rationalA2 such that (in terms of Equation 4.1)A1 = (A2)±
andq2 < 2q1. In Lemma 27.2, we will show thatŴ1 (a closed polygon) contains a
copy of PŴ2, and all low vertices ofŴ1 lie on this arc. From this fact, we see that

O(1/q1,−1) = M1(61), (22.30)

just as in the odd case. HereM1 is the fundamental map defined relative to the
parameterA1, and61 is the set of low vertices onPŴ1.

Note that61 = 62, where62 is the set of low vertices onPŴ2. The only
difference between the two setsM1(61) andM2(62) is the difference in the maps
M1 and M2. Now we explain the precise form of Theorem 1.8 that this structure
entails.

Switching notation, letA be an even rational. One of the two rationalsA± from
Equation 4.1 is odd, and we call this rationalA′. We can find the initial part of a
superior sequence{Ak} such thatA′ = An−1. We setA = An even thoughA does
not belong to this sequence. Referring to Theorem 1.8, we define5n exactly as in
the odd case but for one detail. In case 2q′ > q, we simply ignore thenth factor of
5n. That is, we treatq′ as an inferior term. Once changed in this way, Theorem 1.8
holds in the even case and has a proof that follows the odd caseword for word.

Here we give an example. LetA1 = 12/31. ThenA2 = 19/49, exactly is in the
introduction. We haven = 3, and the sequence is

p0

q0
= 1

1
,

1

3
,

5

13
,

12

31
= p3

q3
.

All terms are superior, so this is also the superior sequence. The renormalization
sequence is 1,2,1. Theµ sequence is 19,5,1. The first coordinates of the 12 points
of O2(1/49)∩ I are given by

1⋃

k0=0

2⋃

k1=0

1⋃

k2=0

2(19k0+ 5k1+ 1k2)+ 1

31
.

Writing these numbers in a suggestive way, the union above works out to

1

31
×
(
1 3 11 13 21 23 39 41 49 51 59 61

)
.
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Chapter Twenty-Three

The Comet Theorem

23.1 STATEMENT 1

We fix an irrational parameterA ∈ (0,1). Let {An} be the superior sequence
approximatingA. Let Ŵ̂n be the arithmetic graph corresponding toAn. We say that
a vertexv of Ŵ̂n is D-low if v is within D vertical units of the baseline of̂Ŵn.

Note that the low vertices considered in the previous chapter are 1-low vertices.
These vertices play a special role in our arguments. The fundamental mapM from
Equation 2.10 maps the 1-low vertices into the interval

J = (0,2)× {−1,1}. (23.1)

In Part 6 we prove the following result.

Theorem 23.1 (Low Vertex) Fix N0. There are constants N1 and N2 with the
following property. Ifvn is an N0-low vertex contained in a component of̂Ŵn

having diameter at least N1, then there is an arc of̂Ŵn that has length at most N2
and connectsvn to a1-low vertex. The constants N1 and N2 depend only on A and
N0.

Now we will deduce statement 1 of the Comet Theorem. Looking at Figure 1.2,
we see that

J = I ∪ (ψ ′)3(I ), (23.2)

whereψ ′ is the outer billiards map. Hence it suffices to prove statement 1 of the
Comet Theorem withJ in place of I . Sinceψ = (ψ ′)2, it suffices to prove the
result withJ in place ofI andψ in place ofψ ′. This is what we will do.

Fix N > 0. The constantsN0, N1, ... depend only onA and N. Recall that
4 = R+ × {−1,1} and that9 is the first return map to4. Recall also thatUA is
the union of the unbounded special orbits.

Corollary 23.2 If ξ ∈ 4 ∩UA and‖ξ‖ < N then9k(ξ) ∈ J for some|k| < N2.

Proof: The arithmetic grapĥŴn tracks the orbits of the special intervals defined
in §2.2. For eachn we choose some special intervalIn whose closure containsξ .
Typically the choice is unique, but whenξ lies in the boundary of a special interval,
there are two choices and we pick one arbitrarily.

Let vn be the vertex of̂Ŵn corresponding toIn. From Equation 2.10 we see that
vn is N0-low, whereN0 = (N/2)+ 1. Letβn be the component of̂Ŵn that contains
vn. By the Continuity Principle in §2.7,

diam(βn)→∞. (23.3)



book April 3, 2009

206 CHAPTER 23

By Equation 23.3, the diameter ofβn exceedsN1 for n large.
The Low Vertex Theorem says that there is some arcβ ′n of βn, having length at

mostN2, that connectsvn to a 1-low vertex.
By the Continuity Principle, the firstN2 iterates of9n are defined onξ for n large.

Interpretingβ ′n dynamically we see that there is a sequence{kn} such that

9kn
n (ξ) ∈ J, |kn| < N2. (23.4)

By the Pidgeonhole Principle,somekappears infinitely often in the sequence{kn}.
Applying the Continuity Principle to this subsequence, we see that9k(ξ) ∈ J. 2

Remark: Referring to the proof we just gave, one might worry that someof the
points involved actually lie in the boundary ofJ. However, the boundary points
of J do not have well defined orbits and all the points we considered do have well
defined orbits. Hence this problem does not occur.

Corollary 23.3 If ξ ∈ 4 ∩UA and‖ξ‖ < N, thenψk(ξ) ∈ J for some|k| < N5.

Proof: By Corollary 23.2, there is somem ∈ (−N2, N2) such that9m(ξ) ∈ J. We
will consider the case whenm ≥ 0. The proof in the other case is essentially the
same. Letξ0 = ξ and inductively define

ξ j = 9(ξ j−1), j = 1, ...,m. (23.5)

Examining the proof of the Pinwheel Lemma, we see that there is some constantN3

such that

‖ξ j ‖ < N3, j = 0, ...,m. (23.6)

Again examining the proof of the Pinwheel Lemma, we see that there are constants
n1, ...,nm such that

ξ j = ψn j (ξ j−1), n j ∈ (0, N4). (23.7)

SettingN5 = N2N4 we see thatψk(ξ) ∈ J for some|k| < N5. 2

Corollary 23.4 If ζ ∈ UA and‖ζ‖ < N, thenψk(ζ ) ∈ J for some|k| < N8.

Proof: Examining the proof of the Pinwheel Lemma, we see that there is some
constantN6, some|m| < N6, and someξ ∈ 4 such that

ξ = ψm(ζ ), ‖ξ‖ < N6. (23.8)

Applying Corollary 23.3 withN6 in place of N, we haveψn(ξ) ∈ J for some
|n| < N7. Thereforeψk(ζ ) ∈ J for some|k| < N8. Here we have setN8 = N6+N7.
2

Corollary 23.4 is identical to statement 1 of the Comet Theorem, except that it
usesψ in place ofψ ′ andJ in place ofI . This completes the proof.
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23.2 THE CANTOR SET

Before we prove the remaining statements of the Comet Theorem we first need to
resolve the technical point that the setCA is actually well defined. For convenience,
we repeat the definition.

CA =
⋃

κ∈5

(
X(κ),−1

)
, X(κ) =

∞∑

i=0

2ki |Aqi − pi |. (23.9)

Lemma 23.5 The infinite sums in Equation 23.9 converge. Hence CA is well de-
fined.

Proof: Combining Equation 21.5 with the bound 0≤ kn < dn, we see that thenth
term in the sum definingX(κ) is at most 2q−1

n . Given that 2qk < qk+1 for all k, we
get

2q−1
n < 2−n+1. (23.10)

The sequence definingX(κ) decays exponentially and hence converges. 2

For the purposes of this section, we equip the product space5 with the lexico-
graphic ordering and the product topology. For instance, ifdn = 1 for all n, then5
is just the space of binary sequences. The lexicographic order treats these sequences
as binary expansions of real numbers and then orders them as usual. The general
case is similar.

Lemma 23.6 The map X:5 → CA is a homeomorphism that maps the lexico-
graphic order to the linear order. Hence CA is a Cantor set.

Proof: We first show that the mapX is injective. In fact, we will show thatX is
order preserving. Ifκ = {ki } ≺ κ ′ = {k′i } in the lexicographic ordering, then there
is some smallest indexm such thatki = k′i for all indicesi = 0, ..., (m− 1) and
km < k′m. Letλm = |Aqm− pm|, as in Equation 21.5. Then

X(κ ′)− X(κ) ≥ 2λm −
∞∑

k=m+1

2dkλk = λm − λ′m+1 > 0 (23.11)

by Equation 21.7.
The mapX:5→ [0,2] is continuous with respect to the topology on5 because

thenth term in the sum definingX is always less than 2−n+1. We also know thatX
is injective. HenceX is bijective onto its image. Any continuous bijection from a
compact space to a Hausdorff topological space is a homeomorphism. 2

Remark: In Chapter 25 we will have much more to say about the geometry of CA.
For instance,CA always has length 0.
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23.3 A PRECURSOR OF THE COMET THEOREM

In this section we present two auxilliary results that combine to prove almost all the
remaining statements of the Comet Theorem.

Let CA be the Cantor set considered in the previous section. Define

C′A = CA − (2Z [ A] × {−1}). (23.12)

One can view our next result as a precursor of the Comet Theorem.

Theorem 23.7 (Comet Precursor)Let UA denote the set of unbounded special
orbits relative to an irrational A∈ (0,1).

1. C′A ⊂ UA.

2. The first return mapρA: C′A→ C′A is defined precisely on C′A− φ(−1). The
mapφ−1 conjugatesρA to the restriction of the odometer onZ A.

3. For ζ ∈ C′A − φ(−1), the orbit portion betweenζ andρA(ζ ) has excursion
distance in [

d−1

2
− 4,2d−1+ 20

]

and length in
[

d−2

32
− d−1

4
,100d−3+ 100d−2

]
.

Here d= d(−1, φ−1(ζ )).

Remarks:
(i) The constants in item 3 are not optimal; some tedious elementary arguments
would improve them.
(ii) Sinced−1 ≥ 1, the estimates in item 3 imply the less precise estimates inthe
Comet Theorem – once we establish thatC#

A = C′A.
(iii) As we remarked following the Comet Theorem, the only nonsharp bound in
item 3 is the length upper bound. For instance, our proof in [S1], which establishes
a kind of coarse self-similarity structure, would give a better bound forA =

√
5−2

if carefully examined. We conjecture that−3 is the best bound that works for all
parameters at once.

To relate Theorem 23.7 to the Comet Theorem, we prove the following double
identity.

Lemma 23.8 UA ∩ I = C#
A = CA − (2Z [ A] × {−1}).

Statements 2 and 3 of the Comet Theorem follow from this result and Lemma 23.7.
Lemma 23.8 also contains the first claim in statement 4 of the Comet Theorem. At
the end of the chapter, we will prove the second claim made in statement 4 of the
Comet Theorem.
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23.4 CONVERGENCE OF THE FUNDAMENTAL ORBIT

Let{pn/qn} denote the superior sequence associated toA. We use the notation from
the previous chapter. HereŴn denotes the corresponding arithmetic graph and

Cn =
⋃

κ∈5n

(
Xn(κ),−1

)
, Xn(κ) =

1

qn
+

n−1∑

i=0

2ki |Anqi − pi |. (23.13)

We have already proved that

Cn ⊂ O2(1/qn,−1). (23.14)

Let κ ∈ 5 be some infinite sequence. Letκn ∈ 5n be the truncated sequence.
Let

σn = (Xn(κn),−1), σ = (X(κ),−1) (23.15)

Here is our basic convergence result.

Lemma 23.9 σn→ σ as n→∞.

Proof: For i < n, let τi,n denote thei th term in the sum forXn(κn). Let τn be the
corresponding term in the sum forX(κ). By Lemma 17.1, the sign ofA− Ai is the
same as the sign ofAn − Ai . Therefore

|τn − τi,n|=
2k|A− An|qn < 2q−1

n <

2−n+1. (23.16)

Therefore

|σ − σn| =
|X(κ)− X(κn)|=

n−1∑

i=0

|τn − τi,n| +
∞∑

i=n

τi <

2
n−1∑

i=0

2−n + 2
∞∑

i=n

2−i <

(2n+ 4)2−n. (23.17)

This completes the proof. 2

The uniformity of convergence gives us the following immediate corollary.

Corollary 23.10 CA is the Hausdorff limit of{Cn}.
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23.5 AN ESTIMATE FOR THE RETURN MAP

Let {ki } be a point in the sequence space5. We call{ki } first if k̃i = 0 for all i , and
last if k̃i = di for all i . The mapφ2:5A → CA is a homeomorphism. Usingφ2,
we transfer the notions offirst andlast to points ofCA.

It turns out that the first and last points ofCA are the special points mentioned in
connection with the Comet Theorem. If these orbits are well defined, then it turns out
that the last point leavesCA under the forward dynamics and never returns. Likewise,
the first point ofCA leaves under the backward dynamics and never returns. (We
prove these statements later on.) Here we will estimate the nature of how the nonlast
points ofCA return toCA under the forward direction of the dynamics. The idea is
to essentially take the geometric limit of the result from Lemma 22.2.

Let ζ ∈ C′A denote a point that is not last. Letκ denote the corresponding se-
quence in5A. Say that two sequences in5 areequivalentif they have the same
infinite tail end. We can define the reverse lexicographic order on any equivalence
class. Likewise, we can extend the twirl order to any equivalence class. In particu-
lar, we extend the twirl order to the equivalence class ofκ , the sequence currently
of interest to us.

Remark: These orders on equivalence classes cannot be defined on the entire
space; points in different equivalence classes are often not comparable.

Sinceκ is not last, we can find some smallest indexm = m(ζ ) wherek̃m < di .
In other words,m is the smallest index such thatκ differs from the last sequence in
themth spot.

The successorκ+ of κ is obtained by incrementing̃km by 1 and setting̃ki = 0
for all i < m. This notion of successor is compatible with the twirl ordering on the
finite truncations5n. Define

ζ+ = (X(κ+),−1), (ζn)+ = (X(κn)+,−1). (23.18)

Lemma 23.11 Let ζ ∈ C′A be a point that is not last. Let m= m(ζ ). The forward
9 orbit of ζ returns to CA as ζ+ in at most5q2

m steps. This portion of the orbit
wanders between qm/2− 2 units and2qm + 2 units away from(0,−1).

Proof: By Lemma 2.2, the orbit ofζ is well defined. Referring to the notation in
Lemma 22.2, we get ind(κn) = m for n large enough. Hence the forward9n orbit
of ζn returns to(ζn)+ after at most 5q2

m steps, moving away from(0,−1) by at least
qm/2− 2 units and at most 2qm + 2 steps. Herem is independent ofn. SinceX
is continuous, we have(ζn)+ → ζ+ asn→∞. The Contintuity Principle implies
that the forward9 orbit of ζ returns asζ+ after at most 5q2

m steps, moving away
from (0,−1) at leastqm/2− 2 units and at most 2qm + 2 steps. 2

There is an entirely analogous result for the backward return map. This result
holds for all but the first point.
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23.6 PROOF OF THE COMET PRECURSOR THEOREM

23.6.1 Statement 1

Here we prove statement 1 of Theorem 23.7. We say that a sequence of5A is
equivalent-to-firstif it differs from the first sequence in only a finite number of
positions. We call a sequenceequivalent-to-lastif it differs from the last sequence
in a finite number of positions. As in the previous section, wetransfer these notions
toCA. It is immediate from the definitions that no sequence in5A is both equivalent-
to-first and equivalent-to-last.

Let ζ be a point inC′A that is not equivalent-to-last. We will show that the forward
orbit of ζ is unbounded. Letm= m(κ) be as in the proof of Lemma 23.11. Lemma
22.2 says that the portion of the orbit betweenζ andζ+ wanders at leastqm/5 from
the origin. Since we can achieve any initial sequence we likewith iterated successors
of κ , we can find iterated successorsκ ′ of κ such thatm(κ ′) is as large as we like.
But this shows that the forward orbit ofζ is unbounded. Here we are using the fact
that limm→∞ qm = ∞. This shows thatζ has an unbounded forward orbit.

Essentially the same argument works for the backward orbit of points that are not
equivalent-to-first. This establishes statement 1.

23.6.2 Statement 2

The successor map on5A is defined except on the last sequenceκ of5A. Referring
to the homeomorphismφ1 given in Equation 1.8, we have

φ1(−1) = κ.

Thus the pointφ2(κ) ∈ CA corresponding toκ is preciselyφ(−1). By Lemma
23.11, the return mapρA: C′A→ C′A is defined onC′A − φ(−1).

The mapφ1 conjugates the odometer map onZ A to the successor map on5A.
Combining this fact with Lemma 23.11, we see thatφ−1 conjugatesρA to the
restriction of the odometer map onZ A.

It remains to understand what happens to the forward orbit ofx = φ(−1) in the
case whenx ∈ C′A. The following result completes the proof of statement 2.

Lemma 23.12 If x ∈ C′A, then the forward orbit of x does not return to C′A.

Proof: Suppose that the forward orbit ofx returns toC′A afterN steps. Since outer
billiards is a piecewise isometry, there is some open neighborhoodU of x such
that every point ofC′A ∩ U returns toC′A in at mostN steps. But there is some
uniformly smallm such that every pointζ ∈ C′A−U differs from the last sequence
κ at or before themth spot. Lemma 23.11 says that such points return toC′A in a
uniformly bounded number of steps. In short, all points ofC′A return toC′A in a
uniformly bounded number of steps. But then all orbits inC′A are bounded. This is
a contradiction. 2
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23.6.3 Statement 3

Let ζ ∈ C′A. Let Oζ denote the portion of the forward outer billiards orbit ofζ
betweenζ andρA(ζ ). We mean to use the original outer billiards mapψ ′ here. Let
m be such that

d(φ−1(ζ ),−1) = q−1
m . (23.19)

By definitionφ−1(ζ ) and−1 disagree byZ/Dm+1, but then they agree inZ/Dk for
k = 1, ...,m. In the case whenm = 0, the pointsφ−1(ζ ) and−1 already disagree
in Z/D1. Let κ ∈ 5A denote the sequence corresponding toζ .

Finding the Index: Let ind(κ) be as in §22.1. Letλ be the sequence corresponding
toφ(−1). Thenλ is the last sequence in the twirl order. The sequencesκ andλagree
in positionsk = 0, ...,m− 1 but then disagree in positionm. Hencem is the first
index whereκ disagrees with the last sequence in the twirl order. But thenκ andκ+
disagree in positions 0, ...,m and agree in positionk for k > m. Hence ind(κ) = m.

Excursion Distance Bounds:Lemma 23.11 tells us that the9-orbit of ζ between
ζ andρA(ζ ) wanders betweenqm/2− 4 and 2qm + 4 units from the origin. Here
we are interested in the full outer billiardsOζ . Since the9-orbit of ζ betweenζ
andρζ is a subset ofOζ , the lower bound follows from Lemma 23.11.

The upper bound follows from a simple geometric analysis of the Pinwheel
Lemma. Starting at a point on4 that isR units from the origin, theψ-orbit remains
within 2R+ 8 units of the origin before returning to4. Essentially, theψ-orbit
follows an octagon once around the kite before returning, asshown in Figure 7.3.
The constant of 10 amply takes care of the small deviations from this path that arise
in the proof of the Pinwheel Lemma. Sinceψ ′ always acts as the reflection in a
vertex that is within 1 unit of the origin, we see that the entireψ ′-orbit of interest
to us is at most 2R+ 12 units from the origin. Hence the portion of the orbit of
interest wanders at most 2(qm+ 4)+ 12= 2qm+ 20 units from the origin.

Orbit Length Bounds: The9-orbit of ζ betweenζ andρA(ζ ) has length at most
5q2

m. Examining the proof of the Pinwheel Lemma, we see that a point on4 that isR
units from the origin returns to4 in less than 10R iterates. Given thatR= 2qm+2,
the orbitOζ is at most 20qm+ 20 times as long as the corresponding9-orbit. This
gives the upper bound.

Now we prove the lower bound. Some point in the9-orbit of ζ betweenζ and
ρA(ζ ) lies at leastqm/2− 4 vertical units from the origin. Consecutive iterates in
the9-orbit have vertical distance at most 4 units apart. Hence there are at least
qm/8−1 points in the9-orbit that are at leastqm/4 horizontal units from the origin.
Inspecting the Pinwheel Lemma, we see that the length of theψ ′-orbit between two
such points is at leastqm/4. HenceOζ has length at leastq2

m/32− qm/4.

This completes the proof of statement 3.
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23.7 THE DOUBLE IDENTITY

In this section we will prove Lemma 23.8. Our proof of this result relies on the
following technical theorem.

Theorem 23.13 (Period)For any ǫ > 0, there is an N> 0 with the following
property. Ifζ ∈ I is more thanǫ units from Cn, then the period ofζ is at most N.
The constant N depends only onǫ and A.

We will prove the Period Theorem in Part 6. Here is a corollaryof this result.

Corollary 23.14 UA ∩ I ⊂ CA.

Proof: The constantsN1, N2, ... depend only onǫ andA.
We will suppose thatUA contains a pointζ 6∈ CA and derive a contradiction. By

compactness, there is someǫ > 0 such thatζ is at least 3ǫ from any point ofCA.
SinceCA is the geometric limit ofCn, we see that there is someN1 such thatn > N1

implies thatζ is at least 2ǫ from Cn.
Let {ζn} ∈ I be a sequence of points converging toζ . We can choose these points

so that the orbit ofζn relative toAn is well defined. There is a constantN2 such
thatn > N2 implies thatζn is at leastǫ from Cn. But then, by the Period Theorem,
there is someN3 such that the period ofζn is at mostN3.

On the other hand, by the Continuity Principle in §2.7, the arithmetic graph
Ŵ(ζn, An) converges to the arithmetic graphŴ(ζ, A). In particular, the period of
Ŵ(ζn, An) tends to∞. This is a contradiction. Henceζ cannot exist. 2

Now we state a useful principle that will help with the remainder of the proof of
Lemma 23.8.

Odometer Principle: Let 5A be the sequence space from §1.7. Say that two
sequences in5A are equivalent if they have the same infinite tail ends. Giventhe
nature of the odometer map, we have the following useful principle. Any two equiv-
alent sequences are in the same orbit of the odometer map. Call this theOdometer
Principle. We will use this principle several times in our proofs.

Lemma 23.15 No point of CA − C#
A has a well defined orbit.

Proof: Let {dn} be the renormalization sequence, as above. Call a sequence in
5A equivalent-to-trivialif it either differs from the 0 sequence by a finite number
of terms or it differs from the sequence{di } by a finite number of terms. The
homeomorphismφ2 bijects the equivalent-to-trivial points in5A to CA − C#

A.
Suppose first that the superior sequence forA is not eventually monotone. Refer-

ring to §23.6 for definitions, in this case an equivalent-to-trivial sequence is neither
equivalent-to-first nor equivalent-to-last.

Supposeσ ∈ CA−C#
A has a well defined orbit. Letκ be the equivalent-to-trivial

sequence corresponding toσ . By Lemma 23.11 and the analog for the backward
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orbit, both directions of the orbit ofσ return infinitely often toCA − C#
A. If κ is

eventually 0, then by the Odometer Principle,κ is in the same sequence orbit as
the 0 sequenceκ0. But the point inCA corresponding toκ0 is exactly the vertex
(0,−1). This vertex does not have a well defined orbit. This is a contradiction. Ifκ
is such thatki = di for largei , then by the Odometer Principle,κ is in the same orbit
as the sequence{di }. By Equation 21.5, the corresponding point inCA is (2,−1).
One can easily check that the orbit of(2,−1) is not defined after the second iterate.
Again we have a contradiction.

Now suppose the superior sequence is eventually monotone. We will treat the
case whenA− An is eventually positive. In this case,{An} is eventually monotone
increasing. Suppose thatκ is equivalent to the 0-sequence. We can iterate backward
a finite number of times untilσ returns as the first point ofCA. Hence, without loss
of generality, we can assume thatκ is the first sequence in5A. But now we can
iterate forward indefinitely, and we will reach every equivalent-to-zero sequence by
the Odometer Principle. Eventually, we reach the 0 sequenceand get the same con-
tradiction as above. Ifκ is such thatki = di for largei , we run the same argument
backward. 2

Corollary 23.16 UA ∩ I ⊂ C#
A.

Proof: Corollary 23.14 says thatUA ∩ I ⊂ CA. Since all orbits ofUA are well
defined, Lemma 23.15 implies that

UA ∩ (CA − C#
A) = ∅.

Our result follows immediately. 2

Lemma 23.17 No point of C#
A has a first coordinate in2Z [ A].

Proof: Let{An}be the superior sequence approximatingA. We assume thatAn < A
infinitely often. The other case has the same treatment. Suppose that

α = (2M A+ 2N,−1) ∈ C#
A. (23.20)

By Equation 21.7, the setC#
A is invariant under the map

(x,−1)→ (2− x,−1).

Indeed, the twist automorphism of5 induces this map onCA. From this symmetry,
we can assume thatM > 0.

Let PŴk denote the pivot arc. Suppose, for the sake of contradiction, that(M, N)
is a vertex ofPŴk for somek. Then 2AM + 2N is a finite sum of terms

λ j = |2Aqj − p j |, (23.21)

by Theorem 1.8. But such points all lie inCA −C#
A. This contradiction shows that

(M, N) is not a vertex ofPŴk for anyk.
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(0,0) (M,N)

Figure 23.1: One arc traps another.

Let PŴ+k denote the portion ofPŴk that moves rightward from(0,0). We define
Ŵk similarly. From the definition of the pivot points, the length of PŴ+k tends to∞
with k. Hence{Ŵ+k } and{PŴ+k } have the same Hausdorff limit. We can choosek
large enough so thatPŴ+k contains a low vertex(M ′, N′) to the right of(M, N).
So,PŴ+k connects(0,0) to (M ′, N′) and skips right over(M, N). See Figure 23.1.

Sinceα ∈ C#
A, we can find a sequence of points{αn} ∈ C#

A− Z [ A] such that the
first coordinate ofαn − α is positive. Letζn = αn − α. Note that

ζn 6∈ 2Z [ A] . (23.22)

Let Ŵ̂(ζn, A) be the whole arithmetic graph corresponding toζn. Let

γn = Ŵ(ζn, A) (23.23)

be the component containing(0,0). By the Rigidity Lemma, the sequences

{Ŵ(ζn, An)}, {Ŵn}
have the same Hausdorff limit. HencePŴ+k ⊂ γn oncen is large. In particular,
some arc ofγn connects(0,0) to (M ′, N′) and skips over(M, N). Call this the
barrier arc.

Sinceαn − ζn = α ∈ 2Z [ A], there is another componentβn ⊂ Ŵ̂(ζn) that tracks
the orbit ofαn. One of the vertices ofβn is exactly(M, N). The componentβn is
unbounded in both directions because all defined orbits inC#

A are unbounded. On
the other hand,βn is trapped beneath the barrier arc. It cannot escape out either
end, and it cannot intersect the barrier arc, by the Embedding Theorem. But then
βn cannot be unbounded in either direction. This is a contradiction. 2

Now we observe 3 facts.

• Corollary 23.16 says thatUA ∩ I ⊂ C#
A.

• Lemma 23.17 shows thatC#
A ⊂ C′A.

• Theorem 23.7 shows thatC′A ⊂ UA ∩ I .

Putting these facts together gives Equation 23.8.

Remark: Lemma 23.17 is a purely number-theoretic statement and ought to have
a number-theoretic proof. We do not know one, however.
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23.8 STATEMENT 4

We have already established the first part of statement 4 of the Comet Theorem.
Now we prove the second part.

By statements 1 and 2 of the Comet Theorem, it suffices to consider pairs of
points inC#

A. It follows immediately from Equation 2.1 that two points ofC#
A lie

on the same orbit only if their first coordinates differ by an element of 2Z [ A]. Our
goal is to prove the converse.

Lemma 23.18 All but at most2 orbits in C#
A are erratic.

Proof: By Theorem 23.7, Lemma 23.11, and the backward analog of Lemma 23.11,
all orbits inC#

A are erratic except those corresponding to the eqivalent-to-first se-
quences and the equivalent-to-last sequences. By the Odometer Principle, all the
points inC#

A corresponding to equivalent-to-first sequences lie on the same orbit.
Likewise, all the points inC#

A corresponding to equivalent-to-last sequences lie on
the same orbit. These two orbits are the only ones that can fail to be erratic. 2

Lemma 23.19 Suppose that two points in C#
A have first coordinates that differ by

2Z [ A]. Suppose also that at least one of the points has an erratic orbit. Then the
two points lie on the same orbit.

Proof: One direction follows immediately from Equation 2.1. For the converse,
suppose that the two points have first coordinates that differ by 2Z [ A]. The first
coordinates of the points do not lie in 2Z [ A], by Lemma 23.17. Hence one and the
same arithmetic grapĥŴ contains componentsγ1 andγ2 that, respectively, track the
two orbits.

Since both orbits are dense inC#
A, we know that both are erratic in at least one

direction. Suppose first thatγ1 is erratic in both directions. Sinceγ2 is erratic in
one direction, we can find a low vertexv of γ1 that is not a vertex ofγ2. Sinceγ2 is
erratic in both directions, we can find verticesw1 andw2 of γ1 lying to the left and
to the right ofv, respectively. But then the arc ofγ1 starting atv is trapped beneath
the arc ofγ2 connectingw1 to w2. This contradicts the Embedding Theorem. In
short,̂Ŵ is not big enough to contain both components. 2

It remains only to deal with the case when both points lie on orbits that are only
erratic in only one direction..

Lemma 23.20 Suppose that two points in C#
A have first coordinates that differ by

2Z [ A]. Suppose also that neither point lies on an erratic orbit. Then the two points
lie on the same orbit.

Proof: Let α ∈ C#
A (respectively,β) be the unique point such that the forward

(respectively, backward) first return map toC#
A atα (respectively,β) does not exist.

There are exactly 2 one-sided erratic orbits.α is one orbit, andβ is on the other.
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It suffices to prove thatα − β 6∈ 2Z [ A] × {0}. We will suppose the contrary and
derive a contradiction. Suppose thatα−β = (2Am+2n,0) for some(m,n) ∈ Z2.
α is the last point in the twirl order, andβ is the first point. In terms of sequences,

α corresponds to the sequence{d̃i } andβ corresponds to the sequence{0̃i }. Let{α j }
be a sequence of points inC#

A converging toα, chosen so that the corresponding
orbit is erratic. Define

β j = α j + (β − α). (23.24)

Then

α j − β j = (2Am+ 2n,0). (23.25)

By the case we have already considered,β j lies in the same orbit asα j .
For j large, the sequence corresponding toα j matches the terms of the sequence

for α for many terms. Likewise, the sequence corresponding toβ j matches the
terms of the sequence forβ for many terms. Hence these two sequences disagree
for many terms. Given that the return dynamics toC#

A is conjugate to the odometer
map on the sequence space, we have

2Am+ 2n = π1(α j − β j ) =
N j∑

i=0

a j i λi , |a j i | ≤ di . (23.26)

HereN j →∞ as j →∞, andπ1 denotes projection onto the first coordinate.
Let M be the map from Equation 2.10. We have

M(m,n) =
N j∑

i=0

b j i M(Vi ), |b j i | ≤ di . (23.27)

Hereb j i = ±a j i , depending on the sign ofAi − A. SinceA is irrational,M is
injective. Therefore, settingN = N j for ease of notation, we have

(m,n) =
N∑

i=0

b j i Vi = bNi VN +
N−1∑

i=0

b j i Vi . (23.28)

Looking at the second coordinates, we see that

qN −
N−1∑

i=0

di qi ≤
∣∣∣∣bNi qN −

N−1∑

i=0

b j i qi

∣∣∣∣ = |n|. (23.29)

However, it follows fairly easily from Equation 21.6 that the left hand side tends to
∞ asN j →∞. This contradiction finishes the proof. 2
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Chapter Twenty-Four

Dynamical Consequences

24.1 MINIMALITY

Here we prove Theorem 1.3. Statement 3 of this Theorem is contained in the Comet
Theorem. We just have to prove statements 1 and 2.

Recall from the introduction that a setS⊂ R2 is locally homogeneousif every
two points ofShave arbitrarily small neighborhoods that are translationequivalent.
Note that the points themselves need not be in the same positions within these sets.

Statements 1 and 2 of Theorem 1.3 say, respectively, thatUA is dynamically
minimal and locally homogeneous. Statement 3 of Theorem 1.3is an immediate
consequence of the Comet Theorem.

Proof of Statement 1: Since every orbit inUA intersectsC#
A, it suffices to prove

that every point ofC#
A lies on an orbit that is forward dense inUA, backward dense

in UA, or both.
Let ζ ∈ C#

A be the point. By the Comet Theorem, the orbit ofζ is forward dense
in C#

A, backward dense inC#
A, or both. Assume thatζ lies on an orbit that is forward

dense inC#
A. The case of backward-dense orbits requires a similar treatment.

Let β ∈ UA be some other point. Some pointα ∈ C#
A lies on the orbit ofβ.

Hence(ψ ′)k(α) = β for somek. Hereψ ′ is the outer billiards map. But(ψ ′)k is a
piecewise isometry. Hence(ψ ′)k maps small intervals centered atα isometrically
to small intervals centered atβ. The forward orbit ofζ enters any interval aboutα
infinitely often. Hence the forward orbit ofζ enters every interval aboutβ infinitely
often. 2

Proof of Statement 2:For anyp ∈ UA, there is some integerk such that

(ψ ′)k(p) ∈ C#
A.

Hereψ ′ is the outer billiards map. Butψk is a local isometry. Hence there are
arbitrarily small neighborhoods ofp that are isometric to neighborhoods of points
in C#

A. For this reason, it suffices to prove thatC#
A is locally homogeneous. This is

a purely geometric problem.
Let {dk} denote the renormalization sequence. The setCA breaks intod0 + 1

isometric copies of a smaller Cantor set. Each of these breaks intod1+ 1 isometric
copies of still smaller Cantor sets. And so on. From this we see that bothCA and
C#

A are locally homogeneous. 2
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24.2 TREE INTERPRETATION OF THE DYNAMICS

Let A be an irrational kite parameter. We can illustrate the return dynamics to
C#

A using infinite trees. The main point here is that the dynamicsis conjugate to
an odometer. The conjugacy is given by the mapφ:Z A → CA from the Comet
Theorem. Our figures encode the structure ofφ graphically.

We think ofCA as the ends of a treeTA. We labelTA according to the sequence
of signs{A− An}. SinceA− A0 is negative, we label the level 1 vertices 0, ...,d0

from right to left. Each level 1 vertex hasd1 downward vertices. We label all
these vertices from left to right ifA− A1 > 0 and from right to left ifA− A1 is
negative. And so on. This idea of switching left and right according to the sign of
A− Ak corresponds precisely to our method of identification in Equations 1.8 and
1.9. Figure 24.1 shows the example for the renormalization sequence{1,3,2} and
the sign sequence−,+,−.

0

01 01 01 01 01 01 01 01

100 1

1

2

2

2

2

2

3 3

22 2 2 2
Figure 24.1: Tree labelling.

We have the return map

ρA: C#
A − φ(−1)→ C#

A − φ(−1),

and this map is conjugate to the restriction of the odometer on Z A. Accordingly,
we can extendρA to all of CA even though the extension no longer describes outer
billiards dynamics on the extra points. Nonetheless, it is convenient to have this
extension.

To see whatρA does, we write this code for a given end. We write the code
“backward” so that the topmost level of the tree correspondsto the rightmost digit,
and so on. So, the sequences trail off to the left. For the odometer, we add 1,
carrying to the right. For instance, we have

(. . .000)→ (. . .001)→ (. . .010), (. . .031)→ (. . .100)

Every time many of the initial digits in the odometer turn over, the corresponding
orbit makes a large excursion before it returns. We will formalize this below.
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24.3 PROPER RETURN MODELS AND CUSPED SOLENOIDS

24.3.1 Proper Models

Here we will describe the sense in which the Comet Theorem allows us to combina-
torially model the dynamics onUA, the set of unbounded special orbits. The results
in this section are really just a repackaging of some of the statements of the Comet
Theorem.

Let X be an unboundedmetric space and letf : X→ X be a bijection. We assume
that f 2 moves points by a small amount. That is, there is a universal constantC
such that

d(x, f 2(x)) < C, ∀x ∈ X. (24.1)

The example we have in mind, of course, is the outer billiardsmap

ψ ′: UA→ UA. (24.2)

The square mapψ moves points by at most 4 units.
Say that a compact subsetX0 ⊂ X is aproper sectionfor f if for every N there

is someN′ such thatd(x, X0) < N implies that f k(x) ∈ X0 for some|k| < N′. In
particular, every orbit off intersectsX0. This condition is just the abstract version
of statement 1 of the Comet Theorem. Informally, all the orbits head either directly
towardX0 or directly away fromX0.

Let f0: X0→ X0 be the first return map. This is a slight abuse of notation because
f0 might not be defined on all points ofX0. Some points might exitX0 and never
return. We define two functions

e1,e2: X0→ R+ ∪∞. (24.3)

The functione1(x) is the maximum distance the forward orbit ofx gets away from
X0 before returning asf0(x). The functione2(x) is the length of this same portion
of the orbit. If f0 is not defined onx, then obviouslye2(x) = ∞. The proper section
condition guarantees thate1(x) = ∞ as well.

The condition thatX0 is a proper section guarantees thate1 ande2 are proper
functions of each other. That is, if{xn} is a sequence of points inX0, thene1(x)→∞
if and only if e2(x)→∞. This observation includes the statement thate1(x) =∞
iff e2(x) = ∞ iff f0 is not defined onx0. For the purpose of getting a rough
qualitative picture of the orbits, we consider just the function e1. We sete= e1 and
call e theexcursion function.

Suppose now thatf ′: X′ → X′ is another bijection andX′0 is a proper section.
Let e′: X′0 → R + ∪∞ denote the excursion function for this system. We say
that(X, X0, f ) is properly equivalentto (X′, X′0, f ′) if there is a homeomorphism
φ: X → X′ such that

• φ conjugatesf0 to f ′0.

• e′ ◦ φ ande are proper functions of each other onX0.

These conditions guarantee thatφ carries the points wheref0 is not defined to the
points wheref ′0 is not defined.
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The notion of proper equivalence turns out to be a little too strong for our purposes.
We say that(X, X0, f ) and(X′, X′0, f ′) areessentially properly equivalentif φ has
all the above properties but is defined only on the complementof a finite number
of orbits of X0. In this case, the inverse map has the same property: It will be
well defined on all but a finite number of orbits ofX′0. In other words, an essential
proper equivalence is a proper equivalence, provided that we first delete a finite
number of orbits from the spaces. We call(X, X0, f ) anessentially proper model
for (X′, X′0, f ′).

24.3.2 The Cusped Solenoid

Statement 1 of the Comet Theorem says thatC#
A is a proper section for the map in

Equation 24.2. Now we can describe the proper models for the triple (UA,C#
A, ψ

′).
Statements 2 and 3 in particular describe the excursion function up to a bi-Lipschitz
constant. Here we convert this information into a concrete essentially proper model
for this dymamics.

Let Z A denote the metric Abelian group from the Comet Theorem. For conve-
nience, we recall the definition of the metricd here.d(x, y) = q−1

n−1, wheren is the
smallest index such that [x] and [y] disagree inZ/Dn. Here{pn/qn} is the superior
sequence approximatingA.

We denote the odometer map onZ A by f0. That is, f0(x) = x+1. Topologically,
thesolenoidbased onZ A is defined as the mapping cylinder

S A = Z A × [0,1] / ∼, (x,1) ∼ (x + 1,0). (24.4)

This is a compact metric space.
We now modify this space a bit. First of all, we remove the point

(−1,1/2)

fromS A. This deleted point, the cusp, lies halfway between(−1,0) and(0,0). We
now change the metric on the space by declaring the length of the segment between
(x,0) and(x,1) to be

1

d(x,−1)
Metrically, we simply rescale the length element on each interval by the appropriate
amounts. We call the resulting spaceCA, thecusped solenoidbased onA.

24.3.3 The Main Results

We definef : CA→ CA to be the map such that

f (x, t) =
(

x,
t

d(x,−1)

)
. (24.5)

From the way we have scaled the distances,f maps each point by 1 unit. Indeed,
some readers will recognizef as the time-one map of the geodesic flow onCA. The
original setZ A is a proper section for the map, and the return map is precisely f0.
Put another way,f is a suspension flow overf . Note thatf also depends onA, but
we suppress this from our notation.
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Theorem 24.1 (CA,Z A, f ) is an essentially proper model for(UA,C#
A, ψ

′).

Proof: This is just a repackaging (and weakening) of statements 2 and 3 of the
Comet Theorem. 2

Remarks:
(i) The model forgets the linear ordering onC#

A that comes from its inclusion inI ,
but one can recover this from the discussion in §24.2.
(ii) In a certain sense, the triple(CA,Z A, f ) provides abi-Lipschitz modelfor the
nature of the unboundedness of the orbits inUA. However, it would be misleading
to call the model an actual bi-Lipschitz model for the dynamics onUA because
we are not saying much about what happens to the orbits in the two systems after
they leave their proper section. For instance, the excursion times could be wildly
different from each other even though they are proper functions of each other.

The following result contains statements 1 and 2 of Theorem 1.4.

Theorem 24.2 The time-one map of the geodesic flow on any cusped solenoidserves
as an essentially proper model for the dynamics of the special unbounded orbits
relative to uncountably many different parameters.

Proof: Up to a proper change of the excursion function, the model depends on only
the renormalization sequence, and there are uncountably many parameters realizing
any renormalization sequence. 2

24.3.4 Equivalence and Universality

To each parameterA, we associate the renormalization sequence{dn}. We then
associate the sequence{Dn}, where

Dn =
n−1∏

i=0

(di + 1). (24.6)

We call A and A′ broadly equivalentiff for each m there is somen such that
Dm dividesD′n andD′m dividesDn. Each broad equivalence class has uncountably
many members.

Lemma 24.3 If A and A′ are broadly equivalent, then there is a homeomorphism
fromZ A to Z A′ that conjugates one odometer to the other.

Proof: Each element ofZ A is a compatible sequence{am}with am ∈ Z/Dm. Using
the divisibility relation, this element determines a corresponding sequence{a′m}.
Herea′m is the image ofan under the factor mapZ/Dn → Z/D′m, wheren is such
that D′m dividesDn. One can easily check that this map is well defined and deter-
mines the desired homeomorphism. 2
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Theorem 24.4 If A and B are broadly equivalent, then there is an essentially proper
equivalence between(UA,C#

A, ψ
′
A) and (UB,C#

B, ψ
′
B). In particular, the return

maps to CA and CB are essentially conjugate.

Proof: The homeomorphism fromZ A to ZB maps−1 to −1. By construc-
tion, this homeomorphism sets up a proper equivalence between(CA,Z A, fA) and
(CB,Z B, fB). This result now follows from Theorem 24.1. 2

One might wonder about the nature of the topological equivalence between the
return maps toC#

A andC#
B. One can reconstruct the conjugacy fromthe tree labellings

given in §24.2. The conjugacy is well defined for all points ofCA andCB, but we
typically have to ignore the countable sets of points on which the relevant return
maps are not defined. This accounts for the precise statementof the theorem above.

LetZ denote the inverse limit over all finite cyclic groups. The map x→ x+1 is
defined onZ. This dynamical system is called theuniversal odometer. Sometimes
Z is called theprofinite completionof Z.

We call A universalif every k ∈ N divides someDn in the sequence. IfA
is universal, then there is a group isomorphism fromZ to Z A that respects the
odometer maps. In short, whenA is universal,Z A is the universal odometer. See
[H, §5] for a proof of this fact – stated in slightly different terms – and for a detailed
discussion of the universal odometer.

Lemma 24.5 Almost every parameter is universal.

Proof: A sufficient condition for a parameter to be universal is thatevery integer ap-
pears in the renormalization sequence. We can express the fact that a certain number
appears in the renormalization sequence as a statement thata certain combination
appears in the continued fraction expansion ofA. Geometrically, as one drops a
geodesic down from∞ to A, the appearance of a certain pattern of geodesics in the
Farey graph forces a certain number in the renormalization sequence. As is well
known, the continued fraction expansion for almost every number in(0,1) contains
every finite string of digits. 2

Statement 3 of Theorem 1.4 is contained in the following result.

Theorem 24.6 For almost every A∈ (0,1), the triple (UA,C#
A, ψ

′) is properly
modelled by the time-one map of the geodesic flow on the universal cusped solenoid.

Proof: This result is an immediate consequence of the previous result and Theorem
24.1. 2

Remark: One might wonder if there is a concrete parameter that exhibits this
universal behavior. It seems that the parameterA = e−2 has the following inferior
sequence.

1

1
←

5

7
←

51

71
←

719

1001
· · · , rn+2 = (4n+ 10)rn+1+ rn, n ≥ 0.

One can easily check that this sequence leads to the universal odometer. Thus the
fractional part ofe has universal behavior.
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24.4 SOME OTHER EQUIVALENCE RELATIONS

Call A andB narrowly equivalentif they have the same renormalization sequence
and if the sign ofA− A j is the same as the sign ofB− B j for all j . Here{A j } and
{B j } are the superior sequences approximatingA andB, respectively. Referring to
Equation 1.9, the definition of̃k j relative to the narrowly equivalent parameters is
the same for every index. Each narrow equivalence class is uncountable.

Theorem 24.7 If A and B are narrowly equivalent, then there is anorder-preserving
homeomorphism from I to itself that conjugates the return map on C#

A to the return
map on C#

B. This map is a proper equivalence from(UA,C#
A, ψ

′
A) to (UB,C#

B, ψ
′
B).

Proof: The two spaces5A and5B are exactly the same, and the extended twirl
orders on the (equivalence classes) of these spaces are the same. Thus the successor
maps on the two spaces are identical. The maph = φ′2 ◦ φ−1

2 is a homeomorphism
from CA to CB that carriesC#

A andC#
B and conjugates one return dynamics to the

other. By construction,h preserves the linear ordering onI , and we can extendh to
the gaps ofI − CA in the obvious way. By construction, this map carriesφA(−1)
to φB(−1) and is continuous. Hence it is a proper equivalence. 2

Thefirst renormalizationof the odometer mapx→ x + 1 on the inverse system

. . .→ Z/D3→ Z/D2→ Z/D1 (24.7)

is theD1th power of the map. This corresponds to the mapx→ x+1 on the inverse
system

. . .→ Z/D′3→ Z/D′2→ Z/D′1, D′n = Dn+1/D1. (24.8)

As in the Comet Theorem, eachDn divides Dn+1 for all n, so the construction
makes sense. In terms of the symbolic dynamics on the sequence space5, the
renormalization consists of the first return map to the subspace

5′ = {κ ∈ 5| k0 = 0}. (24.9)

In terms of the dynamics onCA, the first renormalization is the first return map
to the Cantor subset corresponding to5′. Thesecond renormalizationis the first
renormalization of the first renormalization. And so on.

Let Ŵ denote the(2,∞,∞)-triangle group from the Comet Theorem. Given
the construction of the inferior sequence, the enhanced renormalization sequences
for two Ŵ-equivalent parameters have the same tail ends. Thus the tail ends of the
renormalization sequences are the same, and the tail ends ofthe sign sequences are
the same. This gives us the following result.

Corollary 24.8 Suppose that A and B are equivalent underŴ2. Then some renor-
malization of the return map to C#A is conjugate to some renormalization of the
return map to C#

B. The conjugacy is given by an order-preserving homeomorphism.

Remark: The homeomorphism mentioned in the last corollary is a similary. Com-
pare Statement 2 of Theorem 1.5 and see §25.3 for more details.
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Chapter Twenty-Five

Geometric Consequences

25.1 PERIODIC ORBITS

Here we prove statement 1 of Theorem 1.5.

Lemma 25.1 UA has length0.

Proof: SinceUA is locally homogeneous, it suffices to prove thatCA has length 0.
Let λn = |Aqn − pn|, as in Equation 21.5. We define

Gn =
∞∑

k=n+1

2λkdk. (25.1)

Then

CA ⊂
∑

κ∈5n

(
In + X(κ)

)
. (25.2)

Here In is the interval with endpoints(0,1) and (Gn,1). In other words,CA is
contained inDn translates of an interval of lengthGn. We just need to prove that
DnGn→ 0. It suffices to prove this whenn is even. By Equation 21.6,

Dn < ǫ−nqn, ǫ =
√

5/4. (25.3)

By Equation 21.5 we have

Gn < 2
∞∑

k=n+1

q−1
k < 2q−1

n

∞∑

k=1

2−k < 2q−1
n . (25.4)

Here we have used the trivial bound thatqm/qn < 2n−m whenm> n. Therefore

DnGn < 2ǫ−n. (25.5)

This completes the proof. 2

Theorem 25.2 Any defined orbit in I− CA is periodic. There is a uniform bound
on the period depending only on the distance from the point toCA.

Proof: The Comet Theorem combines with statement 2 of Theorem 1.1 toprove
that any defined orbit inI −CA is periodic. The period bound comes from taking a
limit of the Period Theorem asn→∞ in the rational approximating sequence. In
other words, if this result were false, then we could contradict the Period Theorem
using the Continuity Principle. 2

Combining these results, we have statement 1 of Theorem 1.5:Almost every
point ofR × Zodd lies on a periodic orbit.
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25.2 A TRIANGLE GROUP

Let H2 denote the upper half-plane model of the hyperbolic plane. Let Ŵ ⊂
Isom(H2) denote the(2,∞,∞)-reflection triangle group generated by reflections
in the sides of the geodesic triangle with vertices(0,1, i ). Figure 25.1 shows this
triangle. See [Be] for details.

2i

10

H

Figure 25.1: The geodesic triangle with vertices(0,1, i ).

Ŵ is the largest subgroup of Isom(H2) with the following 3 properties.

1. Ŵ preserves the Farey graph.

2. Ŵ permutes the odd rationals and also the even rationals.

3. Every elementT ∈ Ŵ acts onR ∪∞ via an equation of the form

T(x) = ax+ b

cx+ d
, |ad− bc| = 1. (25.6)

On the upper half-plane,T acts either as a linear fractional transformation or
as the composition of a linear fractional transformation with complex conju-
gation. This depends on the sign ofad− bc.

These properties guarantee that elements ofŴ are well adapted to the construction
of the inferior and superior sequences. See §17.1.

Remark: It seems worthwhile to mention the connection betweenŴ and other
familiar groups.Ŵ contains the ideal triangle group generated by reflections in the
sides of the ideal geodesic triangle with vertices(0,1,∞). The ideal triangle group
in turn containsPŴ2, whereŴ2 ⊂ SL2(Z) is thelevel 2 congruence subgroupcon-
sisting of matrices congruent to the identity mod 2. HereP means that we take these
matrices mod±I . Finally,Ŵ is commensurablewith the modular groupPSL2(Z).
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25.3 MODULARITY

Here we will prove statement 2 of Theorem 1.5. Letλk andλ′k be the quantities
associated to parametersA andA′, as in Equation 1.10

Lemma 25.3 Let T ∈ Ŵ be such that T(A) = A′. Then there is some integer m
such that

d′k = dk+m,
λ′k
λk+m

= |T ′(A)|1/2

provided that k is sufficiently large.

Proof: Here T ′(A) = (cA+ d)−2 when T is as in Equation 25.6. Given our
construction of the inferior sequence, and the first two properties ofŴ, we have
T(Ak+m) = A′k for somem and all sufficiently largek. Henced′k = dk+m for these
choices ofk andm. We compute

λ′k = |A′q′k − p′k|, A′ = a A+ b

cA+ d
, T

( p

q

)
= ap+ bq

cp+ dq
. (25.7)

An exercise in modular arithmetic shows that the fraction onthe right is in lowest
terms. Hence

p′k = aqk+m + bpk+m, q′k = cqk+m + dpk+m. (25.8)

Combining the last two equations, we have

λ′k =
∣∣∣∣
(a A+ b)(cqk+m + dpk+m)− (cA+ d)(aqk+m + bpk+m)

cA+ d

∣∣∣∣

=
∣∣∣∣
(ad− bc)(Aqk+m− pk+m)

cA+ d

∣∣∣∣ =
∣∣∣∣
Aqk+m − pk+m

cA+ d

∣∣∣∣ =
λk+m

cA+ d
= λk+m|T ′(A)|1/2.

This completes the proof. 2

Recall thatCA is defined by the formula

CA =
⋃

κ∈5
(X(κ),1), X(κ) =

∞∑

i=0

2kiλi , λi = |Aqi − pi |. (25.9)

If A andA′ areŴ-equivalent, as above, then we have the obvious map

∞∑

i=k0

km+iλm+i →
∞∑

i=k0

kiλ
′
i . (25.10)

By the previous result, this map is well defined ifk0 is large enough. Also by the
previous result, this map is a similarity. HenceC#

A and C#
A′ are locally similar.

HenceUA andUA′ are locally similar.
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25.4 HAUSDORFF DIMENSION

In this section, we review some basic properties of the Hausdorff dimension. See
[F] for more details.

We will work with sets inR × Zodd and especially sets in our favorite interval
I = [0,2]×{−1}. Given an intervalJ, let|J| denote its length. GivenS⊂ R×Zodd

and someδ > 0, we define

µ(S, s, δ) = inf
∑
|Jn|s. (25.11)

The infimum is taken over all countable covers ofS by intervals{Jn} such that
diam(Jn) < δ. Next, we define

µ(S, s) = lim
δ→0

µ(S, s, δ) ∈ [0,∞] . (25.12)

This limit exists becauseµ(S, s, δ) is a monotone function ofδ. Note thatµ(S,1) <
∞ becauseI has finite total length. Finally,

dim(S) = inf{s| µ(S, s) <∞}. (25.13)

The number dim(S) is called theHausdorff dimensionof S.
Given an explicit family of covers, as we have constructed inthe proof of Lemma

25.1, it is easy for us to compute upper bounds on the Hausdorff dimension. Here
we recall a method for getting lower bounds on the Hausdorff dimension. LetS⊂ I
be a compact set. We say thatf : I → R is aρ-densityrelative toS if f is monotone
nondecreasing and constant on the complementary intervalsof S and

C|a− b|ρ ≥ f (b)− f (a) (25.14)

for someC > 0 and all intervals [a,b] ⊂ I such that|a− b| is sufficiently small.

Lemma 25.4 If S admits aρ-density, thendim(S) ≥ ρ.

Proof: This is essentially the Mass Distribution Principle 4.2 in [F, p. 55]. The
function f is the integral of the mass distribution described in connection with this
principle. 2

In computing the functionu(A) = dim(UA), we would prefer to work with the
setsCA. The following lemma justifies this.

Lemma 25.5 UA and CA and C#
A all have the same dimension.

Proof: SinceCA − C#
A is countable, we have dim(CA) = dim(C#

A). SinceUA is
locally homogeneous dim(UA) = dim(UA ∩ J) for any intervalJ about a point in
UA. In particular, dim(UA) = dim(C#

A). 2
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25.5 QUADRATIC IRRATIONAL PARAMETERS

25.5.1 Self Similarity

First, we prove statement 3 of Theorem 1.5.
A Cantor set is commonly calledself-similarif it is a finite union of similar copies

of itself.

Lemma 25.6 Suppose that A∈ (0,1) is a quadratic irrational. Then CA is a finite
disjoint union of self-similar Cantor sets.

Proof: A has an eventually periodic continued fraction expansion. HenceA is the
fixed point of some infinite-order elementT ∈ SL2(R), acting by linear fractional
transformations. But some power ofT lies in the groupŴ. Hence, without loss of
generality, we can takeT ∈ Ŵ. But then the map from Equation 2.9 carries one
clopen subsetV2 of CA to a larger clopen subsetV1. (Hereclopenmeans simultane-
ously closed and open.) Looking at Equation 2.9 and recalling the definition ofCA

from Equation 1.11, we see thatCA is a finite disjoint union of translates ofV1, and
V1 is a finite disjoint union of translates ofV2. HenceV1 is a finite disjoint union of
similar copies of itself. HenceCA is a finite union of translates ofV1, each of which
is a self-similar Cantor set. 2

A self-similar Cantor set has the property that every point in it has arbitrarily
small neighborhoods that are also self-similar Cantor sets. Statement 2 of Theorem
1.3 says that any point ofUA has a neighborhood that is isometric to a neighborhood
in C#

A. Shrinking this neighborhood appropriately, we get a self-similar trimmed
Cantor set surrounding the point inUA. This proves statement 3 of Theorem 1.5.

25.5.2 Dimension Formula

Now we present a dimension formula in the quadratic irrational case. Actually, the
formula is slightly more general. LetA ∈ (0,1) be irrational. Let{pn/qn} be the
associated superior sequence and let{dn} be the renormalization sequence. We call
A tame if

1. qn+1 < Cqn for some constantC that is independent ofn.

2. The following limits exist.

D(A) = lim
n→∞

log(Dn)

n
, Q(A) = lim

n→∞

log(qn)

n
.

There are uncountably many tame parameters. In particular,we have the follow-
ing result.

Lemma 25.7 Quadratic irrational parameters are tame.

Proof: Let A be a quadratic irrational parameter. From the work in §25.3,we
see that the renormalization sequence{dk} is eventually periodic. But this implies
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that the limit D(A) exists. At the same time, we have integersc,d,n such that
qk+n = cqk+d for all sufficiently largek. This easily implies thatQ(A) exists and
thatqk+1/qk is uniformly bounded. 2

Lemma 25.8 Suppose A is a tame parameter. Let{pn/qn} be the associated supe-
rior sequence. Thenλn ∈ [C1,C2] q−1

n for positive constants C1,C2.

Proof: For tame parameters, the renormalization sequence{dn} is bounded. We
have

λn = qn|A− An| < 2d−1
n q−1

n < C2q−1
n ,

by Lemma 17.4. For the lower bound, note first thatλn+1 < λ′n+1 < λn, by Equation
21.7. By the triangle inequality,

|A− An| + |A− An+1| ≥ |An − An+1| ≥
2

qnqn+1
.

Hence

2λn > λn + λn+1 = qn|A− An| + qn+1|A− An+1|

> qn

(
|A− An| + |A− An+1|

)
≥ 2q−1

n+1 ≥ 2C1q−1
n .

This gives the lower bound. 2

Here is the main result for this section.

Theorem 25.9 If A is a tame parameter then u(A) = D(A)/Q(A).

Proof: Let Cn be the covering we constructed in the proof of Lemma 25.1. The
intervals inCn are pairwise disjoint and have the same length. Each interval of Cn

contains(dn + 1) evenly and maximally spaced intervals ofCn+1.
We first use these covers to get an upper bound on dim(UA). There areDn

intervals inCn, all having lengthGn. Choose anyǫ > 0. Forn large,

Dn ∈
(

exp
(
n(D − ǫ)

)
,exp

(
n(D + ǫ)

))
. (25.15)

We have

Gn = 2λ∗n+1 ∈
[
2λn+1, λn

]
∈
[
C1q−1

n+1,C2q−1
n

]
∈ [C3,C2] q−1

n , (25.16)

by the preceding lemma. Hence

Gn ∈
(

exp
(
− n(Q+ ǫ)

)
,exp

(
− n(Q− ǫ)

))
. (25.17)

Settings = (D + ǫ)/(Q− ǫ) and lettingn→∞, we haveµ(UA, s) ≤ 1. Hence
dim(UA) ≤ s. But ǫ is arbitrary. Hence dim(UA) ≤ D/Q.

For the lower bound, we setρ = (D− ǫ)/(Q+ ǫ) and construct aρ-density. Let
X n denote the partition of [0,1] into Dn equally sized intervals. Going from left to
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right, we map thej th interval ofCn into the j th interval ofX n. We map the gaps
between consecutive intervals ofCn to the obvious points common to consecutive
intervals ofX n. The maps{ fn} form a uniformly continuous family, and the limit
f : I → [0,1] exists. By construction,f is monotone nondecreasing and constant
on the components ofI −UA.

Consider [a,b] ⊂ I . By Equation 25.16, the sequence{Gn/Gn+1} is uniformly
bounded. Hence we can assume without loss of generality that|a − b| = Gn for
somen. By construction [a,b] intersects at most 2 consecutive intervals ofCn.
Hence f (b)− f (a) ≤ 2D−1

n . Hence

2|a− b|ρ = 2Gρ
n≥

2 exp

(
− ρn

(
Q+ ǫ

))
=

2 exp

(
− n

(
D − ǫ

))
>

2D−1
n ≥

f (b)− f (a). (25.18)

This shows thatf is aρ-density relative toUA. Hence dim(UA) ≥ ρ. Again,ǫ is
arbitrary, so dim(UA) ≥ D/Q. 2

Example 1: Let A =
√

5− 2 = φ−3, the Penrose kite parameter. Hereφ is the
golden ratio. The inferior sequence forA is

1
1
← 1

3
← 1

5
← 3

13
← 5

21
← 13

55
← 21

89
← 55

233
← 89

377
· · · .

The superior sequence obeys the recurrence relationrn+2 = 4rn+1 + rn, wherer
stands for eitherp or q. The inferior renormalization sequence is 1,0,1,0, .... The
renormalization sequence is 1,1,1, .... HenceD = log(2). From the recurrence
relation, we computeQ = log(

√
5+ 2). Hence

u(A) = log(2)

log(
√

5+ 2)
= log(2)

log(φ3)
.

Example 2: Let A =
√

2− 1. The inferior sequence forA is
1

1
← 1

3
← 3

7
← 7

17
← · · · , rn+2 = 2rn+1 + rn.

All terms are superior. From the recurrence relation, we getD(A) = log(2) and
Q(A) = log(

√
2+ 1). The inferior sequence for 1− A is

1

1
← 3

5
← 17

29
← 99

169
← · · · , rn+2 = 6rn+1 − rn.

All terms are superior. From the recurrence relation, we have D(1− A) = log(3)
andQ(1− A) = 2 log(

√
2+ 1). Hence

u(A) = log(2)

log(
√

2+ 1)
, u(1− A) = log(3)

2 log(
√

2+ 1)
.

In particular,u(A) 6= u(1− A). The hyperbolic isometryz→ 1− z is a symmetry
of the Farey graph that does not belong to the groupŴ. The calculation shows that
the dimension function does not in general have this additional symmetry.
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25.6 THE DIMENSION FUNCTION

Here we prove statement 4 of Theorem 1.5.
TheBorelσ -algebraof subsets ofRn is the smallest collection that contains the

open sets and is closed under complementation and countableunions. ABorel set
is a member of thisσ -algebra. A functionf : Rn → R is Borel-measurableif the
set{x| f (x) ≥ a} is a Borel set for alla ∈ R.

Lemma 25.10 Let S⊂ [0,1]2 be a Borel subset. Let SA denote the intersection of
S with the line{y = A}. Suppose SA is compact for all A. Let f(A) = dim(SA).
Then f is a Borel-measurable function of[0,1].

Proof: This is a special case of [MM , Theorem 6.1]. 2

Recall thatu(A) = dim(UA) the Hausdorff dimension of the set of unbounded
special orbits.

Lemma 25.11 The function u is Borel-measurable.

Proof: When A = p/q, we letCA = O2(J) ∩ I . HereJ is the interval of length
2/q in I whose left endpoint is(0,1). ThusCA is just a thickened version of part
of the fundamental orbit. Having stated this definition, we defineC as in Equation
1.13. By construction,CA is compact for allA ∈ [0,1]. In order to apply Lemma
25.10, we just have to show thatC is a Borel set.

In the proof of Lemma 25.1 we produced a coveringCn of CA by intervals all
having the same length. One can extend this definition to the rational case in a fairly
obvious way. LetC(n)

A denote the union of these intervals. LetC(n) be the corre-
sponding union, withC(n)

A replacingCA in Equation 1.13. The sizes and positions
of the intervals inC(n)

A vary with A in a piecewise continuous way. HenceC(n) is a
Borel set. HenceC = ∩C(n) is a Borel set. 2

Lemma 25.12 The function u is almost everywhere constant.

Proof: The functionu is aŴ-invariant Borel-measurable function on [0,1]. We can
extendu by the action ofŴ so that the extended function̂u has the same properties
on all ofR ∪∞. As is well known,Ŵ actsergodicallyonR ∪∞. See [BKS]. But
then any invariant Borel-measurable function is almost everywhere constant. This
applies tôu. Henceu is almost everywhere equal to some constantu0. 2

Let

S= [0,1]−Q. (25.19)

Now we want to see thatu maps every open subset ofS onto [0,1]. Sinceu
is Ŵ-invariant and theŴ-orbits of S are dense in [0,1], it suffices to prove that
u(S) = [0,1]. We will prove this below.

Say thatA ∈ (0,1) issuperiorif all the terms in the inferior sequence are superior.
Let D = D(A) be as in the dimension formula above.
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Lemma 25.13 If A is tame and superior, then u(A) ≥ D/(D + log 2).

Proof: Referring to the inferior sequence{pn/qn} and the inferior renormalization
sequence{dn}, we always have

qn+1 < 2(dn + 1)qn.

This bound directly applies to the superior sequence whenA is superior. By induc-
tion,

qn ≤ 2Dn.

HenceQ ≤ D + log 2. The bound follows immediately. 2

Lemma 25.14 Let A be a superior parameter whose renormalization sequence{dn}
diverges to∞. If dn+1/dn grows subexponentially, u(A) = 1.

Proof: The same argument as in Lemma 25.8 shows that

λn > (hnqn)
−1, (25.20)

where{hn} grows subexponentially. From Equation 21.7, we get

Gn = 2λ′n > 2λn > 2(hnqn)
−1. (25.21)

Therefore

lim
n→∞

log(Dn)

log(G−1
n )

≥ lim
n→∞

log(Dn)

log(hnqn)

=∗ lim
n→∞

log(Dn)

log(qn)

≥ lim
n→∞

log(Dn)

log(Dn)+ log(2)
= 1. (25.22)

The starred equality comes from the subexponential growth of hn. The same con-
struction as in Theorem 25.9 shows thatu(A) ≥ 1. Henceu(A) = 1. 2

Lemma 25.15 There exists A∈ S such that u(A) = 0.

Proof: We takeA so that the inferior renormalization sequence consists entirely of
0s and 1s. Our argument for the upper bound in Theorem 25.9 givesu(A) = 0 if
the number of 0s between each pair of 1s grows at a fast enough rate. 2

Now we come to the main result.
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Lemma 25.16 u(S) = [0,1].

Proof: In light of the results above, it suffices to prove(0,1) ⊂ u(S). Letx ∈ (0,1).
We will consider only parameters having an odd enhanced inferior renormalization
sequence. Such parameters are determined by their inferiorrenormalization se-
quences.

Let A(M, N) denote the parameter with inferior renormalization sequenceN,0M

repeating. Here 0M denotesM consecutive 0s. These parameters are all quadratic
irrational and hence tame. By Lemma 25.13, we haveu(A(0, N)) > x for N large.
Moreover, for fixedN, we haveu(A(M, N)) → 0 asM → ∞. Hence we can
chooseM andN such that

u(A(M + 1, N)) < x < u(A(M, N)). (25.23)

(If we have equality on either side, we are finished, so we can assume strict inequal-
ity.) We fix this pair(M, N) for the rest of the proof.

For any binary sequence,ǫ = {ǫk} we let A(ǫ) be the parameter with inferior
renormalization sequence

N,0M+ǫ1 , N,0M+ǫ2 , N,0M+ǫ3, ....

By construction,

D(A(ǫ)) = D = log(N) (25.24)

independent ofǫ andM. Consider the sequence{qk} of denominators of superior
terms corresponding toA(ǫ). By Equation 25.23, we have

logqn

n
< x D,

logqn

n
> x D,

respectively, for the 0-sequence and for the 1-sequence, oncen is large. Inserting
an additional 0 into the inferior renormalization sequencehas the effect of at most
doubling the terms in the denominator sequence. (Compare the proof of Lemma
21.1.) Therefore we can choose the firstn terms ofǫ such that

∣∣∣∣
log(qn)

n
− x D

∣∣∣∣ ≤
log 2

n
,

providedn is large. Passing to a subsequence and taking a limit, we can chooseǫ
so thatQ(A(ǫ)) = x D. But thenA(ǫ) is tame andu(A(ǫ)) = x. 2

We have already shown that the functionu is almost everywhere constant. Let
r ∈ [0,1] be arbitrary. We have just shown thatu−1(r ) is nonempty. Butu is
invariant under the(2,∞,∞)-triangle group. Henceu−1(r ) is dense inS. This
finishes the proof of statement 4 of Theorem 1.5.



book April 3, 2009

Part 6. More Structure Theorems

In this part of the book, we will prove all the results left over from Part 5. The
material in this part is probably the most difficult, so it seems worthwhile to point
out that one can stop reading early and still take away partial results.

• In Chapter 26, we prove the Copy Theorem from §22.2. Knowingjust the
Copy Theorem, we can conclude thatC#

A ⊂ UA. That is, the trimmed Cantor
set from the Comet Theorem iscontainedin the union of special unbounded
orbits. All the dynamical results onC#

A – e.g., the essential conjugacy to the
odometer – follow just from the Copy Theorem. This might be a nice result
for the reader interested mainly in the existence and natureof unbounded
orbits.

• In Chapter 27, we define what we mean by the pivot arc relativeto an even
rational kite parameter. Along the way we will prove anotherversion of the
Diophantine Lemma from §18.2. This lemma works for pairs of odd rationals,
and the result here works for pairs of Farey-related rationals, either even or
odd. This whole chapter is a prelude to the last 4 chapters.

• In Chapter 28, we prove the Pivot Theorem from §22.2. The Pivot Theorem
works in both the even and odd cases, and is proved in an inductive way
that requires both cases. From the Pivot Theorem and the CopyTheorem
combined, we have Theorem 1.8.

• In Chapter 29, we prove the Period Theorem. Combining the Copy Theorem,
the Pivot Theorem, and the Period Theorem, we prove thatUA ∩ I = C#

A. In
other words, we completely characterize the set of unbounded orbits inside
the special intervalI from the Comet Theorem.

• In Chapter 30, we prove a technical result, the Hovering Lemma, which rules
out the existence of certain pathological components of thearithmetic graph.
We use the Hovering Lemma as a step in the proof of the Low Vertex Theorem.

• In Chapter 31, we prove the Low Vertex Theorem. This is the technical result
we needed for statement 1 of the Comet Theorem. Statement 1 ofthe Comet
Theorem is the result that gives us the minimality and homogeneity of UA.
So, one needs to read all the way to the end to obtain the globalstructural
results forUA.
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Chapter Twenty-Six

Proof of the Copy Theorem

26.1 A FORMULA FOR THE PIVOT POINTS

Let A be an odd rational. LetA− be as in Equation 4.1. LetV− = (q−,−p−). Here
we give a formula for the pivot pointsE± associated toA. Recall that these points
are the endpoints of the pivot arc, the subject of the Copy Theorem.

Lemma 26.1 The following are true.

• If q− < q+, then E+ + E− = −V− + (0,1).

• If q+ < q−, then E+ + E− = V+ + (0,1).

Proof: We will establish this result inductively. Suppose first that 1/1← A. Then

A = 2k− 1

2k+ 1
, E− = (−k, k), E+ = (0,0), V− = (k,−k + 1).

A− =
k− 1

k
, q− = k− 1< k = q+.

The result works in this case.
In general, we have

A = A2, A0← A1← A2.

There are 4 cases, depending on Lemma 17.2. Here the index ism = 1. We will
consider case 1. The other cases are similar. By case 1, we have (q1)+ < (q1)−.
Hence, by induction,

E+1 + E−1 = (V1)+ + (0,1).
SinceA1 < A2, we have

E−2 = E−1 , E+2 = E+1 + d1V1.

Therefore

E+2 + E−2 = (V1)+ + d1V1+ (0,1) = (V2)+ + (0,1).
The last equality comes from case 1 of Lemma 17.2. As we remarked after stating
Lemma 17.2, this result works for both numerators and denominators.) In case 1,
we have(q2)+ < (q2)−, so the result holds. 2

Recall thatR1 = R1(A) and R2 = R2(A) are the two parallelograms from the
Decomposition Theorem. See Chapter 19.
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Lemma 26.2 E− lies to the left of R1, and E+ lies to the right of R1.

Proof: Let π1 denote the projection to the first coordinate. One of the bottom
vertices ofR1 is (0,0). We will consider the case when the left bottom vertex is
(0,0). In all cases one can easily check from the definitions thatπ1(E−) ≤ −1.
HenceE− lies to the left ofR1.

Consider the right side. We haveq+ < q− in our case. By case 2 of Lemma 26.1
and the result for the left hand side, we have

π1(E
+) ≥ π1(V+)+ 1.

But V+ lies on the line extending the bottom right edge ofR1, exactly 1/q vertical
units beneath the bottom edge ofR1. This right edge has a slope greater than 1.
Finally, the line connectingV+ to π1(E+) has a nonpositive slope becauseE+ is a
low vertex lying to the right ofV+. From all this geometry, we see thatE+1 lies to
the right ofR1. 2

Figure 26.1 illustrates this result for the parameter 13/57. The smaller of the two
parallelograms isR1 in this case. The pivot arc starts out on the far left and extends
about to the bottom middle of the figure.

Figure 26.1: PŴ(13/57) andR1(13/57) andR2(13/57).

Note that the pivot arc is symmetrically situated with respect to R1. This always
happens, as we shall see later on.
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26.2 A DETAIL FROM PART 5

While we are in the neighborhood, we will clear up a detail from Part 5, namely,
the proof of Lemma 22.5. For convenience, we repeat the statement here. In this
statement,E+ and E− are the pivot points relative to the odd rational parameter
A = p/q.

Lemma 26.3

−q

2
< π1(E

−) < π1(E
+) <

q

2
.

Proof: We will prove this result inductively. Suppose that

A1← A2,

and the result is true forA1. We consider the case whenA1 < A2. The case when
A1 > A2 requires the same treatment. WhenA1 < A2, we have

E−1 = E−2 ,

so certainly the bound holds forE−1 .
For the(+) case, we have

π1(E
+
2 ) = π1(E

+
1 )+ d1q1 d1 = floor

(
q2

2q1

)
. (26.1)

There are two cases to consider.

Case 1:Suppose thatδ1 = floor(q2/q1) is odd. In this case

(2d1+ 1)q1 < q2, H⇒ d1q1 <
q2

2
− q1

2
.

The first equation implies the second. Hence, by induction,

π1(E
+
2 ) <

q1

2
+ q2− q2

2
<

q2

2
.

Case 2: Suppose thatδ1 is even. Then we have case 2 of Lemma 17.2 applied
to the indexm= 1. This is to say that

(q1)− < (q1)+. (26.2)

From the formula above, the first coordinate ofE−2 + E+2 is negative. Hence

|π1(E
−)| > |π1(E

+)|.

This fact finishes the proof. 2
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26.3 PRELIMINARIES

As preparation for the main argument of our proof, we prove several easy results in
this section and also set up some notation.

The pivot points are well defined vertices, but so far, we do not know that the
pivot arc is well defined. That is, we do not know thatE− and E+ are actually
vertices ofŴ. These points might be vertices of some other component ofŴ̂. We
will prove the well definedness result along with the proof ofthe Copy Theorem.

To start things off, we prove that the pivot arcs are well defined in the simplest
cases.

Lemma 26.4 If 1/1← A, then the pivot arc is well defined relative to A.

Proof: Here

A = 2k− 1

2k+ 1
. (26.3)

In §19.5, we showed that the line segment connecting(0,0) to (−k, k) is contained
in the arithmetic graph. So, the pivot arc is well defined. 2

Notation: Here we introduce some notation that we will use repeatedly below. Let
A1 be an odd rational. For each integerδ1 ≥ 1, there is a unique odd rational
A2 = A2(δ1) such thatA1← A2 and

δ1 = floor

(
q2

q1

)
.

Thus the numbersA2(1), A2(2), ... give the complete list of odd rationals having
A1 as an inferior predecessor. Lemma 17.2 describes how to construct A2(δ1). For
instance, ifA1 = 1/3 then

A2(1) =
1

5
, A2(3) =

3

11
, A2(5) =

5

17
, A2(2) =

3

7
, A2(4) =

5

13
.

We have listed the numbers this way to show the pattern better.

Lemma 26.5 Let E±j be the pivot points associated to the parameter A1. There is
an arc PŴ1(δ1) ⊂ Ŵ1 whose endpoints are E−2 and E+2 .

Proof: Suppose thatA1 < A2. When A2 < A1 the proof is similar. Then, by
Equation 22.3, we have

E−2 = E−1 , E+2 = E+1 + d1V1, V1 = (q1,−p1).

Hered1 is as in Equation 4.5 and Lemma 17.2. ButŴ1 is invariant under translation
by V1. HenceE±2 is a vertex ofŴ1. 2
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26.4 THE GOOD PARAMETER LEMMA

Call A1 a good parameterif

PŴ1 ⊂ 11(I ). (26.4)

Here11(I ) is the region from the Diophantine Lemma defined relative to the pair
(A1, A2(1)). We call I thebase interval. We will give a formula below. Here is the
main result in this section.

Lemma 26.6 (Good Parameter)If A1 is good and A1← A2, then the Copy The-
orem holds for the pair(A1, A2).

We will prove this result in a case-by-case way. That is, we will treat the pair(
A1, A2(k)

)
for k = 1,3,5, ... and k = 2,4,6, .... The case whenk = 1 is

pretty easy. The cases whenk = 2 andk = 3 are the critical cases, and they have
essentially the same proof. The remaining cases are easy. For the rest of this section,
we assume thatA is good.

Our proof will use the Mismatch Principle established in Chapter 19. For conve-
nience, we repeat it here.

Mismatch Principle: Let Ŵ andŴ′ be two arithmetic graphs. IfŴ′ andŴ fail
to agree inR1, then there are two adjacent vertices ofŴ′ ∩ R1 where the two arith-
metic graphŝŴ andŴ̂′ do not agree.

26.4.1 An Easy Case

Here we show that the Copy Theorem holds forA1 andA2(1). Note that

PŴ1(1) = PŴ1. (26.5)

The pivot points do not change in this case:E±1 = E±2 . So, if A1 is good, then
the Diophantine Lemma immediately implies thatPŴ1(1) = PŴ1 ⊂ Ŵ2. But then
there is an arc ofŴ2 that connectsE−2 to E+2 , the two endpoints ofPŴ1(1). This
shows that this pivot arc forA2 is well defined as a subarc ofŴ(A2) and moreover
that his pivot arc is a subarc ofŴ1.

Before we leave this section, we establish some notation to be used below. Let
A0 be such that the sequence

A0← A1← A2(1)

is part of the inferior sequence. LetI be the base interval, as above. We will consider
the case whenA0 < A1. The other case is similar. In the case at hand, the base
interval is given by

I =
[
−q1+ 2,q1+ (q2)+ − 2

]
=
[
−q1+ 2,q1+ (q1)+ − 2

]
. (26.6)

The first equality is Lemma 17.8. The second equality is case 1of Lemma 17.2,
with d1 = 0.

For later purposes, we write

I =
[
I left, Iright

]
. (26.7)
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26.4.2 The Critical Odd Case

Now we show that the Copy Theorem holds forA1 and A2(3). The basic idea is
to build from the easy case we have already handled. We again consider the case
whenA0 < A1 for ease of exposition. The other case is essentially the same. From
Lemma 17.2, we know thatA1 < A2(3), just as we knew above thatA1 < A2(1).

We define

A2 = A2(1), A∗2 = A2(3). (26.8)

We attach a(∗) to objects associated toA∗2. Let I be the base interval. LetI ∗

denote the interval corresponding to the pair(A1, A∗2). By Lemma 17.2, we have
(q∗2)+ = q1+ (q1)+. Hence, by Lemma 17.8 and by definition,

I ∗ =
[
I left, Iright + q1

]
. (26.9)

Lemma 26.7

PŴ1(3) = PŴ1 ∪ γ ∪
(

PŴ1 + V1

)
, γ ∈ (R2 + V1). (26.10)

That is, PŴ1(3) is obtained from PŴ1(1) by concatenating one period ofŴ1 to the
right.

Proof: Let Rj = Rj (A1), as in the Decomposition Theorem forA1. As in Lemma
26.2, we know thatR1 lies to the right of the origin andR2 to the left. This is
because(q1)+ < (q1)− in the case we are considering. By Lemma 26.2, the arc
PŴ1 completely crossesR1. The left endpoint lies inR2, and the right endpoint lies
in R2 + V1, the translate ofR2 that lies on the other side ofR1. By symmetry, one
endpoint ofPŴ1(1) entersR2+ V1 from the left, and one endpoint ofPŴ1(1)+ V1

entersR2+ V1 from the right. The arcγ joins two points already inR2+ V1. This
arc cannot cross out ofR2 + V1, by Lemma 19.2. 2

2 10 +

Γ

1

1(1)P
u w

2R R VR

Figure 26.2: Decomposition ofPŴ1(3).

Now that we have brokenPŴ1(3) into three pieces, as shown in Figure 26.2, we
have three pieces to consider. The left piece is is easy.

PŴ1 ⊂ 11(I ) ⊂ 11(I
∗) H⇒ PŴ1 ⊂ Ŵ(A∗2). (26.11)

The first containment is the definition of goodness. By the Diophantine Lemma, the
first equation implies the second.
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The right piece is also easy. Anyv∗ ∈ PŴ1 + V1 has the formv + V1, where
v ∈ PŴ1. By Lemma 18.1, we have

G1(v
∗) = G1(v)+ q1, H1(v

∗) = H1(v)+ q1.

Hencev ∈ 11(I ) impliesv∗ ∈ 1(I ∗). Therefore

PŴ1 + V1 ⊂ 11(I
∗) H⇒ PŴ1 + V1 ⊂ Ŵ(A∗2). (26.12)

The middle piece is harder.

Lemma 26.8 γ ⊂ Ŵ(A∗2).

Proof: We will use the same argument that we used in §19.4. Sinceγ ⊂ R2, we
just have to show that the vertices ofR2 belong to the set11(I ∗)∪12(I ∗). This is
a calculation just like the one in §19.4.

Now for the calculation. Letu andw, respectively, be the upper left and upper
right vertices ofR2 + V1. We have

u ≈ W1 +
(q1)+

q1
V1, w = W1 + V1. (26.13)

Here the vectors are as in Equation 3.2,as usual. The approximation is good to within
1/q1. To avoid approximations, we consider the very slightly altered parallelogram
R̃2 + V1. The vertices are

(V1)
+, ũ = W1 +

(q1)+

q1
V1,

V1, w = V1+W1. (26.14)

Each vertex of the new parallelogram is within 1/q1 of the corresponding old paral-
lelogram. Using the Mismatch Principle, it suffices to do thecalculation inR̃2+V1.
Here is the calculation.

G1(ũ)− (−q1)

= (2q1+ q+)− H1(w)

=q1+ (q1)+ −
q2

1

p1+ q1
≥ 2. (26.15)

These bounds hold for all but a few exceptional parameters, as in Lemma 19.4. The
remaining few cases can be treated using exactly the same tricks as in §19.5. 2

Now we have shown thatPŴ1(3) ⊂ Ŵ2, as desired.

26.4.3 The Rest of the Odd Cases

We will consider the case whenδ1 = 5. The casesδ = 7,9,11, ... have the same
treatment.

In the case at hand,PŴ1(5) is obtained by concatenating 2 periods ofŴ1 to the
right of PŴ1(1). We have decomposition of the form

PŴ1(5) = PŴ1(1) ∪ γ ∪
(

PŴ1(1)+ 2V1

)
, γ ⊂ (R2 + V1) ∪ (R2 + 2V1).

(26.16)
Hereγ is contained in a parallelogram that is twice as long as in thecaseδ = 3. The
calculations are exactly the same in this case. The key pointis thatI ∗ = [a,b+ 2q1].
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26.4.4 The Even Cases

Once we take care of the critical even case, we will treat the remaining even cases
just as we treated the remaining odd cases. We will show that the Copy Theorem
holds for A1 and A2(2). As in the odd case, we assume thatA0 < A1. The other
case is entirely similar.

Our proof here is about the same as in §26.4.2. We will just indicate the highlights.
The same argument as in §26.4.2 gives the decomposition

PŴ1(2) =
(

PŴ1(1)− V1

)
∪ γ ∪ PŴ1(1), γ ⊂ R2. (26.17)

The same arguments as in §26.4.2 take care of the left and right pieces ofPŴ1(2),
as shown in Figure 26.3. Now we repeat the analysis for the middle arcγ . Com-
bining case 4 of Lemma 17.2 with Lemma 17.8, we have

I ∗ =
[
−q1− (q1)− + 2,q1 − 2

]
. (26.18)

We have

u ≈ −(q1)−

q1
V1+W1, w = W1. (26.19)

Again, the approximation holds up to 1/q1.

1(1)P

1

Γ

11 2

u w

0R RRV

Figure 26.3: Decomposition ofPŴ1(2).

To avoid approximations, we use the modified parallelogramR̃2 with vertices

−(q1)−

q1
V1, ũ = −(q1)−

q1
V1 +W1, (0,0), w = W1. (26.20)

Again, this is justified by the Mismatch Principle. The following estimate combines
with the Diophantine Lemma to show thatγ ⊂ Ŵ2(A∗2).

G1(ũ)− (−q1− (q1)−)

=q1− H (w)

=q1− H (w)

=q1−
q1

p1+ q1
≥ 2. (26.21)

This calculation takes care of the same parameters as in Lemma 19.4, and then the
same tricks as in §19.5 take care of the exceptional cases.
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26.5 THE END OF THE PROOF

The Good Parameter Lemma reduces our job to showing that any odd rational
parameter is good. We will give an inductive argument.

Lemma 26.9 If 1/1← A, then A is good.

Proof: We write 1/1← A← Â. In this case, Lemma 17.2 tells us that

1/1> A > Â (26.22)

(The first inequality is obvious.) We have

A =
2k− 1

2k+ 1
, Â =

4k− 3

4k+ 1
, q̂− = k.

By Lemma 17.8, we have

I =
[
−q− q− + 2,q − 2

]
= [−3k+ 1,2k− 1]

The left vertex ofPŴ1 is u = (−k, k), and the right vertex isv = (0,0). We
compute

G(u) = −k− 1 ≥ −3k+ 1, H (w) = 0 ≤ 2k − 1.

The extreme case occurs whenk = 1. 2

Lemma 26.10 A = p/q is good if q< 20or if p = 1.

Proof: We check the caseq < 20 by hand. Ifp = 1, the pivot arc is just the
edge connecting(−1,1) to (0,0), whereas the intervalI contains [−q,q], a huge
interval. This case is obvious. 2

Now we establish the inductive step. Suppose thatA1← A2 and thatA1 is good.
Having eliminated the few exceptional cases by the result above, the argument in
the previous section shows thatPŴ2 ⊂ 11(I1). HereI1 is the interval based on the
constant�(A1, A2). This is the Diophantine constant defined in §17.4 relative to
the pair(A1, A2). To finish the proof of the Copy Theorem, we just have to establish
the following equation.

PŴ2 ⊂ 12(I2), (26.23)

whereI2 is the different interval based on the pairA2← A3, with δ(A2, A3) = 1.
Here we establish two basic facts.

Lemma 26.11 I1 ⊂ I2, and either endpoint of I1 is more than1 unit from the
corresponding endpoint of I2.
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Proof: By Lemma 17.8, applied to both parameters, we have

I1 ⊂ [−q2+ 3,q2− 3] ⊂ [−q2− 2,q2− 2] ⊂ I2.

This completes the proof. 2

Let G j and H j be the linear functionals associated toA j in the Diophantine
Lemma. See §18.1.

Lemma 26.12 |G1(v)− G2(v)| < 1 and|H1(v)− H2(v)| < 1 for v ∈ 11(I1).

Proof: From Lemma 17.8 and a bit of geometry, we get the bound

(m,n) ∈ 11(I1) H⇒ max(|m|, |n|) ≤ q2. (26.24)

Looking at Equation 18.2, we see that

G(m,n) =
(

1− A

1+ A
,
−2

1+ A

)
· (m,n) = (G1,G2) · (m,n).

H (m,n) =
(

1+ 4A− A2

(1+ A)2
,

2− 2A

(1+ A)2

)
· (m,n) = (H1, H2) · (m,n). (26.25)

A bit of calculus shows that

|∂AG j | ≤ 2, |∂AH1| ≤ 6, |∂AH2| ≤ 2. (26.26)

SinceA1← A2, we have

|A1− A2| =
2

q1q2
. (26.27)

Putting everything together, and using basic calculus, we arrive at the bound

|G1(v)− G2(v)|, |H1(v)− H2(v)| < 16/q1 < 1, (26.28)

at least forq1 > 16. 2

We have already remarked, during the proof of the Decomposition Theorem, that
no lattice point lies between the bottom of12(I2) and the bottom of11(I2). Hence
F1(v) > 0 iff F2(v) > 0. The two lemmas now show that11(I1) ⊂ 12(I2). This
was our final goal, from Equation 26.23.

This completes the proof of the Copy Theorem.
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Chapter Twenty-Seven

Pivot Arcs in the Even Case

27.1 MAIN RESULTS

Given two rationalsA1 = p1/q1 andA2 = p2/q2, we introduce the notation

A1 ⊢ A2 ⇐⇒ |p1q2− q1 p2| = 1, q1 < q2. (27.1)

In this case, we say thatA1 andA2 areFarey-related. We sometimes call(A1, A2)
a Farey pair.

We have the notions ofFarey additionandFarey subtraction, respectively.

A1 ⊕ A2 =
p1+ p2

q1+ q2
, A2⊖ A1 =

p2− p1

q2− q1
. (27.2)

Note thatA1 ⊢ A2 implies thatA1 ⊢ (A1 ⊕ A2) and thatA1 is Farey-related to
A2 ⊖ A1.

Lemma 27.1 Let A1 be an even rational. Then there is a unique odd rational A2

such that A1 ⊢ A2 and2q1 > q2. In this case, we write A1 |H A2.

Proof: Equation 4.1 works for both even and odd rationals. WhenA1 is even, ex-
actly one of the rationals(A1)± is also even. Call this rationalA′1. ThenA′1 ⊢ A1.
We defineA2 = A1⊕ A′1. If B2 were another candidate, thenB2⊖ A′ would be the
relevant choice of(A1)±. HenceB2 = A2. 2

Let A be an odd rational. Then eitherA− |H A or A+ |H A when A is an
odd rational. IfA− |H A, then we writeA+ ⇐ A. The relationship implies that
2q+ < q. Likewise we writeA− ⇐ A when 2q− < q. Here is an example: Let
A = 3/7. Then

A+ = 1/2⇐ 3/7, A− = 2/5 |H 3/7.

So far we have defined pivot points and arcs for odd parameters. Now we define
them for even parameters. We have

E±(A1) = E±(A2), A1 |H A2. (27.3)

This makes sense because we have already defined the pivot points in the odd case.
We still need to prove that these vertices lie onŴ1. We will do this below.

Assuming that the pivot pointsE±1 are vertices ofŴ1, we definePŴ1 to be the
lower arc ofŴ1 that connectsE−1 to E+1 . SinceŴ1 is a polygon in the even case,
it makes sense to speak of the lower arc. Figure 27.1 shows an example. Here
PŴ1 = PŴ2. We will show that this always happens.
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Figure 27.1: Ŵ(16/39), in black, overlaysŴ(25/61), in gray.

In this chapter we prove the following results.

Lemma 27.2 Let A1 |H A2. Then PŴ1 is well defined and PŴ1 = PŴ2.

Lemma 27.3 (Structure) The following are true.

1. If A− ⇐ A, then E+(A) = E+(A−).

2. If A+ ⇐ A, then E−(A) = E−(A+).

3. If A− ⇐ A, then E−(A)+ V = E−(A−)+ kV− for some k∈ Z.

4. If A+ ⇐ A, then E+(A)− V = E+(A+)+ kV+ for some k∈ Z.

The Structure Lemma is of crucial importance in our proofs ofthe Pivot Theorem
and the Period Theorem. Here we illustrate its meaning and describe a bit of the
connection to the Pivot Theorem. Figure 27.2 shows slightlymore than one period
of Ŵ(25/61), in black. This black arc overlaysŴ(9/22) on the left and

Ŵ(9/22)+ 2V(9/22)

on the right. Call these two gray components the eggs. Here

9/22⇐ 25/61.

The points

E+(25/61), E−(25/61)+ V(25/61)

are the left and right endpoints, respectively, of the big central bump ofŴ(25/61).
Call this black arc the bump. The content of the Structure Lemma (in this case) is
that the endpoints of the bump are simultaneously pivot points on the eggs. The
reader can draw many figures like this using Billiard King.
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Figure 27.2: Ŵ(25/61) overlays several components ofŴ̂(9/22).

The content of the Pivot Theorem for 25/61 is that the bump has no low vertices
except its endpoints. Note that the ends of the bump copy pieces of the eggs. If we
understand the behavior of the eggs – meaning how they rise away from the baseline
– then we understand the behavior of the ends of the bump. Knowing that the bump
behaves nicely near its endpoints gets our proof off the ground so to speak.

The eggs are based on a simpler rational, and this suggests aninductive approach
to the Pivot Theorem: In this way, the behavior of the arithmetic graph for a simpler
rational gives us information about what happens for a more complicated rational.
This is (some of) the strategy for our proof of the Pivot Theorem. In the first section
of the next chapter, we will present a long and somewhat informal discussion about
the remainder of the strategy.

Remarks:
(i) In §27.5 below we will describe the precise relationshipbetween the two pivot
arcs in the cases of interest to us. After reading the description, the reader will
perhaps be able to see this connection as illustrated in Figure 1.5.
(ii) Notice in Figure 27.2 that the gray curves lie completely above the black one ex-
cept for the edges where they coincide. There is nothing in our theory that explains
such a clean kind of relationship, but it always seems to hold. There is a similar
phenomenon for pairs of even rationals. See Figure 1.5.
(iii) The Structure Lemma has a crisp result that is easily checked computationally
for individual cases. However, as the reader will see, our proof is rather tedious and
we wish we had a better one.
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27.2 ANOTHER DIOPHANTINE LEMMA

Here we prove a copying lemma that helps with Lemma 27.2. Our result works for
Farey pairs. Let11(I ) and12(I ) be the sets defined exactly as in the Diophantine
Lemma. See §18.2. The result we prove here is actually more natural than our
original result. However, the original result better suited our more elementary
purposes.

Lemma 27.4 Suppose that A1 ⊢ A2.

1. If A1 < A2, let I = [−q1+ 2,q2 − 2].

2. If A1 > A2, let I = [−q2+ 2,q1− 2].

ThenŴ̂1 andŴ̂2 agree on11(I ) ∪12(I ).

Proof: We will consider the case whenA1 < A2. The other case requires a very
similar treatment. In the proof of the Diophantine Lemma we used only the oddness
of the rationals in Lemma 17.5. Once we prove the analog of this result in the even
setting, the rest of the proof works verbatim.

Recall that an integerµ is good if

[ A1µ] = [ A2µ] . (27.4)

Here [ ] denotes the floor function. The analog of Lemma 17.5 isthe statement
that an integerµ is good provided thatµ ∈ (−q1,q2). We will give a geometric
proof. LetL1 (respectively,L2) denote the line segment of slope−A1 (respectively,
−A2) joining the two points whose first coordinates are−q1 andq2. If we have a
counterexample to our claim, then there is a lattice point(m,n) lying betweenL1

andL2.
If m < 0, we consider the triangleT with vertices(0,0) and−V1 and(m,n).

HereV1 = (q1,−p1). The vertical distance between the left endpoints ofL1 and
L2 is 1/q2. By the base-times-height formula for triangles,

area(T) < q1/(2q2) < 1/2. (27.5)

But this contradicts the fact that 1/2 is a lower bound for the area of a lattice triangle.
If m > 0, we consider the triangleT with vertices(0,0) andV1 and(m,n). The
lattice point(m,n) is closer to the line containingL1 than is the right endpoint of
L2, namely,(q2,−p2). Hence

area(T) < area(T ′), (27.6)

whereT ′ is the triangle with vertices(0,0) andV1 andV2. But

area(T ′) = 1/2 (27.7)

becauseA1 andA2 are Farey-related. We have the same contradiction as in the first
case. 2
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27.3 COPYING THE PIVOT ARC

Here we prove Lemma 27.2. As we did for the Decomposition Theorem, we will
first establish the result for most parameters. Then we will treat the exceptional
cases.

Suppose thatA1 |H A2. To show thatPŴ1 is well defined, we just have to
show PŴ2 ⊂ Ŵ1. This result simultaneously shows thatPŴ1 = PŴ2 because the
endpoints of these two arcs are the same by definition.

In the case at hand, we haveA1 = (A2)−. To simplify the notation, we write
A = A2. ThenA1 = A−. By Lemma 27.4, it suffices to prove that

PŴ ⊂ 1(J), J =
[
−q− + 2,q − 2

]
. (27.8)

We have actually already proved this, but it takes some effort to recognize the fact.
Let A′← A denote the inferior predecessor ofA. Sinceq− > q+, we have

A′ = A− ⊖ A+. (27.9)
In the previous chapter, when we proved the Copy Theorem, we established

PŴ ⊂ 1′(J ′), J ′ =
[
−q′ + 2,q′ + q+ − 2

]
, (27.10)

as long asp′ ≥ 3 andq′ ≥ 7. Here1′ is defined relative to the linear functionals
G′ andH ′, which are defined relative toA′. The right endpoint in Equation 27.10
comes from Lemma 17.8. The point is that the calculation in Lemma 26.8 gives the
same bounds as the calculation for Lemma 19.4.

Now we observe that

q′ = q− − q+ < q− (27.11)
and

q′ + q+ < (q− − q+)+ q+ = q− < q. (27.12)
These calculations show thatJ ′ ⊂ J. Usually J is much larger.

The region1(J) is computed relative to the parameterA, whereas the region
1′(J ′) is computed relative to the parameterA′. The same argument as in Lemma
26.12 shows that

1(J) ⊂ 1′(J ′) (27.13)
except whenq < 20. We check the cases whenq < 20 by hand, using Billiard
King.

The distance between the left endpoint ofJ ′ and the left endpoint ofJ is q−−q′.
The same is true for the right endpoints. As long asq− − q′ ≥ 2, the argument in
the proof of Lemma 19.4 shows thatPŴ ⊂ 1(J). The point is that Equation 19.9
is replaced by

−q′

1+ A′
≥ −q′, (27.14)

which is always true. Whenq− = q′ + 1, we must havep = 1. In this case, the
pivot points areE− = (−1,1) andE+ = (0,0). This case is trivially true.

Remark: The reader might wonder why we have so much slack in the (supposedly)
tightest possible situation. The slack comes from the fact that, in Lemma 26.8, the
arcγ is well inside the parallelogramR2. For the sake of robustness, we mention
that any small size ofq− − q′ leads to a similar proof.
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27.4 PROOF OF THE STRUCTURE LEMMA

We will consider the case whenA− ⇐ A. The other case is similar. LetB be the
odd rational such thatA− |H B. ThenPŴ(A−) = PŴ(B), by definition.

Lemma 27.5 The Structure Lemma holds when1/1← A.

Proof: In this case

A = 2k− 1

2k+ 1
, A− =

k− 1

k
, B = 2k− 3

2k− 1
. (27.15)

ThenPŴ(A) is the line segment connecting(0,0) to (−k, k), andPŴ(B) is the line
segment connecting(0,0) to (−k+ 1, k− 1). 2

In all other cases, we haveA′← A, whereA′ 6= 1/1. As in Lemma 17.2, let

δ = δ(A′, A) = floor(q′/q).

Lemma 27.6 If δ = 1, then the Structure Theorem holds.

Proof: If δ(A′, A) = 1, thend(A′, A) = 0. If d(A′, A) = 0, thenPŴ = PŴ′ by
the Copy Theorem and the definition of pivot arcs. At the same time, we can apply
Lemma 17.2 to the pairAm = A′ and Am+1 = A. Sinceδ(A′, A) = 1, we must
have Case 1 or Case 3. But we also haveA− < A+. Hence we have Case 3. But
then A′− = A−. Hence we can replace the pair(A−, A) by the pair(A′−, A′), and
the result follows by induction on the size of the denominator of A. 2

Lemma 27.7 Suppose thatδ = 2. Then A′ = B.

Proof: B is characterized by the property thatA− andB are Farey-related, and

2q− > denominator(B) > q−.

We will show thatA′ has this same property. Note thatA′ andA− are Farey-related.
The equations

2q′ < q, q = q+ + q−, q′ = q+ − q−

lead to

3q− > q+ H⇒ 2q− > (q+ − q−) = q′.

This establishes the first property forA′. The fact thatδ = 2 gives 3q′ > q. This
leads to

q+ > 2q−, H⇒ q′ = q+ − q− > q−.

This is the second property forA′. 2
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Lemma 27.8 Supposeδ ≥ 3. Then A′← B.

Proof: There is some even rationalC such that

B = A− ⊕ C. (27.16)

The denominator ofC is smaller than the denominator ofA− because of the fact
that A− |H B. The inferior predecessor ofB is A− ⊖ C. At the same time,

A′ = A+ ⊖ A−. (27.17)

So, we are trying to show thatA+ ⊖ A− = A− ⊖ C. This is the same as showing
that

C = D = A− ⊕ A− ⊖ A+. (27.18)

SinceA+ andA− are Farey-related,D andA− are Farey-related. We claim that

2q− − q+ = denominator∈ (0,q−). (27.19)

The upper bound comes from the fact thatq+ > q−. The lower bound comes from
the fact thatq+ < 2q−. To see this last equation, note that

q = q+ + q−, q′ = q+ − q−, 3q′ < q.

But C is the only even rational that is Farey related toA− and satisfies equation
27.19. HenceC = D. 2

As we have already proved, the caseδ = 1 is handled by induction on the
denominator ofA. The caseδ = 2 gives

PŴ− = PŴ′.

In this case, the Structure Lemma follows from the definitionof the pivot points.
Whenδ ≥ 3, the rationalA′ is a common inferior predecessor ofA andB. Since

A+ = A′ ⊕ A− andA− < A+, we haveA′ > A+. HenceA′ > A.

Lemma 27.9 A′ > B.

Proof: Lemma 27.8 gives

A′ = A− ⊖ C, A+ = A′ ⊕ A−, A = A+ ⊕ A−, B = A− ⊕ C. (27.20)

This gives

A⊖ B = A+ ⊖ C = A′ ⊕ A− ⊖ C = A′ ⊕ A′.

Hence

A = B⊕ A′ ⊕ A′. (27.21)

Since A+ = A′ ⊕ A− and A− < A+, we haveA′ > A+. HenceA′ > A. By
Equation 27.21,A lies betweenA′ andB. HenceB < A < A′. HenceA′ > B. In
short,A′ > A andA′ > B. 2
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Finally, from the definition of pivot points, we haveE+(A) = E+(B). This
establishes statement 1. Statement 2 has a similar proof.

Now for statement 3. By Lemma 26.1,

E+(A)+ E−(A) = −A− + (0,1), E+(B)+ E−(B) = −B+ + (0,1).

SinceE+(A) = E+(B), we have

E−(B)− E−(A) = A− − B+ = V(C) (27.22)

HereV(C) is, as in Equation 3.2, defined relative toC. We now have

E−(A)+ V − E−(A−)

=E−(A)− E−(B)+ V

=−V(C)+ V(A)

=V(A+ ⊕ A−)− V(A+ ⊖ A−)

=2V(A−) ∈ Z(V−). (27.23)

This completes the proof of statement 3. The proof of statement 4 is similar.

An Even Version: Now that we have established the Structure Lemma, we prove
a variant. For each even rationalA2 ∈ (0,1) that is not of the form 1/q2, there is
another even rationalA1 = p1/q1 ∈ (0,1) such thatq1 < q2 andA1 ⊢ A2.

Lemma 27.10 The Structure Lemma holds for the pair(A1, A2).

Proof: We will deduce this new version of the Structure Lemma from the original
version we have just finished proving.

Consider statement 1. Let

A3 = A1 ⊕ A2. (27.24)

Then

A1⇐ A3, A2 |H A3 (27.25)

Note thatE+2 = E+3 by definition. Also,E+1 = E+3 , by the Structure Lemma.
HenceE+1 = E+2 . This proves statement 1 for the pair(A1, A2). Statement 2 has
the same kind of proof.

Consider statement 3. We haveE−2 = E−3 and

E−3 − E−1 + V3 ∈ ZV1. (27.26)

On the other hand

V3 = V2 + V1, H⇒ E−3 − E−1 + V2 ∈ ZV1. (27.27)

The first equation implies the second. ButE−3 = E−2 . This completes the proof of
statement 3. Statement 4 has the same kind of proof. 2
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27.5 THE DECREMENT OF A PIVOT ARC

Here we work out the precise relationship between the pivot arcs in the Structure
Lemma. One can see the structure we describe here in Figure 1.5.

Let A be an odd rational and letA′ be the superior predecessor ofA. By the Copy
Theorem,PŴ contains at least one period ofŴ′ starting from either end. Letγ ′ be
one period ofŴ′ starting from the right endpoint ofPŴ. We defineDPŴ by the
following formula.

PŴ = DPŴ ∗ γ ′. (27.28)

The operation on the right hand side of the equation is the concatenation of arcs.
We call DPŴ thedecrementof PŴ.

The arcDPŴ is a pivot arc relative to a different parameter. (See the next
lemma.)DPŴ is obtained fromPŴ by deleting one period ofŴ′. Now we present
anaddendumto the Structure Lemma.

Lemma 27.11 If B ⇐ A, then PŴ(B) = DPŴ(A), up to translation.

Proof: We will consider the case whenA− ⇐ A. The other case, whenA+ ⇐ A,
has essentially the same proof. We reexamine Lemmas 27.7 and27.8. In Lemma
27.7, we have

PŴ− = PŴ′.

However, in this case,δ(A, A′) = 2, and from the definition of pivot points, we see
that PŴ is obtained fromPŴ′ by concatenating a single period ofŴ′. This gives us
what we want.

In Lemma 27.8, we have Equation 27.21, which implies

denominator(A) = denominator(B)+ 2q′. (27.29)

But this implies thatd(A′, A) = d(A′, B)+1. Applying the Copy Theorem to both
pairs, we see thatPŴ is obtained fromPŴ′ by concatenatingd(A, B)+ 1 periods
of Ŵ′ wherePŴ− is obtained fromPŴ′ by contatenatingd(A′, B) periods ofŴ′.
This gives us the desired relationship. 2

27.6 AN EVEN VERSION OF THE COPY THEOREM

Let A2 be an even rational. We writeA2 = A0 ⊕ A1, whereA0 is odd andA1 is
even.

Lemma 27.12 PŴ2 ⊂ Ŵ0.

Proof: We havePŴ2 = PŴ(A3), whereA3 is the odd rational such thatA2 |H A3.
Since A1 ⊢ A2 and bothA1 and A2 are even, we haveA3 = A1 ⊕ A2. At the
same time, we haveA0 = A2 ⊖ A1. HenceA0← A3. But now we can apply the
Copy Theorem to the pair(A0, A3) to conclude thatPŴ3 ⊂ Ŵ0. But PŴ3 = PŴ2. 2
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Chapter Twenty-Eight

Proof of the Pivot Theorem

28.1 AN EXCEPTIONAL CASE

We first prove the Pivot Theorem forA = 1/q. This case does not fit the pattern we
discuss below.

Let Ŵ be the arithmetic graph associated toA = 1/q and let PŴ denote the
pivot arc. In all cases,PŴ contains the vertices(0,0) and(−1,1). These vertices
correspond to the two points(

1

q
,−1

)
,

(
2−

1

q
,−1

)
. (28.1)

These two points are the midpoints of the special intervals

I1 =
(

0,
2

q

)
× {−1}, I2 =

(
2−

2

q
,2

)
× {−1}. (28.2)

By special interval, we mean intervals in the sense of §2.2. Recall from that section
that these special intervals are permuted by the outer billiards map.

The special intervals in Equation 28.2 appear at either end of

I = [0,2]× {−1}. (28.3)

For anyA < 1/2, the phase portrait in Figure 2.5 (repeated here for convenience)
shows that the interval

I3 = (2A,2− 2A)× {−1} (28.4)

returns to itself under one iterate of9. WhenA = 1/q, we have

I − I3 = I1 ∪ I2. (28.5)

But then the orbit ofI1 intersectsI only in I1 ∪ I2. Hence the only low vertices on
Ŵ are equivalent to(0,0) and(−1,1) modulo translation byV = (−q,1). This
establishes the Pivot Theorem forA = 1/q.

(4/3,1/3) (2,1/2)

(0,0)

(0,1) (2,1)

(2,0)

Figure 28.1: Low-vertex phase portrait. (Repeat of Figure 2.5.)
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28.2 DISCUSSION OF THE PROOF

Now we consider the general case of the Pivot Theorem. We willnot consider the
odd case until the last section of the chapter. At the end, we will explain the minor
differences in the even case.

Figure 28.2: Components of̂Ŵ(25/61) andŴ̂(9/22).

The top of Figure 28.2 shows one period ofŴ(25/61) and the bottom shows an
enhanced version of Figure 27.2. The light-gray regions arethe eggs we discussed
in connection with Figure 27.2. These are components ofŴ(9/22). The dark-gray
components lie underneath the bump. (See below for a formal definition.) There is
one large dark-gray component and 4 small ones. These dark-gray components, it
turns out, belong to botĥŴ(25/61) andŴ̂(9/22).
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For any odd rationalA2 6= 1/q2, we haveA1 ⇐ A2, whereA1 ∈ (0,1) is an
even rational. What we mean is thatA1 andA2 are Farey-related and 2q1 < q2. See
§27.1 for details. We will argue by induction, assuming thatthe Pivot Theorem is
true for A1.

Now we introduce some notation.

• Thebumpis the arcγ of Ŵ connectingPŴ to eitherPŴ+V or PŴ−V . We
write H (Ŵ). Whether we takeγ to lie on the left or the right depends on the
rationals involved. In any case,PŴ ∪ γ is one period ofŴ.

• A low componentof Ŵ̂1 is a component that contains a low vertex.

• A major low componentof Ŵ̂1 is a low component that is a translate ofŴ1.

• We call the other low components of̂Ŵ1 minor components.

• Theeggsare the two major components of̂Ŵ1 that contain the endpoints of
the bump. The Structure Lemma guarantees that these components are major.

Figure 28.3 shows an abstract and slightly generalized version of Figure 28.2.
We will base the discussion on Figure 28.3, but we will use Figure 28.2 as a reality
check. The numbered regions are major components ofŴ̂1. The small dark-gray
regions are minor components ofŴ̂1. The regions labelled 0 and 4 are the eggs, as
discussed above. The black arc is the bump. Lemma 27.4 gives alarge region1
whereŴ̂1 andŴ̂2 agree.1 is white.

3
0 4

1 2

Figure 28.3: Cartoon view of the proof.

We want to determine that the bump has no low vertices except for its endpoints.
By the Structure Lemma, the endpoints of the bump are also endpoints of the pivot
arcs ofC0 andC4. By induction, the only low vertices ofC0 andC4 are contained
in the pivot arcs. These pivot arcs are on the other sides of the endpoints we are
considering. Hence there are no low vertices on the black arcas long as it coincides
with eitherC0 or C4.

There is one subtle point to our argument. When we refer tolow verticesof the
black arc, the vertices are low with respect to the parameterA2. However, when we
refer to low vertices ofC0 andC4, the vertices are low with respect toA1. We will
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discuss this subtle point in the next section. What saves us is that the two notions
of low coincide, because of the way in whichA1 approximatesA2.

So, either end of the black arc starts out well: It rises away from the baseline. This
is exactly the situation we discussed in the last chapter in connection with Figure
27.2. Once the bump gets off the ground, what could go wrong? Answer: One of
the ends could dip back down into1 and (at the boundary) merge with a component
of Ŵ̂1. In other words, some component ofŴ̂1 would have to stick out of1.

We will analyze the various possibilities in turn. We distinguish 3 basic cases.

The End Major Components: These are the components labelledC1 and C3

in Figure 28.3. In Figure 28.2, the single large component isthe only end major
component. These components seem to give us the most troublebecause they come
closest to sticking out of1. In fact, we cannot show that these components are
contained in1 even though experimentally we can see that this is true. However,
Lemma 2.6 comes to the rescue. The low vertices on these components have odd
parity, and the low vertices on the bump have even parity. We will see that this
implies that the bump cannot merge withC1 andC3. The parity argument steps in
where geometry fails.

The Middle Major Components: This is the component labelledC2 in Figure
28.3. In Figure 28.2 there are no middle major components even though the large
dark-gray component there sits in the middle in some obvioussense. In general,
there aren+1 major components andn−1 middle major components. The middle
major components are much farther inside1. We will show that the other major
components are contained entirely inside1.

Minor Components: These are the remaining small dark-gray components in
Figure 28.3. The Barrier Theorem from Chapter 14 handles these. The black
horizontal line in Figure 28.3 represents the barrier whichno minor component can
cross. Equipped with the Barrier Theorem, we will be able to show that all minor
components lie in1. The barrier line keeps them from sticking out.

This takes care of all the potential problems. Since the bumpcannot merge with
any of the small dark-gray components, it just skips over everything and has no low
vertices except for its endpoints. As with the proof of the Decomposition Theorem,
the estimates we make are true by a wide margin whenA1 is large. However, when
A1 is small, the estimates are close and we need to consider the situation in a case-
by-case way. We hope that this dealing with small cases does not obscure the basic
ideas in the proof.

Remark: As we remarked above, it seems thatŴ̂2 copies all the low components
of Ŵ̂2 that lie between the two endpoints of the bump. In light of what we said in
the case-by-case analysis, we will show that this is true except perhaps for the end
major components. Our methods are not quite good enough to get these as well.
This deficiency in our methods causes our proofs to be more complicated in a few
places.



book April 3, 2009

PROOF OF THE PIVOT THEOREM 263

28.3 CONFINING THE BUMP

We continue with the notation from the previous section. Forease of exposition,
we assume thatA1 < A2. The other case is similar. For ease of notation, we set
A = A2. Until the end of this section, we consider onlyA. We write one period
of Ŵ as PŴ ∪ γ . Here PŴ is the pivot arc, andγ is the bump considered in the
previous section.

Let W be the vector from Equation 3.2. LetSbe the infinite strip whose left edge
is the line through(0,0) parallel toW and whose right edge is the line throughV+
and parallel toW. HereV+ = (q+,−p+), andp+/q+ is as in Equation 4.1. Figure
28.4 is a schematic picture.

1 2

S

R R

Figure 28.4: The stripScontains the bump.

Lemma 28.1 γ does not cross the lines bounding S.

Proof: The lines ofS are precisely the extensions of the sides ofR2, the larger of
the two parallelograms from the Decomposition Theorem. We know thatŴ crosses
these lines only once. These are the black dots shown in Figure 28.4. The thick
arc representsγ . By Lemma 26.2 and symmetry, both endpoints ofγ belong to
R2. These are the white dots in Figure 28.4. The endpoints ofγ occur between the
crossing points. Since there are no other crossings,γ ⊂ R2. Henceγ ⊂ S.

Now we can clear up the subtlety mentioned in the previous section. We set
S2 = S, the strip defined relative to the odd rationalA2.

Lemma 28.2 A vertex in S is low with respect to A1 iff it is low with respect to A2.
Hence a vertex ofγ is low with respect to A1 iff it is low with respect to A2.

Proof: Let L j denote the baseline with respect toA j . The conclusion of this lemma
is equivalent to the statement that there does not exist a lattice point betweenL1∩S
andL2 ∩ S. This is a consequence of our proof of Lemma 27.4. 2
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28.4 A TOPOLOGICAL PROPERTY OF PIVOT ARCS

Let A be a rational kite parameter, either even or odd. LetPŴ denote the pivot arc
of Ŵ = Ŵ(A). The two endpoints ofPŴ are low vertices. Here we prove a basic
structural result aboutPŴ.

Lemma 28.3 PŴ contains no low vertex to the right of its right endpoint. Likewise,
PŴ contains no low vertex to the left of its left endpoint.

Proof: We will prove the first statement. The second statement has the same proof.
We argus as in the proof of Lemma 2.6. Note thatŴ right-travels at(0,0). Hence
PŴ right-travels at its right endpointρ. Suppose thatPŴ contains a low vertexσ
to the right ofρ. Then some arcβ of PŴ connectsρ to σ . SinceŴ right-travels at
ρ, some arcγ of Ŵ − PŴ enters into the region betweenρ andσ and beneathβ.
But γ cannot escape from this region, by the Embedding Theorem. The point here
is thatγ cannot squeeze beneath a low vertex because the only vertices below a low
vertex are also below the baseline. Figure 28.5 shows the situation.

β

ρ σ

γ

Figure 28.5: PŴ creates a pocket.

In the odd case we have an immediate contradiction. In the even case, we see that
there must be a loop containing bothρ andσ . This loop must be a closed polygon
and a subset ofPŴ. SincePŴ is also a closed (and embedded) polygon, the loop
must equalPŴ. But by definition,PŴ lies belowŴ − PŴ. From Figure 28.4, we
see thatPŴ (which containsβ) in fact lies aboveŴ− PŴ (which containsγ ). This
is a contradiction. 2
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28.5 COROLLARIES OF THE BARRIER THEOREM

Here we derive a few corollaries of the Barrier Theorem. See Chapter 14 for the
statement. LetL0 be the line through(0,0) and parallel to the vectorW, from
Equation 3.2. Referring to our proof of statement 2 of the Hexagrid Theorem,L0

is the wall line we considered in detail.
In this section we will suppose thatA is an even rational parameter. LetŴ̂ = Ŵ̂(A)

be the corresponding arithmetic graph.

Corollary 28.4 A minor component of̂Ŵ cannot cross L0.

Proof: Our line is one of the lines in the Hexagrid Theorem. By the Hexagrid
Theorem, onlyŴ crosses this line beneath the barrier, and the crossing takes place
at (0,0). By definition,Ŵ is a major component. 2

We are trying to construct a parallelogram that bounds the minor components.
The baseline contains the bottom edge. The barrier containsthe top edge. The line
in Corollary 28.4 contains the left edge. Now we supply the right edge. Actually,
there are many choices for this right edge.

Lemma 28.5 Let V+ = (q+,−p+). Let L be the line parallel to L0 and containing
the point V+ + kV for some k∈ Z. A minor component cannot cross L.

Proof: SinceŴ̂ is invariant under translation byV , it suffices to prove this result
for k = 0. Let L be the line throughV+ parallel toL0. Our result follows from
Corollary 28.4 and the rotational symmetry we established in §12.3.

Let3 be the barrier. Consider the symmetryι defined in §12.3. The two lines3
andι(3) are equally spaced above and below the baseline up to an errorof at most
1/q. Suppose that some minor componentβ crosses the lineL. Then the component
ι(β) crosses the lineι(L). But ι(L) is the line from Lemma 28.4. Inspecting the
hexagrid, we see thatι(L) contains the door(0,0), but no other door between the
baseline andι(3). Indeed, the doors above and below the baseline are just about
evenly spaced from(0,0) going in either direction. See Figure 3.2, a representative
figure. (In this figure, we are talking about the long axis of the kite, and(0,0) is the
bottom tip of the kite.)

The componentγ ′ of Ŵ̂ that crossesι(L) near(0,0) is the same size asŴ. Hence
this component crosses throughι(3). Henceι(γ ′) is a major component. Hence
β 6= ι(γ ′). Henceι(β) 6= γ . Henceι(β) does not crossι(L). Henceβ does not
crossL. 2

Now that we have found some parallelograms that completely confine the minor
components, we will embed this picture, so to speak, in our proof of the Pivot
Theorem. This requires us to juggle two parameters at once.
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28.6 THE MINOR COMPONENTS

28.6.1 The Minor Box

In our proof of the Pivot Theorem, we have two parametersA1⇐ A2. As above, we
focus our attention on the case whenA1 < A2. The other case involves a completely
parallel discussion. See §30.3 for a brief discussion of theother case.

Lemma 28.5 applies to vectors defined in terms ofA1, but ultimately we would
like to make a statement about the parameterA2. So, we would like to translate
the information in Lemma 28.5 into a statement about some lines that are defined
(partly) in terms ofA2. Let (Vj )+ be as in §28.3. Then Lemma 28.5 applies to the
vectors of the form

(V1)+ + kV1. (28.6)

However, we are also interested in the vector(V2)+.

Lemma 28.6 Suppose that A1 < A2. Then, there is some integer k such that
(V2)+ = (V1)+ + kV1.

Proof: We setA = A2. ThenA− = A1. Let A−+ denote the parameter that relates
to A− in the same way thatA+ relates toA. That is,A−+ > A− are Farey-related and
A−+ has a smaller denominator thanA−. We want to prove thatV+ = V−+ + kV−
for somek. The rationalsA−+ and A− are Farey-related. Therefore so are the
parameters

A−, A−+ ⊕ A− ⊕ · · · ⊕ A−. (28.7)

Here we are doing Farey addition. Conversely, if any rational A′ is Farey-related to
A− and has a larger denominator, thenA′ ⊖ A− is also Farey-related toA−. Thus
the rationals in Equation 28.7 account for all the rationalsA′ with the properties just
mentioned. ButA+ is one such rational. HenceA+ has the form given in Equation
28.7. This completes the proof. 2

Let R denote the parallelogram defined by the following lines.

• The baseline relative toA1.

• The barrier forA1.

• The line parallel toW1 through(0,0).

• The line parallel toW1 through(V2)+.

Then any minor component with one vertex inR stays completely inR. This is a
consequence of the Barrier Theorem, its corollaries, and the lemma in this section.
Modulo a tiny adjustment in the slopes, the left and right edges ofR are contained
in the left and right edges of the stripS considered in §28.3. We callR theminor
box.
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28.6.2 Trapping the Minor Components

We continue withA1⇐ A2, as above, andA1 < A2. Define
1 = 11(I ) ∪12(I ), I = [−q1+ 2,q2 − 2] . (28.8)

Here1 is as in Lemma 27.4, the second Diophantine lemma. LetR be the minor
box.

Lemma 28.7 Letβ ⊂ Ŵ̂1 be any component that is contained in R. Thenβ ⊂ Ŵ̂2.

Proof: Our proof follows the same strategy as in the Decomposition Theorem.
We will work with the functionalsG1 and H1 defined relative toA1. We want to
show R ⊂ 1 and apply Lemma 27.4. To avoid a messy calculation, we use the
Mismatch Principle from Chapter 19. We replaceR by the nearby parallelogram̃R
with vertices

(0,0), λW1, (V2)+, (V2)+ + λW1. (28.9)
The constantλ has the following definition. The top left vertex ofR lies on the line
through(0,0) and parallel toW1, as discussed above. Hence this vertex has the
form λW1. We compute

M1(λW1) = p′1+ q′1 < p1+ q1 = M1(W). (28.10)
Henceλ < 1. HereA′1 is the rational that appears in the Barrier Theorem. The
point here is that the barrier contains the point(0, (p′1+ q′1)/2).

Let u andw be the top left and top right vertices ofR, respectively. As usual, it
suffices to show that the quantities

G1(u)− (−q1+ 2) > 0, (q2− 2)− H1(w) > 0. (28.11)
By affine symmetry (or a calculation, as we do), these quantities are equal. We
compute

G1(u)− (−q1+ 2) = q1− λ
q2

1

p1+ q1
− 2 (28.12)

By Lemma 28.6, we have
(V2)+ + V1 = (V2)+ + (V2)− = V2 H⇒ V2− w = V1− λW1.

The first equation implies the second. Hence
(q2− 2)− H1(w)

=−2+ H1(V2−w)
=−2+ H1(V1− λW1)

=q1− λ
q2

1

p1+ q1
− 2. (28.13)

Sinceλ ≤ 1, the quantities in Equation 28.11 are nonnegative as long as p1 ≥ 3
andq1 ≥ 7. This is exactly the same estimate as in Lemma 19.3. Whenp1 = 2, we
see that

p′1 = 1, q′1 =
q1− 1

2
.

Thusλ ≈ 1/2, and we get massive savings. Whenp1 ≥ 2 andq1 ≤ 7, we check
the cases by hand using the same trick as in §19.5.

When p1 = 1, the grapĥŴ1 has no minor components, as we saw in §28.1.2
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28.7 THE MIDDLE MAJOR COMPONENTS

We keep the parametersA1⇐ A2 as above, withA1 < A2. We have already defined
the pivot points ofŴ1. We define the pivot points of the translatesCk = Ŵ1 + kV1

in the obvious way, by translation.
By the Structure Lemma, there is some componentCk whose left pivot point is

E−2 + V2, the right endpoint of the bump. The componentsC0, ...,Ck are exactly
as in §28.2. By Lemma 2.6, the indexk is even. More generally,C j contains low
vertices of even parity if and only ifj is even.

As in §28.2, we are interested in bounding the componentsC2, ...,Ck−2. Actually,
we care only about the even components, but the bound works equally well for the
odd components betweenC2 andCk−2. If k = 2, as in Figure 28.2, this section is
vacuous.

By the Hexagrid Theorem,C0 is contained in the parallelogramR0 with vertices

−V1, −V1+ 2W1, V1+ 2W1, V1. (28.14)

This means thatC j is contained in the translated parallelogram

Rj = R0 + jV1 (28.15)

We choosej ∈ {2, ..., k− 2}.
Here we describe some features ofRj , as well as a method for symmetrizing it.

1. The bottom edge ofRj is contained in the line through(0,0) and is parallel
to V1–i.e., the baseline– as usual.

2. The top edge ofRj is contained in the line through 2W1 and is parallel toV1.
These lines are independent ofj .

3. The left edge ofRj is parallel to, and to the right of, the line3 parallel toW1

and containingV1. When j = 2, the left edge ofRj is contained in3.

4. The same argument as in Lemma 28.5 shows thatC2 lies to the left of the line
through(V2)+−V1 and parallel toW1. Referring to the symmetryι in Lemma
28.5, this is the lineι(3). In brief, if C j crossesι(3), thenι(C j ) crosses3,
and this contradicts the Hexagrid Theorem, applied below the baseline. So,
ι(3) is the fourth line bounding the symmetrized parallelogramR.

Let Rbe the parallelogram defined by the 4 lines above. By construction,C j ⊂ R
for j ∈ {2, ...., k− 2}. We callR themajor box.

Lemma 28.8 Let β ⊂ Ŵ1 be any component of̂Ŵ1 that is contained in R. Then
β ⊂ Ŵ̂2.

Proof: The proof is exactly the same. Letu andw denote the top left and top right
vertices ofR. we have the same symmetry as in the previous bound, and so we just
have to computeG1(u) ≥ −q1+ 2. We compute

G1(u)− (−q2+ 2) = 2q1−
2q2

1

p1+ q1
− 2. (28.16)

This time we always get a positive number, though in small cases it is pretty close.2
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28.8 EVEN IMPLIES ODD

Having assembled all the necessary technical ingredients,we now formalize the dis-
cussion we gave in §28.2. We will present an inductive proof of the Pivot Theorem.
This section contains half the proof, and the next section contains the other half.
Again, we assume thatA1 < A2. Let P(A) be the statement that the Pivot Theorem
is true forA.

Lemma 28.9 Let A1⇐ A2. Then P(A1) implies P(A2).

Our proof follows the format of the discussion in §28.2. As in§28.3, we define
thecomplementary arcγ2 ⊂ Ŵ to be the arc to the right ofPŴ2 such thatPŴ2 ∪ γ2

is one period ofŴ2. The endpoints ofγ2 are

E+2 , E−2 + V2. (28.17)

Hereγ2 is the bump in §28.2.
We say that aspoiler is a low vertex ofγ2 that is not an endpoint ofγ2. The Pivot

Theorem is equivalent to the statement that there are no spoilers.
Let L(γ2) denote the left endpoint ofγ2. Likewise, letR(γ2) denote the right

endpoint ofγ2.

Lemma 28.10 Any spoiler lies between L(γ2) and R(γ2).

Proof: We will show that any spoiler lies to the right ofL(γ2). The statement that
any spoiler lies to the left ofR(γ2) is similar. By Lemma 28.1, all spoilers lie in
the stripS2. But PŴ2 crosses the left boundary ofS2. Any low vertices inS2 to the
left of L(γ2) lie either onPŴ2 or beneath it. By the Embedding Theorem,γ cannot
contain these vertices. 2

Recall that1 is the region from Lemma 27.4. This is the white triangle in Figure
28.3.

Lemma 28.111 contains all the spoilers.

Proof: We will work with the linear functionalsG2 andH2 defined relative toA2.
Thus we are really showing that the smaller set12(I ) contains all the spoilers.

Let v = (m,n) be a spoiler. It suffices to prove thatG2(v) ≥ −q0 + 2 and
H2(v) ≤ q2 − 2. We havem ≥ 1. Sincev is a low vertex, we haven ≤ 0. We
compute that∂yG2 < 0. Hence

G2(v) ≥ G2(m,0) = m
1− A2

1+ A2
> 0 ≥ −q1+ 2.

This takes care ofG2.
Letw = v − V2 = (r, s). By Lemma 18.1, it suffices to show thatH2(w) ≤ −2.

We compute∂y H > 0. Sincew lies at most one vertical unit above the line of slope
−A2 through the origin, we have

H2(w) ≤ H2(w
′), w′ = (r,−A2r + 1). (28.18)
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We compute

H2(w
′) = r + 2(1− A2)

(1+ A2)2
< r + 2. (28.19)

This shows thatH (w) < −2 as long asr ≤ −4. By Lemma 2.6, we haver + s
even. We just have to rule out(−2,2) and(−3,1) as spoilers.

Case 1:If A2 < 1/2, then(−2,2) is not a low vertex. IfA2 > 1/2, then

2k− 1

2k+ 1
← · · · ← A2

for somek ≥ 2. In this case,E−2 has first coordinate less than or equal to−2. But
thenr ≤ −3. This rules out(−2,2).

Case 2:We compute that

A ≥ 1

9
H⇒ H2(−3,1) < −2.

When A < 1/9, we use the phase portrait in §2.6 to check thatŴ̂2 is trivial at
(−3,1). This rules out(−3,1). 2

Let v be a spoiler. By the previous result, there is some componentβ of Ŵ̂1 that
hasv as a vertex.

Lemma 28.12β is not a subset of̂Ŵ2.

Proof: Suppose thatβ ⊂ Ŵ̂2. Note thatβ is a closed polygon. Recall thatγ2 is the
bump. Supposedly,γ2 andβ share the vertexv. Let us start atv and traceγ2 in
some direction. If the conclusion of this lemma is false, we remain simultanously
on γ2 andβ until we loop around and return tov2. This is becauseβ is a closed
polygon. This contradicts the fact thatγ2 never visits the same vertex twice. 2

Here is the end of the argument.β cannot be a minor component, given the bound
in §28.6.2. Next,β 6∈ {C2, ...,Ck−2}, given the bounds in §28.7. Next,

β 6∈ {C1,Ck−1}, (28.20)

by Lemma 2.6. Next,β 6= C0: By induction, all the low vertices ofC0 lie on
PC0. By Lemma 28.3, these low vertices all lie to the left of the spoiler. Likewise,
β 6= Ck. We have exhausted all the possibilities.β cannot exist. Hence there is no
spoiler. ThereforeP(A2) holds.

We have shown thatP(A1) implies P(A2) when A1 ⇐ A2 and A1 is even and
A2 is even. We have given the proof under the assumption thatA1 < A2, but the
other case is essentially the same. See §30.3. It remains to consider the case when
both A1 andA2 are even.
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28.9 EVEN IMPLIES EVEN

28.9.1 A Decomposition Result

As a prelude to tackling the even case in the induction argument, we revisit the
construction in §28.3, but for even parameters. NowA1 and A2 are both even
parameters, withA1 ⊢ A2. We setA = A2 and consider just objects relative toA.
We define the stripS exactly as in §28.3. For any setβ, letβ# denote the translate
β + V . We define

γ = (β ∪ β#) ∩ S, β = Ŵ − PŴ. (28.21)

In Figure 28.6, the arcγ is the union of 2 thick arcs In Figure 28.6.

SR−V

barrier

S SL R

V+

S

0

Γ+VΓ

Figure 28.6: The even version ofγ .

Lemma 28.13 γ consists of two connected arcs. Any low vertex ofŴ − PŴ is
translation-equivalent to a low vertex ofγ .

Proof: By the Hexagrid TheoremŴ crossesSL only once. The door onSL lies
above the barrier line. Hence the crossing occurs above the barrier line. Likewise,
ι(Ŵ+V) crossesSL only once. The relevant door lies below the image of the barrier
line underι. Hereι is as in the proof of Lemma 28.1. But thenŴ + V crossesSR

only once, and the crossing occurs above the barrier line. Henceγ consists of 2
connected arcs.

The lineSR−V is parallel toSL and lies to the left ofSL . By symmetry,Ŵ crosses
SR−V only once, and the crossing takes place above the barrier line. By the Barrier
Theorem, the gray arc ofŴ betweenSL andSR − V lies above the barrier line and
hence has no low vertices. Finally, any vertex ofŴ− PŴ not translation-equivalent
to a vertex ofγ lies on the gray arc ofŴ betweenSL andSR− V . 2
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28.9.2 The Induction Argument

Let A1 ⊢ A2 be a pair of even rationals as in §27.4. This pair exists as long as
A2 6= 1/q2. Referring to the terminology in Lemma 28.9, we prove the following
result in this section.

Lemma 28.14 Let A1⇐ A2. Then P(A1) implies P(A2).

We have already taken care of the base case in the induction, the case when
A = 1/q. Lemmas 28.14 and 28.9 then imply the Pivot Theorem by induction. The
proof is essentially the same as in the odd case, once we see that the basic structural
results hold. The result in §27.4 gives us the even/even version of the Structure
Lemma.

We consider the case whenA1 < A2. The other case is similar. We define spoilers
just as in the odd case. We just need to show that the arcγ2 defined in the previous
section has no spoilers. The same argument as in the odd case shows that a spoiler
must lie betweenL(γ2) andR(γ2), the left and right endpoints, respectively.

Let 1 be the region of agreement betweenŴ̂1 andŴ̂2, as above. The formulas
are exactly the same. Here is the even version of Lemma 28.11.

Lemma 28.151 contains all the spoilers.

Proof: The general argument in Lemma 28.11 works exactly the same here. It is
only at the end, when we consider the vertices(2,−2) and(3,−1), that we use the
fact thatA2 is odd. Here we consider these special cases again. The argument for
(−3,1) does not use the parity ofA2. We have to consider just(−2,2).

If A2 < 1/2, then(−2,2) is not a low vertex. We do not need to treat the ex-
tremely trivial case whenA2 = 1/2. WhenA2 > 1/2, we haveA1 > 1/2 as well.
The point is that no edge of the Farey graph crosses from(0,1/2) to (1/2,1). Hence
A3 = A1 ⊕ A2 > 1/2 as well. But, by definition, the pivot points relative toA2

are the same as forA3. This is as in §27.4. Hence the same argument as in Lemma
28.11 now rules out(2,−2). 2

Essentially the same argument as in the odd case now shows that γ2 contains no
spoilers.

The Pivot Theorem now follows from induction. This completes the proof.
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Chapter Twenty-Nine

Proof of the Period Theorem

29.1 INHERITANCE OF PIVOT ARCS

Let A be some rational parameter. For each polygonal low component β of Ŵ(A),
we define the pivot arcPβ to be the lower arc ofβ that joins the two low vertices that
are farthest apart. We saylower arcbecause all the components are closed polygons,
and hence two arcs join the pivot points in all cases. WhenA is an even rational and
β = Ŵ, this definition coincides with the definition ofPŴ, by the Pivot Theorem.
In general, we say that a pivot arc ofŴ is a pivot arc of some low component ofŴ̂.
We call a pivot arc of̂Ŵ minor if it is not a translate ofPŴ.

For each rational in(0,1), we are going to define anodd predecessorand aneven
predecessor. Aside from a few trivial cases, the predecessors exist and are rationals
in (0,1). The odd predecessor ofA will be denoted byA′, and we will use a single
arrow, as inA′← A. The even predecessor ofA will be denoted byA′′, and we will
use the notationA′′ ⇐ A. This notation should be compatible with our previous
similar notation.

1. WhenA is odd,A′ is as in the inferior sequence.

2. WhenA is odd,A′′ is as in the Structure Lemma and Lemma 28.9.

3. WhenA is even,A′ is as in the Barrier Theorem.

4. WhenA is even,A′′ is as in Lemma 28.14.

It is worthwhile to mention another characterization of these numbers.

A even H⇒ A = A′ ⊕ A′′. (29.1)

A odd H⇒ A = A′ ⊕ A′′ ⊕ A′′. (29.2)

Just to cement the idea, we give an example.
3

7
← 7

17
,

2

5
⇐ 7

17
,

3

7
← 5

12
,

2

5
⇐ 5

12
.

Here is our main technical tool for the Period Theorem.

Lemma 29.1 (Inheritance) Let A be any rational. Suppose that

A′← A, A′′ ⇐ A.

Then, every minor pivot arcβ of Ŵ̂ is either a minor pivot arc of̂Ŵ′ or a pivot arc
of Ŵ̂′′. The set of low vertices ofβ is the same when considered either in A or in the
relevant predecessor.
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We first prove the odd case, and then we prove the even case. Theproof is almost
the same in both cases.

Proof in the Odd Case: Recall thatPŴ ∪ γ is one period ofŴ. There are 2
kinds of minor components of̂Ŵ.

1. Pivot arcs that lie underneathPŴ.

2. Pivot arcs that lie underneathγ .

We can push harder on Lemma 27.2. SincePŴ lies in the set1, from Lemma
27.4, so does every low component ofŴ̂ underneathPŴ. To see this, recall that our
proof involved showing thatPŴ ⊂ 1. But if a point ofPŴ lies in1, then so does
the entire line segment connecting this point to the baseline. Hence all components
of Ŵ̂ beneathPŴ also belong to1. Hence the low components ofŴ̂ lying underneath
PŴ coincide with the low components of̂Ŵ′ lying underneathPŴ′. This takes care
of the first case.

Consider the second case. Our proof of Lemma 28.9 shows that every minor
component of̂Ŵ′′ lying inside1(A′′, A) is contained in̂Ŵ. We showed the same
result for every major component except the ones we labelledC1 andCk−1. Note
that the pivot arcs are subject to the Barrier Theorem. That is, the two crossings from
the Barrier theorem occur on the upper arcs rather than on thepivot arcs. Hence the
pivot arcs behave exactly like the minor components. Hence the pivot arcs ofC1 and
Ck−1 are copied bŷŴ even though the upper arcs might not be. By Lemma 28.11,
every low vertex of̂Ŵ lying underneathγ lies on the pivot arcs of the components
we have just considered. This takes care of the second case.

There is only one detail we need to take care of. A vertex of thekind we are
considering is low relative toA′ or A′′ if and only if it is low with respect toA.
This follows from the basic property of1. See the geometric proof of Lemma 27.4.
Thus every low component of̂Ŵ of the kind we have considered is also low relative
to Ŵ̂′ or Ŵ̂′′, whichever is relevant. Likewise, the converse holds. 2

Proof in the Even Case:The minor pivot arcs of̂Ŵ are of two kinds, those that lie
underneathPŴ and those that do not. By the same argument as in the odd case, the
pivot arcs of the first kind are all minor pivot arcs ofŴ(A∗), whereA∗ is such that
A ⊲⊳ A∗. But thenA∗ = A⊕ A′′. HenceA′′ ⇐ A∗. At the same time,A′ = A⊖ A′′.
HenceA′ ← A∗. Applying the odd case of the Inheritance Lemma to the triple
(A∗, A′, A′′), we see that every pivot arc of̂Ŵ beneathPŴ is a pivot arc of either
Ŵ̂′ or Ŵ̂′′. This takes care of the first case. The second case is just likethe odd case.2

Remark: Implicit in the definitions ofpredecessoris the idea of atreeof rationals.
Each rational has 2 ancestors who are simpler in some sense. The Inheritance
Lemma esplains how the traits – here meaning the pivot arcs – of the arithmetic
graph for a complicated parameter are inherited from the ancestors.
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29.2 FREEZING NUMBERS

Every rational parameter has an odd and an even predecessor.Starting with (say)
an odd rationalA, we can iterate the construction and produce a tree of simpler
rationals. IfB lies on this tree, we writeB ≺ A. Here is an immediate corollary of
the Inheritance Lemma.

Corollary 29.2 Every minor pivot arc ofŴ̂(A) is a pivot arc of Ŵ̂(B) for some
even B such that B≺ A.

Let A be an odd rational. Letβ be a minor component of̂Ŵ(A). We define
F(β, A) to be the smallest denominator of a rationalB ≺ A such thatPβ is a
pivot arc of Ŵ̂(B). We call F(β, A) the freezing numberof β. Our terminology
has the following meaning. As we move through the tree of rationals, from simple
to complicated, various features of the corresponding graphs change, but at various
states certain features freeze. The freezing number of a component marks the point
when the component becomes a permanent feature.

Lemma 29.3 The9-period of a minor componentβ is at most

20s2, s= F(β, A).

Proof: This is an immediate consequence of the Hexagrid Theorem applied to the
rational B = r/s such thatβ is a component of̂Ŵ(B). The Hexagrid Theorem
confinesβ to a parallelogram of area less than 20s2. 2

Let x ∈ I correspond to a point not onC(An). We let

F(x,n) = F(βx, An),

whereβx is the component of̂Ŵn corresponding tox. We say that agrowing sequence
is a sequence{xn} such that

F(xn,n)→∞. (29.3)

Recall thatCA is the Cantor set from the Comet Theorem.

Lemma 29.4 Suppose every growing sequence accumulates on CA. Then the Pe-
riod Theorem is true for A.

Proof: If the Period Theorem is false, then we can find a sequence of points {xn}
in Gn such that the distance fromxn to Cn is uniformly bounded away from 0 and
yet the period ofx tends to∞. But then Lemma 29.3 shows that{xn} is a growing
sequence. By construction,{xn} does not have a limit point onCA. 2
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29.3 THE END OF THE PROOF

Let {An} be the odd sequence of rationals above. For eachn, we can form the tree
of predecessors, as above. Suppose we choose some proper functionm(n) such that
Bm ≺ An is some even rational in the tree forAn.

Lemma 29.5 limn→∞ Bm = A.

Proof: We consider the situation in the hyperbolic plane relative to the Farey trian-
gulation. See §17.1 for definitions. We consider the portionG of the Farey graph
consisting of edges having both endpoints in [0,1]. We direct each edge inG so
that it points from the endpoint of smaller denominator to the endpoint of larger de-
nominator. The two endpoints never have the same denominator, so the definition
makes sense. Say that thedisplacementof a directed path inG is the maximum
distance between a vertex of the path and its initial vertex.

Given anǫ > 0, there are only finitely many vertices inG that are the initial
points of directed paths having displacement greater thanǫ. This follows from the
nesting properties of the half-disks bounded by the edges inG, and from the fact
that there are only finitely many edges inG having a diameter greater thanǫ.

Given the nature of the tree of predecessors, there is a directed path inG connect-
ing Bm to An. The displacement of this path tends to 0 asn → ∞ because{Bm}
is an infinite list of rationals with only finitely many repeaters. Also, the distance
from An to A tends to 0. Hence the distance fromBm to A tends to 0 by the triangle
inequality. 2

Now we bring in an idea from the Rigidity Lemma. See §2.7. Let{Bm} be
any sequence of even rationals converging to the irrationalparameterA. Then the
Rigidity Lemma implies that the limits

lim
m→∞

Ŵ(Am), lim
m→∞

Ŵ(Bm) (29.4)

agree. In other words, longer and longer portions ofŴ(Am) look like longer and
longer pictures ofŴ(Bm). This is all we need to know from the Rigidity Lemma.

Now let Mm,A be the fundamental map associated toAm. This map is defined in
Equation 2.10. In the proof of Theorem 1.6, we showed that

CA = lim
m→∞

Mm,A(6(Am)). (29.5)

The limit takes place in the Hausdorff topology. Here6(Am) is the set of low
vertices onŴm. Given Equation 29.4, we get the analogous result

CA = lim
n→∞

Mm,B(6(Bm)). (29.6)

Let us generalize this result. For eachm, suppose there is somen ≥ m. We also
have

CA = lim
m→∞

Mn,A(6(Bm)). (29.7)

The reason is that the mapsMm,A andMn,B converge to each other on any compact
subset ofR2, and compact pieces of the limit in Equation 29.4 determine increasingly
dense subsets ofCA.



book April 3, 2009

PROOF OF THE PERIOD THEOREM 277

Lemma 29.6 Suppose that6n ⊂ Ŵ̂(An) is a translate of6m consisting entirely of
low vertices. Then

CA = lim
m→∞

Mn,A(6n).

Proof: We have some vectorUm such that

6n = 6(Am)+Um. (29.8)

SinceMn,A is affine, we have

Mn,A(6n) = Mn,A6(Am)+ λm. (29.9)

Now we get to the moment of truth. Since6(Bm) consists entirely of low vertices,
we have

MA,n(x) ∈ [0,2]

for all x ∈ 6(Bm). Since6n consists entirely of low vertices, we haveMA,n(x)+
λn ∈ [0,2] as well. Puttingt = MA,n(x), we have

t, t + λm ∈ [0,2] . (29.10)

This last equation puts constraints onλm.
By the case whenn = 0 of Equation 21.7, the setCA contains both 0 and 2.

Therefore, oncem is large, we can choosex ∈ 6(Bm) such thatt = MA,n(x) is
very close to 0. But this forces

lim inf λm ≥ 0.

At the same time, we can choosex such thatMA,m(x) is very close to 2. This shows
that

lim supλm ≤ 0.

In short,λm→ 0. 2

We just have to tie the discussion above together with the notion of a growing
sequence. Suppose that{xn} is a growing sequence. Letβn denote the component
of Ŵ̂n corresponding toxn. There is a proper functionm = mn such that the pivot
arc Pβn is a translate of the major pivot arcPŴ(Bm). Here{Bm} is a sequence
of even rationals that satisfies the hypotheses of Lemma 29.5. Hence{Bm} → A.
Hence the application of the Rigidity Lemma above applies.

Every low vertex onPβn is a translate of a low vertex onPŴ(Bm). By the
Inheritance Lemma, every low vertex onPβn relative toBm is also low with respect
to An. Thus we have exactly the situation described in Lemma 29.6.

Let 6n denote the set of low vertices ofPβn. Then6n is a translate of the set
6(Bm) of low vertices onPŴ(Bm), as in the lemma above. Since

xn ∈ MA,n(6n), (29.11)

we see that the Hausdorff distance from{x} to CA tends to 0 asn (andm) tend to
∞.

This completes the proof of the Period Theorem.
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29.4 A USEFUL RESULT

While we are in the neighborhood, we establish a technical result related by Lemma
29.5 that we will use in the next chapter.

Let {Bn} be any sequence of rationals that converges toA. Recall from §29.2 that
any rational parameterB has a treeT(B) of predecessors. We can considerT(Bn)
for each parameterBn in the sequence.

Lemma 29.7 Let N be any integer. Then there are only finitely many rationals in
the union

∞⋃

n=1

T(Bn)

having complexity less than N.

Proof: We will argue as in the proof of Lemma 29.5. SupposeC = r/s is a rational
in the treeT(Bn) such thatr is small ands andn are large. Then the directed Farey
path connectingC to Bn has tiny displacement and|Bn−A| is small. Hence|C−A|
is small. Also,C is near 0. HenceA is near 0. This is a contradiction onces and
n are large enough. Hence there is some functionf , depending on the sequence,
such thats< f (r ). Hence the union contains only finitely many rationals having a
numerator less thanN. Our result follows from this fact. 2
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Chapter Thirty

Hovering Components

30.1 THE MAIN RESULT

Let A ∈ (0,1) be a rational parameter. We say thatv ∈ Z2 is D-low if the baseline
of Ŵ(A) separatesv from v − (0, D). HereD ∈ Z. We have the usual convention
that the baseline is the line of slope−A through the point(0,−ǫ), whereǫ is an
infinitesimally small positive number. Thus(0,0) is 1-low. Previously, we were
interested in 1-low vertices, which we calledlow.

Let β be a component of̂Ŵ(A). We callβ a hovering componentif it has no
1-low vertices. More specifically, we callβ a D-hovering componentof Ŵ̂(A) if β
has no 1-low vertices and ifβ contains aD-low vertex. The goal of this chapter is
to prove the following result.

Lemma 30.1 (Hovering) Let{An} be the superior sequence approximating A. Fix
D. Then there is a constant D′ with the following property. If n is sufficiently large,
thenŴ̂n has no D-hovering components having diameter greater than D′. Here D′

is independent of n.

Now we start the proof of the Hovering Lemma. For each rational B, we form
a tree of depth 2 by considering the 2 predecessors ofB and their 2 predecessors.
We define the complexity ofB to be the minimum value of all the numerators of
the rationals involved in this list of 7 rationals. In the case when some of these
predecessors are not defined, we set the complexity to 0.

Lemma 30.2 Fix D. Let A2 be any rational with predecessors A0 and A1. Let
β be a D-hovering component of̂Ŵ(A). Assuming that A2 has sufficiently high
complexity,β is either a translate of a D-hovering component ofŴ̂0 or a translate
of a D-hovering component of̂Ŵ1.

Proof of the Hovering Lemma: Applying the Hovering Lemma recursively, we
see thatβ is the translate of aD-hovering component of̂Ŵ(Bn), whereBn belongs
to the tree of predecessors ofAn and has uniformly bounded complexity. But then,
by Lemma 29.7, the sequence{Bn} has only finitely many different terms. Hence
β is the translate of one of finitely many different polygons. 2

The rest of the chapter is devoted to proving Lemma 30.2.
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30.2 TRAPS

Let A be a rational parameter. As usual,Ŵ̂(A) is invariant under translation by
Z [V ]. HereV = (q,−p). We say that amajor componentof Ŵ̂(A) is one that is
translation-equivalent toŴ(A).

Let X ⊂ R2 be a solid parallelogram. We callX a cap if the the following hold.

• The only components of̂Ŵ that cross∂X are major components.

• If γ is a major component that crosses∂X, thenγ ∩ X is a finite union of
connected arcs, each of which contains a 1-low vertex.

Remark: The second item requires a bit of interpretation. When we take γ ∩ X,
we might cut an edge off right in the middle. We always add the full edge to this
intersection. Thusγ ∩ X could stick out a tiny bit fromX, and the low vertex in
question could be just outside ofX. This small annoyance causes no trouble.

Let A0 andA1 be the predecessors ofA2. We take

A0← A2, A1⇐ A2 (30.1)

so thatA0 is odd andA1 is even. Forj = 0,1, let1 j denote the region of agreement
between̂Ŵ j andŴ̂2, as in the Diophantine lemma. Between the Diophantine Lemma
and Lemma 27.4, we cover all cases.

We say that a pair(X0, X1) of parallelograms is aD-trap for A2 if the following
axioms hold.

1. X j ⊂ 1 j .

2. X j is a cap relative toA j .

3. Any vertex inX j is 1-low with respect toA j iff this vertex is 1-low with
respect toA2.

4. Any D-low vertex relative toA2 is translation-equivalent, modZ [V2], to a
point in X0 ∪ X1.

Lemma 30.3 Fix D. If A2 has sufficiently high complexity, then there is a D-trap
for A2.

Before we prove this result, we use it to prove Lemma 30.2.

Proof of Lemma 30.2: Let β2 be a D-hovering component of̂Ŵ2. Let v ∈ β2

be aD-low vertex. By axiom 4, we can translate so thatv lies in eitherX0 or X1.
Suppose without loss of generality thatv ∈ X0. Since translation by multiples of
V2 preserves the baseline forŴ2, we see thatv is D-low with respect toA2.

Axiom 3 says that a vertex inX0 is 1-low with respect toA0 iff it is 1-low with
respect toA2. But clearly this implies that a vertex inX0 is k-low with respect to
A0 iff it is k-low with respect toA2. So, when we use the termk-low, it applies
equally well relative toA0 andA2.



book April 3, 2009

HOVERING COMPONENTS 281

Letβ0 be the component of̂Ŵ0 that containsv. Suppose first thatβ0 crosses∂X0.
Thenβ0 is a major component. SinceX0 is a cap relative toA0, the component of
β0 ∩ R that containsv also contains a low vertex. So, tracingβ0 from v, we take a
path

γ ⊂ X0 ⊂ 10 (30.2)

whose endpoint is a low vertex inX0. The second containment is axiom 1 above.
But thenγ ⊂ Ŵ̂2. Sinceβ2 andγ agree atv, they must agree (by the Embedding
Theorem) on the whole path. But thenβ2 contains a 1-low vertex. This is a
contradiction.

Now we know thatβ0 does not cross∂X0. But thenβ0 ⊂ 10. Henceβ0 is a
component of̂Ŵ2. Sinceβ0 andβ2 agree atv, we haveβ0 = β2. By construction,
β0 = β2 contains aD-low vertex and no 1-low vertex. Thereforeβ0 = β2 is a
D-hovering component of̂Ŵ0. 2

The rest of the chapter is devoted to the proof of Lemma 30.3. We have 4 cases
to consider, and we will consider these cases in turn.

1. A2 is odd andA1 < A2.

2. A2 is odd andA1 > A2.

3. A2 is even andA1 < A2.

4. A2 is even andA1 > A2.

Now we reconcile the notation here with the notation in §4.1.
In case 1, we have

A0 = (A2)+ − (A2)−, A1 = (A2)−. (30.3)

In case 2, we have

A0 = (A2)− − (A2)+, A1 = (A2)+. (30.4)

In case 3 we have

A0 = (A2)+, A1 = (A2)−. (30.5)

In case 4 we have

A0 = (A2)−, A1 = (A2)+. (30.6)

We will concentrate on cases 1 and 3. case 2 is essentially thesame as case 1, and
case 4 is essentially the same as case 3. When it comes time to deal with cases 2 and
4, we will briefly indicate the modifications needed and then show some illustrations
from Billiard King.

The parallelograms come from two sources:

• The Decomposition Theorem in Chapter 19.

• The minor box in §28.6.1.

We will explain this precisely below. Mainly, we are repackaging constructions we
have already made. When it comes to verifying the axioms, we have essentially
already done all the hard work. The proof is mainly a matter oflocating the relevant
results in previous chapters.
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30.3 CASES 1 AND 2

Case 1:We state the following definitions.

• X0 = R1(A2), the small parallelogram from the Decomposition Theorem for
the parameterA2. HereX0 lies to the left of the origin.

• X1 is the minor box, defined relative to the parameterA1, in §28.6.1. Here
X1 lies to the right of the origin.

Remark: The top/bottom ofX0 has a slightly different slope from the top/bottom
of X1, but the difference is tiny whenA2 has high complexity.X0 andX1 may or
may not have about the same height. The figures below show one case where this
happens and one case where it does not.

Lemma 30.4 (X0, X1) satisfies axiom 1.

Proof: In §28.6.1, we showed thatX1 ⊂ 11. We just have to considerX0. The
argument forX0 is really the same as that for the Decomposition Theorem. However,
since we considered a different case there, we will work out the details here.

We will apply the Diophantine Lemma. Since we do not care about small cases,
we write I1 ≈ I2 to denote the relation where two intervals are with 2 units ofeach
other. We work with the linear functionalsG2 andH2 associated to the parameter
A2. Let u andw denote the top left and right vertices ofX0, respectively. The
interval in the Diophantine Lemma is

I2 ≈
[
−(q2)− − q0,q0

]
. (30.7)

The lower bound comes from case 2 of Lemma 17.8.
Hence it suffices to show that

G2(u)≫ −(q2)− − q0, H2(w)≪ q0. (30.8)

The symbol(≫) indicates an inequality in which the difference between thetwo
sides tends to∞ with the complexity ofA2.

We have the estimates

u ≈ −(V2)− + λW2, w ≈ λW2, λ = q∗2
q2
≤ q0

q2
. (30.9)

Here A∗2 = p∗2/q
∗
2 is the superior predecessor ofA2. The approximation becomes

arbitrarily good as the complexity ofA2 tends to∞. Hence the approximation is
good to within 1 unit onceA2 has sufficiently high complexity.

We compute

G2(u) ≈ −(q2)− − λ
q2

2

p2+ q2
≫ −(q2)− − λ(q2) ≥ −(q2)− − q0.

This takes care of the vertexu. Now we compute

H2(w) ≈ λ
q2

2

p2+ q2
≪ λq2 = q0.

This takes care of the vertexw. 2
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Lemma 30.5 X0 is a cap.

Proof: ConsiderX0 first. We are interested in hoŵŴ0 sits with respect toX0, but
the Decomposition Theorem gives us information aboutŴ̂2. By the Decomposition
Theorem, the only component of̂Ŵ2 that crosses∂X0 is Ŵ2, a major component.
The intersectionŴ2 ∩ X0 is a single arc that crosses∂X0 at its endpoints. These
endpoints are the low vertices. However,Ŵ̂0 andŴ̂2 agree inX0. Moreover,X0

contains(0,0). From this we see thatŴ0 is the only component to cross∂X0, and
the description of the intersections is exactly the same. 2

Lemma 30.6 X1 is a cap.

Proof: This argument is really a repeat of the argument given in the proof of the
Pivot Theorem. Consider first the infinite stripS obtained by extending the top
and bottom sides ofX1. By the Barrier Theorem, each major component ofŴ̂1

intersectsS in a connected arc that contains 1-low vertices. Now we analyze what
happens near the side walls ofX1. The bottom left vertex(0,0) is a low vertex of a
major component of̂Ŵ1. The same is true for the bottom right vertex ofX1. Indeed,
the bottom right vertex ofX1 is the right endpoint of the bump associated toA2, as
discussed in §28.2. This was a key part of the proof of the Pivot Theorem. By the
Hexagrid Theorem, the major components ofŴ̂1 intersectX1 in arcs connecting a
low vertex to the top ofX1. 2

Combining these results, we see that(X0, X1) satisfies axiom 2.

Lemma 30.7 (X0, X1) satisfies axiom 3.

Proof: This follows from the geometric interpretation of the Diophantine constant
given in the Goodness Lemma in §17.4.2. See also §22.4. 2

Lemma 30.8 (X0, X1) satisfies axiom 4.

Proof: The left bottom vertex ofX0 is −(V2)−, whereas the bottom right vertex
of X1 is (V2)+. These two vertices differ byV2. The bottom right vertex ofX0 is
(0,0), the same as the bottom left vertex ofX1, as shown in Figure 30.1. We have
emphasized the gap between the two parallelograms, which isusually tiny, for the
sake of highlighting the important issues.

X0 X1

V+0V−−
Figure 30.1: The trap.
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Suppose for the moment that the sides ofX0 have the same slope as the sides of
X1. Then, onceA2 has high complexity, the tops of both parallelograms are more
thanD units from the baseline. But then the union of translations⋃

k∈Z

(
X0 + X1+ kV2) (30.10)

contains allD-low vertices, as desired.
The slight complication is that the sides ofX0 are parallel toW2, whereas the sides

of X1 are parallel toW1. These are the vectors from Equation 3.2 relative toA2 and
A1. As the complexity ofA2 tends to∞, the slopes converge, and noD-low lattice
point lies between the two lines emanating from the same point. Thus the union in
Equation 30.10 still contains allD-low vertices onceA2 has high complexity. 2

Case 2:We use the same definitions as for case 1 except that−(V2)− replaces(V2)+
in the definition of the minor box forX1. Aside from switching the roles played by
left and right, and(+) and(−), the proofs for case 2 are exactly the same as the
proofs for case 1.

Figure 30.2: The traps and hovering components for 11/47.

Figure 30.2 shows an example in this case. We have

A0 =
3

13
, A1 =

4

17
, A2 =

11

47
.

The top frame shows some of the components ofŴ̂(11/47). Note that the low hov-
ering components, outlined in black, are trapped. Other components, however, are
allowed to cross out of the traps. Figure 30.2 also shows1(A0, A2) and1(A1, A2).
We haveX j ⊂ 1(A j , A2).
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30.4 CASES 3 AND 4

Case 3:We defineX0 to be the parallelogram bounded by the following lines.

1. The baseline relative toA0.

2. The line parallel toV0 and containingW0. Compare the Room Lemma.

3. The line parallel toW0 and containing(0,0).

4. The line parallel toW0 and containing−(V2)−.

We defineX1 to be the minor box, as in §28.6.1. (This definition does not use
the parity ofA2.)

Lemma 30.9 (X0, X1) satisfies axiom 1. X0 ⊂ 10.

Proof: As in case 1, the work in §28.6.1 takes care ofX1. We just have to show
that X0 ⊂ 10. We will apply Lemma 27.4. This time we work with the linear
functionalsG0 andH0 associated to the parameterA0. Let u andw denote the top
left and right vertices ofX0, respectively. The interval in the Diophantine Lemma
is

I ≈ [−q2,q0] . (30.11)

Hence it suffices to show that

G2(u)≫ −q2, H2(w)≪ q0. (30.12)

We have

u = −(V2)− +W0, w = W0. (30.13)

We compute

G0(u) ≈ −(q2)− −
q2

0

p0+ q0
≫ −(q2)− − q0 = −(q2)− − (q2)+ = −q2.

This takes care of the vertexu. Now we compute

H2(w) =
q2

0

p0+ q0
≪ q0.

This takes care of the vertexw. 2

Lemma 30.10 X0 is a cap

Proof: We use an argument similar to Lemma 30.6. Consider first the infinite strip
S obtained by extending the top and bottom sides ofX0. By Statement 1 of the
Hexagrid Theorem, no edge of̂Ŵ0 crosses the top ofS. By this theorem, the only
component to cross the right side ofX0, namely, the wall line through(0,0), isŴ0.
By rotational symmetry, the same is true for the left side ofX0. The argument is es-
sentially the same as that given in §19.3. The point is that some rotational symmetry
of Ŵ̂0 carries the left side ofX0 to the right side. To be sure, compare Lemma 28.6.2
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Lemma 30.11 (X0, X1) satisfies axiom 2.

Proof: The argument forX1 is essentially the same as in case 1. The only difference
is that we use the setup from §28.9.2 becauseA1 andA2 are both even rationals.2

Combining these results, we see that(X0, X1) satisfies axiom 2. The verification
of axioms 3 and 4 is the same as in case 1.

Case 4: We use the same definitions as in case 3 except that we interchange the
roles played by−(V2)− and(V2)+. The proof in this case is essentially the same
as in case 3, modulo the same switching of left and right. Figure 30.3 shows an
example for

A0 =
9

31
, A1 =

7

24
, A2 =

16

55
Figure 30.3 also shows the hovering components that are trapped in the parallelo-
grams.

Figure 30.3: The traps and hovering components for 16/55.
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Chapter Thirty-One

Proof of the Low Vertex Theorem

31.1 OVERVIEW

The Low Vertex Theorem in Chapter 23 is a consequence of the following result.

Lemma 31.1 (Descent)Let A∈ (0,1) be irrational. Let{Bn} be any sequence of
rationals in(0,1) that converges to A. Letβ be a low component of̂Ŵ(Bn). There
is some constant D′ such that every D-low vertex ofβ can be connected to a low
vertex ofβ in less than D′ steps. Here D′ depends on D and on A but not on n.

Proof of the Low Vertex Theorem: Let N0 and{vn} be as in the Low Vertex
Theorem. Letβn be the component of̂Ŵn that containsvn. Here is the imput
from the Hovering Lemma. If the constantN1 is chosen sufficiently large, then the
inequality

diam(βn) > N1

implies thatβn is a low component. We chooseN1 in this way. Applying the Descent
Lemma to the sequence{An}, the componentβ = βn, and the constantD = N0,
we immediately obtain the conclusion of Low Vertex Theorem with N2 = D′. 2

The rest of the chapter is devoted to proving the Descent Lemma. Our proof of
the Descent Lemma is somewhat complicated by the fact that wecannot quite prove
a very useful conjecture. Experimentally, we observe the following improvement
for the Inheritance Lemma.

Conjecture 31.2 Let A2 be any rational having the predecessors A0 ← A2 and
A1 ⇐ A2. Then every minor low component of̂Ŵ2 is either the translate of a low
component of̂Ŵ0 or the translate of a low component of̂Ŵ1.

Referring to the proof of the Pivot Theorem, the end major components give us
trouble. See the discussion at the end of §28.2.

As we will explain below, Conjecture 31.2 would be very useful in proving the
Descent Lemma. See the remark in §31.3. Our strategy for proving the Descent
Lemma is to prove a somewhat weaker version of Conjecture 31.2 that captures all
the necessary features. We state this weaker result, Lemma 31.3, in the next section.
One strategy for understanding this chapter is to first assume the truth of Conjecture
31.2. Then, once the overall logic of the argument makes sense, one can learn the
complications that arise from the fact that we must use Lemma31.3 in place of
Conjecture 31.2.
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31.2 A MAKESHIFT RESULT

Let A be an even rational. Previously, we divided the polygonŴ(A) into two arcs,
the pivot arcPŴ(A) and the upper arc. These two arcs join together at the pivot
points.

Q
P

Figure 31.1PŴ andQŴ.

Referring to the Barrier Theorem, recall thatŴ(A) passes through the barrier at
2 points. One arc ofŴ lies below the barrier and one above. LetQŴ denote the
component that lies below. ThenPŴ ⊂ QŴ. We call QŴ anextended pivot arc.
We think of QŴ as a kind of compromise between the whole componentŴ and
the pivot arcPŴ. If A has sufficiently high complexity, thenQŴ contains all the
vertices withinD of the baseline. This is a consequence of the Barrier Theorem.

So far we have definedQβ only whenβ = Ŵ(A) andA is an even rational. The
result next serves both as a lemma and a definition. It will allow us to apply the
definition ofextended pivot arcto all polygonal low components of̂Ŵ(A) whenA
is any rational parameter. The result we prove here is both a lemma and a definition.

Lemma 31.3 Let A2 be a rational having predecessors A0← A2 and A1⇐ A2. If
A2 has high enough complexity, then every low component ofŴ̂2 has a well defined
extended pivot arc, and this pivot arc is the translate of an extended pivot arc of̂Ŵ j

for one of j= 0,1.

Proof: We will suppose thatA2 is odd. The even case is similar. In the proof of
the Inheritance Lemma, the same constructions and arguments work for the whole
components and not just their pivot arcs – except perhaps in the case of the end major
components. Again compare the discussion at the end of §28.2. To deal with the
end major components, we consider the trap(X0, X1) constructed in the previous
chapter. The important point here is that the top ofX1 is the barrier line for the
parameterA1. The two end major componentsβ1 andβ2 intersectX1 precisely in
the arcsQβ1 andQβ2. HenceQβ1 andQβ2 are copied whole bŷŴ2. Let β̃ denote
the component of̂Ŵ2 that containsβ ∩ X1. We defineQβ̃ = Qβ. Then Qβ̃ is
copied from̂Ŵ1 by construction. 2
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Remark: Lemma 31.3 is not stated in a way that makes it obviously parallel to
Conjecture 31.2. Below we will explain why Lemma 31.3 plays arole in the proof
of the Descent Lemma that is similar to the role that Conjecture 31.2 would play.

The following result is an addendum to the proof of Lemma 31.3.

Lemma 31.4 Let N be fixed. If A2 has sufficiently high complexity andβ is an end
major component of̂Ŵ1, thenβ̃1−Qβ1 does not contain any vertices within N units
of the baseline.

Proof: As in our proof of the Pivot Theorem, we consider the case whenA1 < A2.
The other case is entirely similar.

Let

γ = β̃ − Qβ̃. (31.1)

Hereγ is an arc ofŴ̂2. Let X1 be as above.̂Ŵ1 andŴ̂2 agree inX1. The component
β̃ has a low vertex inX1. The arcγ has both its endpoints on the top edge ofX1.

Let S denote the infinite strip obtained by extending the left and right sides of
X1. We claim thatβ̃ does not cross either side ofS. To prove this claim, letSL

andSR denote the left and right boundaries ofS. Thenβ̃ does not crossSL , by the
Hexagrid Theorem applied toA2. Likewise,ι(β̃) does not crossSL , by the Hexagrid
Theorem. Hereι is the same symmetry as in Lemma 28.1. By construction,ι swaps
SL andSR. Henceβ̃ does not crossSR. This establishes our claim.

S

X1

Figure 31.2: γ crossesX1 four times.

Now we know thatγ does not cross the sides ofS. Hence, ifγ contains a vertex
within N units of the baseline, this vertex must lie inX1. But thenβ̃ crosses the top
edge ofX1 at least 4 times, as shown in Figure 31.2. But these 4 crossingpoints are
then copied from̂Ŵ1. This contradicts the Barrier Theorem because the top edge of
X1 is contained in the barrier line for̂Ŵ1. 2
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31.3 ELIMINATING MINOR ARCS

Suppose that the Descent Lemma is false. This means that we can find a sequence
{vn} of vertices, all uniformly close to the baseline, such that then-neighborhood
of βn contains no low vertices. Hereβn is the component of̂Ŵn that containsvn. In
this section we reduce the several possible situations to one situation that is easier
to manage.

Passing to a subsequence and using translation symmetry, wecan arrange one of
two cases.

• βn is a minor component of̂Ŵn for all n.

• βn = Ŵn for all n.

Here we will show that a counterexampleof the first kind forces a counterexample
of the second kind.

Remark: Assuming Conjecture 31.2, we can argue as follows. By Conjecture
31.2, the componentβn is the translate ofŴ(B′n) for someB′n ∈ T(Bn). Sinceβn

is a low component, and yet then-ball aboutvn contains no low vertices, we see
that the diameter ofβn tends to∞ with n. But then the complexity ofB′n tends to
∞ with n. Hence, by Lemma 29.5,B′n → A. Thus a counterexample to Lemma
31.1 involving minor components leads to a counterexample involving major com-
ponents. The new counterexample uses the parameters{B′n}.

Since we cannot prove Conjecture 31.2, we have to make do withLemma 31.3.
We need one last result before we can make Lemma 31.3 work for us.

Lemma 31.5 Letβn be a low component of̂Ŵ(Bn). Suppose that the diameter of
βn tends to∞. Then the distance from any point onβn − Qβn to the baseline of
Ŵ̂(Bn) tends to∞ as well.

Proof: This is a consequence of Lemma 31.4. Eachβn is a translate of a component
of the form

C̃, C = Ŵ(B′n). (31.2)

HereB′n is on the tree of predecessors ofBn. Since the diameter of̃C tends to∞
with n, we see than the complexity ofB′n tends to∞ with n by Lemma 29.7. Hence
the distance from̃C − QC̃ to the relevant baseline tends to∞ with n. 2

Now let us revisit the argumentabove. By Corollary 31.5, thepointsvn lie onQβn

oncen is sufficiently large. Indeed, by Lemma 31.5, the distance fromvn to a point
onβn−Qβn tends to∞with n. By Lemma 31.3, we know thatQβn is the translate
of QŴ(B′n) for someB′n. The sequence{B′n} converges toA. ThenQŴ(B′n) has a
vertexv ′n that is uniformly close to the baseline but has ann-neighborhood with no
low vertices. This is a counterexample of the second kind.

To finish the proof, we just have to rule out counterexamples of the second kind.
We will first present a topological lemma and then complete the proof.
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31.4 A TOPOLOGICAL LEMMA

The result concerns the trap(X0, X1) constructed in the previous chapter. Letγ2 be
the bump associated to the parameterA2, as in §28.2.

Lemma 31.6 When A2 has sufficiently high complexity, the setγ2 ∩ X1 consists of
2 connected arcs, each joining an endpoint ofγ2 to the top of X1.

Proof: In the even case, this is a restatement of Lemma 28.13. Consider the odd
case. We takeA1 < A2. The other case is entirely similiar.

The two endpoints ofγ2 areE+2 andE−2 + V2. Both these points belong toX1.
The line parallel toW2 throughV2/2 dividesX1 into two pieces. (See Figure 31.3.)
By the Hexagrid Theorem,γ2 crosses a door on this line. This door lies above the
top of X1. At the same time,γ2 can cross the top ofX1 only twice. This follows
from the Barrier Theorem, as applied toA1, and from the fact that̂Ŵ1 andŴ̂2 agree
in a neighborhoodofX1. So, starting from the left endpoint ofγ2, some initial arc of
γ2 rises up to the top ofX1. The next arc ofγ2 crosses through a door and returns to
the top ofX1. The final arc ofγ2 connects the top ofX1 to the right endpoint ofγ2. 2

Figure 31.3 illustrates our argument forA = 21/55. The dark-grayparallelogram
is X1. The line parallel toW2 throughV2/2 is the line of high positive slope on
the right side of the figure. (The vectorsV andW are as in the definition of the
Hexagrid given in Chapter 3.) The relevant door is the triplepoint on this line at the
far right. We have shown part of the hexagrid so as to point outthe door.

Figure 31.3: Lemma 31.6 forA2 = 21/55.
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31.5 THE END OF THE PROOF

LetŴ2 = Ŵ(A2), as in the previous section. We say that aD-arc ofŴ2 is a connected
arcα that joins a low vertex to aD-low vertex. Let|α| denote the smallest integer
N such thatα contains no vertices that are more thanN vertical units above the
baseline. Given aD-low vertexv ∈ α, let

F(A2) = max f (v; A2), f (v; A2) = min |α|. (31.3)

In the first equation, the maximum is taken over allD-low vertices. In the second
equation, the minimum is taken over allD-arcs havingv as an endpoint. (Actually,
this minimum it taken over the two shortestD-arcs, each going out in a different
direction fromv.) These functions depend implicitlyonD, which is fixed throughout
the discussion.

Before we prove any results, we give some intuition about thefunction F . If
F(A2) is large, it means that there exists aD-low vertexv such that the only arcs
connectingv to an actual low vertex rise up very high away from the baseline. At
least in a large neighborhood ofv, the component containingv would imitate a
hovering component. This is the sort of thing we want to rule out.

Lemma 31.7 If A2 has sufficiently high complexity, then

F(A2) ≤ max
(

F(A0), F(A1)
)
.

Proof: We treat the odd case. The even case has the same proof except that we use
Lemma 27.12 in place of the Copy Lemma.

Let (X0, X1) be the trap forA2. Choose aD-low vertex v ∈ Ŵ2 such that
F(A2) = f (v). Recall thatγ2 is the bump corresponding toA2. The unionŴ2∪ γ2

is one period ofŴ modulo translations byV2. We have two cases.

Case 1: Suppose thatv ∈ PŴ2. By the Copy Theorem,PŴ2 ⊂ Ŵ0. By the
argument in §22.4, a vertex onPŴ2 is k-low with respect toA0 iff it is k-low with
respect toA2. Since both endpoints ofPŴ2 are 1-low with respect to both param-
eters, theD-arcs ofŴ2 realizing f (v, A2) coincide with theD-arcs ofŴ0 realizing
f (v, A0). Hence

F(A0) ≥ f (v, A0) = f (v, A2) = F(A2).

Case 2: Suppose thatv ∈ γ2. Thenv ⊂ X1, andv is in one of the two arcs from
Lemma 31.6. Let us say thatv is on the left arcλ. Thenλ ⊂ Ŵ1 ∩ Ŵ2 ∩ X1, by
axiom 1 for traps combined with Lemma 27.4. By axiom 3 for traps, a vertex ofλ
is k-low with respect toA1 iff it is k-low with respect toA2. Let α be aD-arc of
Ŵ1 such thatf (v; A1) = |α|. The left endpoint ofλ is 1-low, and the right endpoint
lies on the top ofX1. WhenA2 has high complexity,α ⊂ λ. The idea here is that
the D-arc connectingv to the left endpoint ofλ remains inX1, whereas anyD-arc
exitingλ must pass through the top ofX1. Sinceα ⊂ λ, we haveF(A1) ≥ F(A2)
as in case 1. 2

Let {Bn} be the sequence in the Descent Lemma.
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Corollary 31.8 F(Bn) is uniformly bounded independent of n.

Proof: Applying the previous result recursively, we see that thereis some parameter
Cn ∈ T(Bn), of uniformly bounded complexity, such that

F(Bn) ≤ F(Cn).

But the sequence{Cn} has only finitely many distinct members, by Lemma 29.7.2

In light of the work in §31.3, the following corollary finishes the proof of the
Descent Lemma.

Corollary 31.9 A D-low vertex ofŴ(Bn) can be connected to a low vertex ofŴ(Bn)
by an arc that has length less than D′. Here D′ is independent of n.

Proof: Let vn be theD-low vertex in question. By Corollary 31.8 we can find
a D-arcαn connectingvn to a low vertex ofŴ(Bn) such that|αn| < N and N is
independent ofn. But the same argument as in the proof of Lemma 5.7 shows that
the diameter ofαn is uniformly bounded. The idea here is thatαn cannot grow a
long way in a thin neighborhood of the baseline. 2

This completes the proof of the Low Vertex Theorem. This was the last remaining
piece of business. Our work is done.
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Appendix

In this appendix, we describe some additional experimentalobservations we have
made about outer billiards on kites and quadrilaterals.

A.1 STRUCTURE OF PERIODIC POINTS

A.1.1 Irrational Case

SupposeA is an irrational parameter. LetCA and I be as in the Comet Theorem.
It follows from the Comet Theorem that all defined orbits inI − CA are periodic.
Here we discuss a conjectural picture of the dynamics of these points. We use the
notation from the Comet Theorem.

As in §24.2, we can naturally identifyCA with the ends of an infinite directed
treeTA. Using the homeomorphism

φ:Z A→ CA,

we can formally extend the return map onC#
A − φ(−1) to all of CA, even though

the extended return map does not correspond to the outer billiards dynamics on the
extra points. The extended return map is induced by an automorphism

2A: TA→ TA

as discussed in §24.2. The complementary open intervals inI −CA – thegaps– are
naturally in bijection with the forward cones ofTA.

Conjecture A.1 The outer billiards map is entirely defined on a gap. The first
return map to I− CA permutes the gaps according to the action of2A on the
forward cones of TA.

Some reflection should convince the reader that this is the simplest possible descrip-
tion of the periodic dynamics that is compatible with the Comet Theorem.

With a lot of effort, we can prove the weaker result that Conjecture A.1 correctly
describes the first return map for everydefinedorbit in I −CA. The part we cannot
prove is that all the orbits ofI − CA are actually defined. This is a big difference.
If all points in the same gap have well defined orbits, then thewhole gap moves as
a single orbit. That is, all points in the same gap have the same combinatorial type
of orbit. Without knowing that all points in the gap have welldefined orbits, all we
can say is that two points in the same gap return toI in the correct way. The orbits
might have different itineraries outside ofI .

We might have included the proof of the weak version of Conjecture A.1 in this
book, but we would prefer to hold out for the definitive result.
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A.1.2 Rational Case

Now we describe a rational version of Conjecture A.1 which, combined with the
results we have proved, implies Conjecture A.1. LetA = pn/qn, as in Theorem
1.8. LetC(A) be the set from Theorem 1.8. Eachξ ∈ C(A) is the midpoint of a
special interval in the sense of §2.2. Call this intervalJ(ξ). Define

Ĉ(A) =
⋃

ξ∈C(A)

J(ξ). (A.1)

Figure A.1 shows three examples. Here we have thickened the intervals to get a
better picture. We have also added white bars to clarify the spacing.

2 2 2 21 10

Figure A.1: Ĉ(A) for A = 1/3 and 3/11 and 7/25.

The three rationals in Figure A.1 are part of a superior sequence, and one can
see that each level sort of refines the one above it. It is a consequence of Lemma
2.6 that, in the odd case, there is a gap between every pair of intervals inĈ(A). In
the even case, this need not be true. One can compute the positions of the intervals
using the formula in Theorem 1.8.

Say that agap is an maximal interval ofI − Ĉ. For Ĉ(7/25) there are 7 gaps.
Each gap has alevel, as indicated in the figure. The levels go from 0 ton−1 in Ĉ(A).
(HereA is thenth term in the superior sequence that leads up toA.) Informally, the
gaps of levelk ≤ n− 2 are inherited from previous terms in the superior sequence,
and the gaps of leveln− 1 are newly created with the last parameter.

Given this notion of levels, there is a natural identification of C(A) with the
ends of a directed finite tree. The return map2A: C(A) → C(A) comes from an
automorphism of this tree. The union of all the gaps is bijective with the forward
cones of the tree. The automorphism of the tree induces an automorphism on the
set of forward cones. With all this notation in place, the conjecture for rational
parameters is exactly like Conjecture A.1.

The Inheritance Lemma in Chapter 29 makes some progress toward proving the
rational version of Conjecture A.1, but this lemma is not powerul enough. (Neither
is Lemma 31.3.) We know how to deduce the rational version of Conjecture A.1
from Conjecture 31.2, but we do not know how to prove Conjecture 31.2.
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A.2 SELF-SIMILARITY

Figure A.2 shows the arithmetic graphs for the parameters 169/408 and 72/305.
These rationals are close approximations to

√
2− 1 and

√
5− 2, respectively. The

second parameter is the Penrose kite parameter. It seems that the arithmetic graphs
associated to quadratic irrational parameters are self-similar on a large scale.

Figure A.2: The arithmetic graph for rationals close to
√

2− 1 and
√

5− 2.

Let Ŵ denote the(2,∞,∞)-triangle group, from Theorem 1.5. LetI andφ be
the interval from the Comet Theorem.

Conjecture A.2 Let g ∈ Ŵ and let A ∈ (0,1) be a fixed point of g. Suppose
that α = φ−1(−1) has a well defined orbit relative to the parameter A. Then the
arithmetic grapĥŴα(A) is quasi-invariant under dilation by|g′(A)|1/2.

By quasi-invariantwe mean that there is a dilationT such that̂Ŵ andT(Ŵ̂) are
contained in bounded tubular neighborhoods of each other. Sometimesφ−1(−1)
does not have a well defined orbit. In these cases, there is a replacement for Con-
jecture A.2, but it is more difficult to state.

Conjecture A.2 forA =
√

5−2 is a consequence of the results in [S1]. This kind
of self-similarity is stronger than the kind in item 3 of Theorem 1.5. Indeed, item
3 of Theorem 1.5 is really just a reflection of the fact that theset of low vertices of
the componentŴ behaves like a large-scale fractal. Conjecture A.2 deals with the
whole arithmetic graph and not just the bottom layer of one component.

One consequence of Conjecture A.2 is that suitably rescaledlimits of arithmetic
graphs, at quadratic irrational parameters,are self-similar curves – or perhaps closely
akin to self-similar tilings in the sense of [Ke] if all components are rescaled at once.
We think that the following conjecture would be another consequence.

Conjecture A.3 For each quadratic irrational A∈ (0,1), there is some exponent
a = a(A) ∈ (2,3) such that the bound

[
c−1

2 d−2, c2d−3
]

in item 3 of the Comet
Theorem can be replaced by

[
c−1

2 d−a, c2d−a
]
.
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A.3 GENERAL ORBITS ON KITES

This entire book is concerned with the special orbits on kites, those that lie on
R × Zodd. For anyy ∈ R, let

Sy = {y+ 2k| k ∈ Z}, �y = {(x, y′)| y′ ∈ Sy}. (A.2)

�y consists of an infinite family of parallel lines, each spaced2 apart from its nearest
neighbors. The special orbits all lie on�1. The square of the outer billiards map
on a kite preserves�y for any choice ofy.

Once we choose an offsetα ∈ R, we can define the arithmetic grapĥŴα(A; y).
WhenA is rational, there is a canonical choice forα and we omit it from our notation.
As y → 0, the nature of̂Ŵ(A; y) changes in a fascinating way. In Figure A.3, we
showŴ̂(17/37; y) for they-values

1,
1

2
,

1

4
,

1

8
.

As y → 0, the graph starts to concentrate along straight lines. These lines are
asymptotically parallel to the lines of the door grid from the Hexagrid Theorem.

Figure A.3: The freezing process.
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Informally, we think ofy ∈ [0,1] as being a kind of temperature, with 0 cor-
responding to freezing and 1 corresponding to boiling. Notethat the figure for
y ∈ [−1,0] is symmetric. Thus one sees a similar freezing process asy→ 0 from
below.

We do have an explanation of sorts for the freezing phenomenon, though we have
not worked through all the details. The Master Picture Theorem seems to hold for
the general orbits. That is, there is one 5-dimensional picture that works for all
orbits and all parameters at once. The Master Picture Theorem we proved here is a
boundary case.

As y → 0, the regions in this master partition that assign nontrivial edges to
the arithmetic graph seem to concentrate along a finite unionof hyperplanes. The
preimages of these hyperplanes are the asymptotic lines we see in the freezing
process.

Here are some other observations about these generalized arithmetic graphs.

• The Embedding Theorem seems true in general.

• The Hexagrid Theorem is false in general.

• The Diophantine Lemma is false in general.

• All the results in §1.5 are false in general.

We think that most of our theorems ought to have (probably weaker) analogs for
the general orbit. We do not know which way to bet on the answer, however. Here
are some obvious questions one might ask:

Question 1: Is every orbit in a kite either periodic or unbounded?

Question 2: Is almost every orbit in a kite periodic?

Question 3: Are there any unbounded orbits that are not special orbits?

Question 4: Is every unbounded orbit oscillatory in at least one direction?

In the last question, an orbit isoscillatory if its ω-limit set is nonempty. Erratic
orbits are oscillatory in both directions. Note that the Comet Theorem completely
answers all these questions for orbits in�1.

What makes these questions difficult for us to answer (aside from a general lack
of understanding of the situation) is the fact that the Hexagrid Theorem no longer
holds. This precise result played a huge role in our overall proof. It is interesting
that one sees remnants of the hexagrid, as the asymptotic lines, as the temperaturey
tends to 0. One might wonder if there is a united Hexagrid Theorem that somehow
governs the whole picture. Another difficulty is that the Copy Theorem no longer
seems to hold in such a precise way as they did for special orbits.
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A.4 GENERAL QUADRILATERALS

First we discuss the situation for trapezoids. As mentionedin the introduction,
Dan Genin worked out the complete picture for trapezoids. See [Ge]. His work is
similar in spirit to the work discussed in this book, though ultimately the situation
for trapezoids is simpler. Genin finds that all orbits are bounded, and most are
aperiodic. Thus the orbit dichotomy, periodic or unbounded, does not work for
trapezoids.

One appealing feature about studying the general quadrilateral is that one can
perhaps interpolate between the work in this book and Genin’s results. The final
picture ought to be compatible with both kites and trapezoids. We have no idea
how to carry this out at present. However, in this section, wewill present some
interesting figures. Our latest version of Billiard King contains a separate program
that generalizes some of the features of Billiard King to general quadrilaterals.
Indeed, Figure A.3 is taken from this other program.

The spaceQ of convex quadrilaterals modulo the affine group is 2-dimensional.
For(a,b, c) in the positive orthant ofR3, we letQ(a,b, c) denote the quadrilateral
with vertices

(0,0), (1,0), (0,1), v =
(

a+ b

a+ b+ c
,

b+ c

a+ b+ c

)
.

Any convex quadrilateral is affinely equivalent to someQ(a,b, c). Our coordinati-
zation is adapted to a certain action of the positive matrices in SL3(Z) onQ, which
we will not discuss. The trapezoids correspond to points of the form(0,b, c) and
(symmetrically)(a,b,0).

For the first return map, we take4 to be the stripR+ × [−1,1]. This time we
consider the solid strip and not just its boundary. Picking apoint (α1, α2) ∈ 4 and
watching the first return map, we see a sequence of points

(α1, α2)+ (2mk,2nk)+ 2okv, mk,nk,ok ∈ Z. (A.3)

The lattice path corresponding to the orbit, namely,{(mk,nk,ok}, lies very close to
a plane inR3. The fact that they-coordinate lies in [−1,1] places a relationship on
nk andok. We can project into this plane and draw a 2 dimensional figure.

When we do this carefully, taking into account the parity as in Equation 2.10,
we get a notion of the arithmetic graph that extends what we have for kites. We
show some illustrations below. In all the figures, we start with the offset value
(α1, α2) = (0,−1). As for the case with kites, we mean to add an infinitesimally
small vector to the offset, so as to track well defined orbits.Compare the discussion
in §2.5.

Figure A.4.1 shows the figure for the trapezoid with coordinates(0,233,377).
One of the main diagonals of our bounding box is approximately the baseline. Here
233 and 377 are fairly large Fibonacci numbers. This figure istypical of what one
sees for trapezoids.
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Figure A.4.1: The arithmetic graph for(0,233,377).

When we perturb away from the trapezoids, the orbits become much more compli-
cated. Figure A.4.2 shows part of what we would call the fundamental component
Ŵ(1,233,377). This component tracks essentially the same orbit we considered
extensively in the book. The path is part of a single immersedpolygonal arc!

Figure A.4.2: Part ofŴ(1,233,377).

Looking closely at the figure, it seems as if several of the strands approximate
curved arcs. It seems that one can get genuinely curved arcs by taking rescaled
limits. For instance, a suitable limit of the graphs corresponding to the family
{(1, Fn, Fn+1)} seems to have this property. HereFn is thenth Fibonacci number.

Figure A.4.3 shows a similar phenomenon for a messier fundamental component.
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Figure A.4.3: Part ofŴ(336,237,238).

Sometimes the figure for the fundamental orbit dissolves into an incomprehensible
cloud, as in Figure A.4.4. We are sure that one can state something interesting about
the structure of a polygonal path like this, but we do not knowwhat that statement
is. Perhaps the reader can see why we confined our attention tospecial orbits on
kites.

Figure A.4.4: Part ofŴ(336,239,611).
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half-disk, 2
Hausdorff dimension, 6, 230, 231
Hausdorff metric, 30
Hausdorff topology, 30
hexagrid, 33, 35, 136
Hexagrid Theorem, 12, 35, 133
homology, 27
hovering components, 279
Hovering Lemma, 279
hyperbolic geometry, 153, 228
hyperbolic triangle group, 5, 228
Hyperplane Lemma, 93
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Inheritance Lemma, 273
Intersection Lemma, 143
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Low Vertex Theorem, 205, 287

Master Picture Theorem, 15, 25, 55
Master Picture Theorem example, 60
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Penrose kite, 6
Period Theorem, 213, 273
periodic orbits, 1
persistent orbits, 11
phase portrait, 28
Pinwheel Lemma, 25, 69
pinwheel map, 69, 70
pivot arcs, 249
pivot points, 239
Pivot Theorem, 195
polygonal outer billiards, 19
polyhedron exchange, 15

quadratic irrational parameters, 231
quadrilaterals, 300
quasirational polygon, 2

rational kite, 10
rational polygons, 19
regular pentagon, 2
renormalization sequence, 7
return map, 4
return times, 208
Rigidity Lemma, 31, 50, 276
room grid, 33
Room Lemma, 37
rooms, 35

self-similarity, 231, 297
singular set, 93
special intervals, 20
special orbits, 3, 20
square outer billiards map, 10, 21
Strip Lemma, 79
strip map, 69
strips, 69
strong sequences, 43, 181
Structure Lemma, 249
superior parameters, 188
superior predecessor, 41
superior sequence, 7, 41, 187
superior term, 7
symmetry, near-bilateral, 113
symmetry, rotational, 111
symmetry, translational, 107

temperature, 298
tilings, 19
Torus Lemma, 77
Torus map, 78
trapezoids, 2, 300
traps, 280
tree automorphism, 295
triangle group, 228
trimmed Cantor set, 4
twist automorphism, 193

unbounded orbits, 1

universal odometer, 5

wall crossings, 35
walls, 35
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