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Preface

Outer billiards is a dynamical system defined relative to ave® shape in the
plane. B. H. Neumann introduced outer billiards in the 19%0sl J. Moser pop-
ularized the system in the 1970s as a toy model for celestighanics. When
the underlying shape is smooth, outer billiards has coimrexto area-preserving
twist maps and Kolmogorov-Arnold-Moser (KAM) theory. Whtre underlying
shape is a polygon, outer billiards is related to intervalhange transformations
and piecewise isometric actions. Outer billiards is an ajipg dynamical system
because it is quite simple to define and yet gives rise to amicicate structure.

The Moser-Neumann questidmas been one of the basic questions guiding the
subject of outer billiards. This question askixes there exist an outer billiards
system with an unbounded orbitUntil recently, all the results on the subject have
given negative answers to the question in particular cadeat is, it has been shown
that all orbits are bounded for various classes of shape.

Recently, we answered the Moser-Neumann question in thmaffize by showing
that outer billiards has an unbounded orbit when definedivelto the Penrose kite,
the convex quadrilateral that arises in the famous Penitesakd-darttilings. Even
more recently, D. Dolgopyatand B. Fayad proved, usingifiemethods, that outer
billiards has unbounded orbits when defined relative to aidiak.

Our original unboundedness proof involves special praggedf the Penrose kite
and naturally raises questions about generalizationshisnbibbok, we will prove
that outer billiards has unbounded orbits when definedivel&d any irrational kite.
A kite is a convex quadrilateral having a diagonal that is also @dihsymmetry.
The kite isirrational if the other diagonal divides the kite into two triangles who
areas are not rational multiples of each other.

As we prove the unboundedness result for irrational kiteswil explore the
deep structure underlying outer billiards on kites. Ourlgsia reveals connec-
tions between outer billiards on kites and self-similas skeigher-dimensional poly-
tope exchange maps, Diophantine approximation, the modtdap, the universal
odometer, and renormalization. The structural resultsisiiook perhaps point the
way toward a broader theory of polygonal outer billiards.

| discovered most of the phenomena discussed in this boakigtr computer
experimentation with my program Billiard King and only lafeund conventional
proofs. | encourage the reader of this book to downloada@3dlKing and play with
it. This Java program is platform-independentand heawbyuinented. The reader
can download Billiard King from http://press.princetauditles/9105.html or from
my Brown University website, http://www.math.brown.edires/BilliardKing. My
website also has an interactive guide to this book.
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Chapter One

Introduction

1.1 DEFINITIONS AND HISTORY

B. H. Neumann IN] introducedouter billiardsin the late 1950s. In the 1970s, J.
Moser M1] popularized outer billiards as a toy model for celestiathmmnics. See
[T1], [T3], and [DT1] for expositions of outer billiards and many referenceshan t
subject.

Outer billiards is a dynamical system defined (typically)lie Euclidean plane.
Unlike the more familiar variant, which is simply calldilliards, outer billiards
involves a discrete sequence of moves outside a convex shtyge than inside it.
To define an outer billiards system, one starts with a boucdedex seK c R?
and considers a poing € R> — K. One definex; to be the point such that the
segmenkoXy is tangent taK at its midpoint andK lies to the right of the raggxi.
The iterationxg — X1 — X — --- is called theforward outer billiards orbitof
Xo. It is defined for almost every point &2 — K. The backward orbit is defined
similarly.

 J
2 3

1 0
<@

Figure 1.1: Outer billiards relative td .

One important feature of outer billiards is that it is an afjninvariant system.
Since affine transformations carry lines to lines and reithe@roperty of bisection,
an affine transformation carrying one shape to another gatfis the one outer
billiards system to the other.

It is worth recalling here a few basic definitions about abi\n orbit is called
periodicif it eventually repeats itself, and otherwiaperiodic An orbit is called
boundedif the whole orbit lies in a bounded portion of the plane. Qifise, the
orbit is calledunbounded Sometimes (un)bounded orbits are called)stable
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J. Moser M2, p. 11] attributes the following questibto Neumann ca. 1960,
though it is sometimes called Moser’s questitsithere an outer billiards system
with an unbounded orbit? This is an idealized version of the question about the
stability of the solar system. Here is a chronological lfshoch of the work related
to this question.

* J. Moser M2] sketches a proof, inspired by KAM theory, that outer bitlis
on K has all bounded orbits provided thaK is at leastC® smooth and
positively curved. R. Douady gives a complete proof in hestk D].

* In Vivaldi-Shaidenko V/S], Kolodziej [Ko], and Gutkin-SimanyiGS], it is
proved (each with different methods) that outer billiardsagjuasirational
polygonhas all orbits bounded. This class of polygons include®mati
polygons —i.e., polygons with rational-coordinate vesie- and also regular
polygons. In the rational case, all defined orbits are périod

« S. Tabachnikovl3]analyzesthe outer billiards system for a regular pentagon
and shows that there are some nonperiodic (but bounded$ orbi

« P. Boyland B] gives examples o€! smooth convex domains for which an
orbit can contain the domain boundary indidimit set.

< F. Dogru and S. Tabachniko['2] show that, for a certain class of polygons
in the hyperbolic plane, callddrge, all outer billiards orbits are unbounded.
(One can define outer billiards in the hyperbolic plane, gtothe dynamics
has a somewhat different feel to it.)

« D. Genin [G] shows that all orbits are bounded for the outer billiardstesns
associated to trapezoids. See §A.4. Genin also makes abredrical study
of a particular irrational kite based on the square root atizerves possibly
unbounded orbits, and indeed conjectures that this is the ca

 In [S] we prove that outer billiards on the Penrose kite has untiedror-
bits, thereby answering the Moser-Neumann question inftmmative. The
Penrose kite is the convex quadrilateral that arises in #med3e tiling.

« Recently, D. Dolgopyat and B. FayaB] showed that outer billiards on
a half-disk has some unbounded orbits. Their proof also svwk regions
obtained from a disk by nearly cutting it in half with a stiaidine. Thisis a
second affirmative answer to the Moser-Neumann question.

The result in §] naturally raises questions about generalizations. Thipgae
of this book is to develop the theory of outer billiards orekitand show that the
phenomenon of unbounded orbits for polygonal outer bdkss (at least for kites)
quite robust.

11t is worth pointing out that outer billiards relative to @éi segment has unbounded orbits. This
trivial case is meant to be excluded from the question.
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1.2 THE ERRATIC ORBITS THEOREM

A kiteis a convex quadrilater& having a diagonal that is a line of symmetry. We
say thatK is (ir)rational if the other diagonal divideK into two triangles whose
areas are (ir)rational multiples of each other. Equivdyerk is rational iff it is
affinely equivalent to a quadrilateral with rational veeic To avoid trivialities, we
require that exactly one of the two diagonald$<ofs a line of symmetry. This means
that a rhombus does not count as a kite.

Since outer billiards is an affinely natural system, we fingsieful to normalize
kites in a particular way. Any kite is affinely equivalent teetquadrilateraK (A)
having vertices

(—1,0), 0, 1), ©, -1, (A, 0), Ae (0,1). (1.1)

Figure 1.1 shows an example. The omitted cAse 1 corresponds to rhombuses.
Henceforth, when we sakite, we meanK (A) for someA. The kite K(A) is
(inrational iff Ais (ir)rational.

Let Zoqq denote the set of odd integers. Reflection in each vertd«(@) pre-
servesk x Zyqg. Hence outer billiards o# (A) preserve®R x Zqqq. We call an
outer billiards orbit orK (A) specialif (and only if) it is contained iR x Zyqq. We
discuss only special orbits in this book. The special oritshard enough for us
already. In the appendix, we will say something about theegitase. See §A.3.

We call an orbiforward erraticif the forward orbit is unbounded and also returns
to every neighborhood of a kite vertex. We state the sameitiefifior the backward
direction. We call an orbirraticif it is both forward and backward erratic. In Parts
1-4 of the book we will prove the following result.

Theorem 1.1 (Erratic Orbits) The following hold for any irrational kite.
1. There are uncountably many erratic special orbits.
2. Every special orbit is either periodic or unbounded intbdirections.
3. The set of periodic special orbits is open densR iR Zy4q.

It follows from the work on quasirational polygons cited &bahat all orbits are
periodic relative to a rational kite. (The analysis in thimk gives another proof of
this fact, at least for special orbits. See the remark at tioeof 83.2.) Hence the
Erratic Orbits Theorem has the following corollary.

Corollary 1.2 Outer billiards on a kite has an unbounded orbit if and onlyhié
kite is irrational.

The Erratic Orbits Theorem is an intermediate result inetlgo that the reader
can learn a substantial theorem without having to read thaemhook. We will
describe our main result in the next two sections.
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1.3 COROLLARIES OF THE COMET THEOREM

In Parts 5 and 6 of the book we will go deeper into the subjedestablish our main
result, the Comet Theorem. The Comet Theorem and its caedlaonsiderably
sharpen the Erratic Orbits Theorem. We defer statementeoCtbmet Theorem
until the next section. In this section, we describe somésafarollaries.

Given a Cantor se€ contained in a line., we letC* be the set obtained from
C by deleting the endpoints of the componentd.of C. We callC* atrimmed
Cantor set Note thatC — C* is countable.

The interval

| =[0,2] x {—1} (1.2)

turns out to be a very useful interval. Figure 1.2 shdwasd its first 3 iterates under
the outer billiards map.

=
C\ o

\_/

Figure 1.2: | and its first 3 iterates.
Let U denote the set of unbounded special orbits relativi.to

Theorem 1.3 Relative to any irrational Ae (0, 1), the following are true.

1. Ua is minimal: Every orbitin U\ is dense in |4 and all but at mos® orbits
in U are both forward dense and backward dense jn U

2. U, is locally homogeneous: Every two points in Have arbitrarily small
neighborhoods that are isometric to each other.

3. UaN | = C} for some Cantor set £

Remarks:

(i) One endpoint ofC 4 is the kite vertex0, —1). Hence Statement 1 implies that
all but at most 2 unbounded special orbits are erratic. Thranging special orbits,
if any, are each erratic in one direction.

(ii) Statements 2 and 3 combine to say that every poititities in an interval that
intersectdJ A in a trimmed Cantor set. This gives us a good local picturt gf
One thing we are missing is a good global pictur&af

(iii) The Comet Theorem describ€s, explicitly.



book April 3, 2009

INTRODUCTION 5

Given Theorem 1.3, it makes good sense to speak of the fitstretap to any
interval INR x Zygg. From the minimality result, the local nature of the returapm
is essentially the same around any pointiaf To give a crisp picture of this first
return map, we consider the interdatliscussed above.

Forj = 1,2, let fj: Xj — X; be a map such tha and f ~* are defined on all
but perhaps a finite subset ¥f;. We call f; and f, essentially conjugati there
are countable sef§; c X, each one contained in a finite union of orbits, and a
homeomorphism

h:Xl—C1—> X, —Cy

that conjugates; to f,.
An odometelis the mapx — x + 1 on the inverse limit of the system

e > Z/D3 - Z/D2 - Z/Dl, Dk|Dk+1 vk. (13)

Theuniversal odometds the map< — x+ 1 on theprofinite completionf Z. This

is the inverse limit taken over the system of all finite cyglioups. For concreteness,
Equation 1.3 defines the universal odometer wbgn= k factorial. Seelf] for a
detailed discussion of the universal odometer.

Theorem 1.4 Let pa be the first return map to N 1.

1. For any irrational Ae (0, 1), the mappa is defined on all but at most one
point and is essentially conjugate to an odomefay.

2. Any given odometer is essentially conjugatepfofor uncountably many
difference choices of A.

3. pais essentially conjugate to the universal odometer for alnadl A.

Remarks:

(i) The Comet Theorem explicitly describés, in terms of a sequence we call
the remormalization sequencérhis sequence is related to the continued fraction
expansion ofA. We will give a description of this sequence in the next secti
(i) Theorem 1.4 is part of a larger result. There is a certaispension flow over
the odometer, which we cajleodesic flow on the cusped solendidurns out that
the time-one map for this flow serves as a good model, in aines¢mse, for the
dynamics orJ,. §24.3.

Our next result highlights an unexpected connection beatveeger billiards on
kites and the modular groupL,(Z). The groupSL,(2) acts naturally on the upper
half-plane model of the hyperbolic plarté?, by linear fractional transformations.
Closely related t& L, (Z2) is the(2, 0o, co)-triangle groud” generated by reflections
in the sides of the geodesic triangle with verti¢@sl, i). The points O and 1 are
the cusps and the point is the internal vertex corresponding to the right angle of
the triangle. See 825.2 for more detailsandSL,(Z) are commensurable: Their
intersection has finite index in both groups. In our next itegte interpret our kite
parameter intervald, 1) as the subset of the ideal boundary-.
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Theorem 1.5 Let S= [0, 1] — Q. Let u(A) be the Hausdorff dimension ofaU

1. Forall A € S, the set Id has lengthD. Hence almost all points iR x Zyqq
have periodic orbits relative to outer billiards on(®).

2. If A, A’ € S are in the samE-orbit, then Uy and Uy are locally similar. In
particular, u(A) = u(A).

3. If A e Sis quadraticirrational, then every point ofAdies in an interval that
intersects W in a self-similar timmed Cantor set.

4. The function u is almost everywhere equal to some consgaartd yet maps
every open subset of S on@ 1].

Remarks:

(i) We do not know the value afy. We guess that & ug < 1. Theorem 25.9 gives
a formula foru(A) in many cases.

(i) The word similar in statement 2 means that the two sets have neighborhoods
that are related by a similarity. In statement 3e#f-similarset is a disjoint finite
union of similar copies of itself.

(i) We will see that statement 2 essentially implies battements 3 and 4. State-
ment 2 is the first hint that outer billiards on kites is corteddo the modular group.
The Comet Theorem says more about this.

(iv) Statement 3 of Theorem 1.4 combines with statement 4hebfem 1.5 to say
that there is a “typical behavior” for outer billiards ondst in a certain sense. For
almost every parametey, the dimension ol 4 is the (unknown) constarnfy and
the return map A is essentially conjugate to the universal odometer.

We end this section by comparing our results here with thetgiorems in$)
concerning the Penrose kite. The Penrose kite parameter is

A=V5-2=¢73,

whereg is the golden ratio. Ing], we prové thatC% c Ua and that the first return
map toC#% is essentially conjugate to the 2-adic odometer. Theorefarid 1.4
subsume these results about the Penrose kite.

As in §25.5.2, we might have computed B fhat dim(Ca) = log(2)/ log(¢3).
However, at the time we did not know how this number was rdlédedim(U »),
the real quantity of interest to us. From Theorem 1.3, we kadditionally that
Cz =UaN I and dimUp) = dim(Cp).

While we recover and improve all the maheoremsn [S], there is one way that
the work we do in §] for the Penrose kite goes deeper than what we do here (for
every irrational kite). The work ing] establishes a deeper kind of self-similarity
for the Penrose kite orbits than we have established innstate3 of Theorem 1.5.
See 8A.2 for a discussion.

2Technically, we prove these results for a smaller Cantowbéth is the left half ofCA. However,
the arguments usinga in place of its left half would be just about the same.
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1.4 THE COMET THEOREM

Now we describe our main result. Say thpelfy is odd or evenaccording to whether

pg is odd or even. There is a unique sequefigg/g,} of distinct odd rationals,

converging toA, such that

L = }a [PnOn+1 — OnPntal = 2, vn. (1.4)
Qo 1

We call this sequence theferior sequence See 84.1. This sequence is closely

related to continued fractions.

We define

th = floor(qn+l), n=0,12,.. (1.5)
20

Say that superior ternis atermpn /g, such thad, > 1. We will show that there are

infinitely many superior terms. Say that theperior sequencis the subsequence

of superior terms. Say that thenormalization sequends the corresponding sub-

sequence ofd,}. We reindex so that the superior and renormalization sempsen

are indexed by (1, 2, ....

Example: To fix ideas, we demonstrate how this works for the Penrosefat
rameter.A = ¢~3. The inferior sequence fok is

111 3 5 13 21 55 89

1 3 5 13 21 55 89 233 377 "
The bold terms are the terms of the superior sequence. Tlexisugequence

obeys the recurrence relatiop, , = 4r,1 + rn, Wherer stands for eithep or g.
The initial sequencfd,}is 1,0, 1, 0, .... The renormalization sequenceid]l, ....

The definitions that follow work entirely with the superi@gence. We define
Z a to be the inverse limit of the system

n-1
...—> Z/D3— Z/Dy — Z/Dy, Do =[] + 1. (1.6)
i=0

We equipZ a with a metric, definingla(x, y) = qn‘_ll, wheren is the smallest index
such that x] and [y] disagree inZ/D,. In the Penrose kite example abow&, is
naturally the 2-adic integers ang gives the same topology as the classical 2-adic
metric.

We can identify the points of 5 with the sequence space

HA=H{O,...,di}. (1.7)
i=0
The identification works like this.

¢1: D kiDjeZn  — (k) ella (1.8)
j=0
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The elements on the left hand side are formal series, and
_ kj if pj /q] < A.
kj = (1.9)
dj —kj if pj/a; > A.
Our identification is nonstandard in that it udgsin place of the more obvious
choice ofk;. Needless to say, we make this less-than-obvious choicaubedt

reflects the structure of outer billiards.
There is a magh,: [1a — R x {—1}, defined as follows.

b2 (ki) — (sz,-ij,—l), 2 =|Ag; — pjl. (1.10)
j=0

We defineCa = ¢2(I15). Equivalently,
Ca=¢(Zn), ¢ =d¢20¢1. (1.11)

(The map¢ depends oA, but we suppress this from our notation.) It turns out
thatg: Z5 — Cpais ahomeomorphism ar@, is a Cantor set whose convex hull is
exactlyl, the interval discussed in the previous section.@&tlenote the trimmed
Cantor set based dDa.

Define

Z[A]={mA+nm,neZ}. (1.12)
Say that theexcursion distance®f a portion of an outer billiards orbit is the
maximum distance from a point on this orbit portion to theyori

Theorem 1.6 (Comet) Let Up denote the set of unbounded special orbits relative
to anirrational Ae (0, 1).

1. For any N, there is an Nwith the following property. It € U, satisfies
Icll < N, then the kth outer billiards iterate gflies in | for somgk| < N’.
Here N depends only on N and A.

2. UaN'|1 = C%. The first return mapa: C4 — Ch is defined precisely on
Ch — #(—1). The mapp~t o pa o ¢, wherever defined o0& 5, equals the
odometer.

3. Forany; e Ci—¢(—1),the orbit portion betweepandpa(;) has excursion
distance in[c; *d~2, c;d~] and length in[c;*d 2, c,d~%]. Here g, c; are
universal positive constants ande da( — 1, #7(0)).

4. Ck =Ca— (2Z[A] x {—1}). Two points in L lie on the same orbit if and
only if the difference between their first coordinates lieg4 [ A].

Remarks:

(i) To use a celestial analogy, the unbounded special cab#€omets andl is the
visible sky. Item 1 says roughly that any comet is alwaysegitpproachingd or
leavingl. Item 2 describes the geometry and combinatorics of theswuisl . Item
3 gives a model of the behavior between visits. Item 4 givealgebraic view.
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(i) Lemma 23.7 replaces the bounds in item 3 with explictireates. The orders
on all the bounds in item 3 are sharp except perhaps for tiggHempper bound. See
the remarks following Lemma 23.7 for a discussion, and afs@ §

(iif) The Comet Theorem has an analog for the backward orBite statement is
the same except that the point0) replaces the poirgt(—1) andthe mapg — x—1
replaces the odometer. We have the general idept®y + ¢ (—1) = (2, —2).

(iv) Our analysis will show thap (0) and¢ (—1) have well defined orbits iff they lie
in C%. Itturns out that this happens iff the superior sequencéfismot eventually
monotone. The Comet Theorem implies that the forward orbit(@-1) and the
backward orbit ofp (0), when defined, accumulate onlyat. We think of(—1)
as the “cosmic ejector.” When a comet comes close to thigpbis ejected way
out into space. Similarly, we think @f(0) as the “cosmic attractor”.

(v) Statement 3 of Theorem 1.5 is a hint that the §gt$ave a beautiful structure.
Here is a structural result outside the scope of this booktirigeC, denote the
scaled-in-half version df 5 that lives in the unit interval, it seems that

c= | (c;\ x {A}) c [0, 12 c RP? (1.13)
Ae[0,1]
is the limit set of a semigrouf c SLs(2) that acts by projective transformations.

(Ca can be defined even for rational) The group closure of has finite index in
a maximal cusp 05 L3(Z). Figure 1.3 shows a plot .

N\

Figure 1.3: The setC. The bottom isA = 0 and the top iA = 1.
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1.5 RATIONAL KITES

Like most authors who have considered outer billiards, we firconvenient to
work with the square of the outer billiards map. I@t(x) denote the square outer
billiards orbit ofx. Letl = [0, 2] x {—1}, as above, and let

E=R; x{-1,1}. (1.14)

Whene € (0, 2/q), the orbitO,(e, —1) has a combinatorial structure independent
ofe. SeeLemma2.2. Thu3,(1/q, —1) is a natural representative of this orbit. We
often call this orbit théundamental orbit The fundamental orbit plays a crucial role
in our proofs. The following result is a basic mechanism faducing unbounded
orbits.

Theorem 1.7 Relative to pq, the set @(1/q, —1) N = has diameter between
A(p+q)/2andA(p+q)+ 2. Herez = 1if p/qis odd andl = 2if p/q is even.

Any odd rationalp/q appears as (say) téh termin a superior sequengg /q; }.
The terms beforg/q are uniquely determined bg/q. This is similar to what
happens for continued fractions. Defifig to be the product of the first factors
of I1, the space from Equation 1.7.

Theorem 1.8 Let ui = |pnQi — On Pil-

oz(qi,—l) ni=J (xn(K),—l), Xn(K) = q—i(1+§2kiﬂi)~

n xell,
Example: Here we show Theorem 1.8 in action. The odd rationg#®3letermines
the inferior sequence
1 519 ps
Jo 73713 Q_Q3
All terms are superior, so this is also the superior sequenaaur example,
e n=3.
« The superior sequence is?, 1.

* Theu sequenceis 3@, 2.

Therefore the first coordinates of the 12 point$p{1/49) N | are given by

L2t 230k + 8y + 2kp) + 1
Uuu s

49

ko=0 ki1=0 k;=0

Writing these numbers in a suggestive way, we see that tlmnatiove works out
to

1
o<1 5 17 21 3337 61 65 77 81 93 p7
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Remarks:

(i) Theorem 1.8 is a good example of a result that is easy tokche a computer.
One can check the result for the example we give, or for angratimallish param-
eter, using Billiard King.

(ii) A version of Theorem 1.8 holds in the even case as well. whkediscuss the
even case of Theorem 1.8 in §22.7.

(iif) We view statements 2 and 3 as the heart of the Comet EmeoWe will prove
these two statements by combining Theorems 1.7 and 1.8 andaking a geo-
metric limit. The proofs for statements 1 and 4 of the Cometdrbm require some
other ideas that we cannot describe without a buildup of maci

(iv) Theorem 1.8 has a nice conjectural extension, whickiless the entire return
map tol. See 8A.1. A suitable geometric limit of the conjecture in 88escribes
the structure of the orbits in— C% in the case whei is irrational. See Conjecture
Al

We mention two more results about outer billiards on rati&itas. These results
do not play such an important role in our proof of the Cometdraem, but they are
appealing and fairly easy by-products of our analysis.

Here is an amplification of the upper bound in Theorem 1.7.

Theorem 1.9 If p/q isodd, lett = 1. If p/q is even, lef = 2. Each special orbit
intersects= in exactly one set of the form k {—1, 1}, where

e = (Zk(p+a), 2(k+D(p+ ), k=0,1,23, ...

Hence any special orbit interseckin a set of diameter at most- (p + q) + 2.

Theorem 1.9 is similar in spirit to a result iK]. See §3.4 for a discussion.

We call an outer billiards orbit oK (A) persistent if there are nearby and com-
binatorially identical orbits oK (A") for all A’ sufficiently close toA. Otherwise,
we call the orbifleeting In the odd caseD»(1/q, 1) is fleeting.

Theorem 1.10 Inthe even rational case, all special orbits are persisténthe odd
case, the seklx {—1, 1} contains exactly two fleeting orbits,Uand U_, and these
are conjugate by reflectionin the x-axis. In particular, veeb l_gb = 02(1/q, £1).

Remark: None of our structure theorems holds, as stated, for gegeaalrilaterals
or even for nonspecial orbits on kites. We do not really hage@d understanding
of the structure of outer billiards on a general rationaldyilateral, though we can
see that it promises to be quite interesting. We take up thcudsion in 8A.4.

31t would be more usual to call such orbi&ble but in the subject of outer billiards, the wasthble
has historically meant the same as the woodnded
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1.6 THE ARITHMETIC GRAPH

Here we describe tharithmetic graph a central construction in the book. One
should think of the first return map 8 = R, x {—1, 1}, for rational parameters,
as an essentially combinatorial object. The arithmetiplyigives a 2-dimensional
representation of this combinatorial object. The prineigliiding our construction
is that sometimes it is better to understand the Abeliang®[UA] as a module
overZ rather than as a subsetRf Our arithmetic graph is similar in spirit to the
lattice vector fields studied by Vivaldi et al. in connectioith interval exchange
transformations. See, e.gVvl[].

Here we explain the idea roughly. See §2.4 for precise detdihe arithmetic
graph is most easily explained in the rational case.yLbe the square of the outer
billiards map. It turns out that every orbit starting @reventually returns t&. See
Lemma 2.3. Thus we can define the first return map

¥ E o E. (1.15)
We define the majy: Z2 — 2Z [A] x {—1, 1} by the formula
T(m,n) = (2Am+ 2n +1/q, (1) P+q+1). (1.16)

Here A = p/q.

Up to the reversal of the direction of the dynamics, everypoi = has the same
orbit as a point of the fornT (m, n), where(m, n) € Z2. For instance, the orbit
of T(0,0) = (1/q, —1) is what we called the fundamental orbit above. We form
the graphl (p/q) by joining the pointgm;, my) to (M, n2) when these points are
sufficiently close together and al§amy, n;) = ¥*(my, ny). (The mapT is not
injective, so we have choices to make. That is the purposeediifficiently close
condition.)

We letT"(p/q) denote the component ff(p/q) that containg0, 0). This com-
ponent tracks the orb®,(1/qg, —1), the main orbit of interest to us. Wheayq is
odd,T"(p/q) is an infinite periodic polygonal arc, invariant under tiatisn by the
vector(q, —p). Note thatT(q, —p) = T(0, 0). Whenp/q is even,I'(p/q) is an
embedded polygon. We prove many structural theorems afbeatithmetic graph.
Here we informally mention three central ones.

« The Embedding Theorem(Chapter 2)T (p/q) is a disjoint union of embed-
ded polygons and infinite embedded polygonal arcs. Everg efifj (p/q)
has length at mos¥/2. The persistent orbits correspond to closed polygons,
and the fleeting orbits correspond to infinite (but periogialygonal arcs.

» The Hexagrid Theorem(Chapter 3): The structure f( p/q) is controlled
by 6 infinite families of parallel lines. See Figure 3.3. Tdugasiperiodic
structure is similar to what one sees in DeBruijn’s famoustagrid con-
struction of the Penrose tilings. Sd2dB].

» The Copy Theorem(Chapter 18; also Lemmas 4.2 and 4.3)Al{fandA; are
two rationals that are close in the sense of Diophantinecqimation, then
the corresponding arithmetic graphisandT’, have substantial agreement.
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The Hexagrid Theorem causE$p/q) to have an oscillation (relative to the line
of slope—p/q through the origin) on the order @f+ q. The Hexagrid Theorem is
responsible for Theorems 1.7, 1.9, and 1.10. Referringtstiperior sequence, the
Copy Theorem guarantees that one period @, /qn) is copied byl" (pn+1/0n+1)-

If we combine the Copy Theorem and the Hexgrid Theorem, weTgebrem
1.8. The Hexagrid Theorem and the Copy Theorem work as a tedtim,one
result forcing large oscillations and the other result aigiag these oscillations in
a coherent way for the family of arithmetic graphs corresjiog to the superior
sequence.

Figure 1.4: The graphd'(1/3), I'(3/7), I'(13/31), I'(29/69).

We illustrate these ideas in Figure 1.4, where each frameslone period of
I'(p/q) inreference to the line of slopep/q through the origin. Her@/q depends
on the box. We choose 4 consecutive terms in a superior segqudfach graph
copies at least one period of the previous one, creatingébabings of a large-
scale fractal structure.

Whenp/q is an even rational; (p/q) is a closed embedded polygon. A related
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kind of period-copying phenomenon happens in the case of mtonals. We
consider arithmetic graphs associated to chains of rdsonap’/q’, p/q, ... such
that|pg — qp'| = 1 for consecutive pairs. Figure 1.5 shows the 4 solid polggon
bounded by the corresponding arithmetic graphs correspgrd 4 consecutive
terms in such a chain of even rationals.

Figure 1.5: The filled-in graphd°(2/5), I'(5/12), I'(8/19), I' (21/50).

The polygons are nested. This always seems to occur for siaifscof rationals,
though we do not actually know a proof. Fortunately, our akjpuoofs do not rely
on this nesting phenomenon. Billiard King has a featurediatvs figures like this
automatically once the final term in the chain of rationalstipplied.

One final remark: The reader should compare the undersidas @blygons in
Figure 1.5 with the graphs in Figure 1.4. The fact that the figyores so closely
resemble each other is not an accident. It has to do with aefidechoice of
rationals. Part 6 of the book explores relationships like. th
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1.7 THE MASTER PICTURE THEOREM

The logic of the book works like this. After we define the amitktic graph, we prove
a number of structural results about it. We then deduce thmefdheorem and
its corollaries from these structural results. The way weanstand the arithmetic
graph is to obtain a kind of closed-form expression for it. eTHaster Picture
Theorem gives this expression. Here we will give a roughdigtsen of this result.
We formulate and prove the Master Picture Theorem in PartBeobook.

Let us first discuss the Master Picture Theorem in vague tetinsometimes
happensthat one has a dynamical system on a high-dimehsiangold M together
with an embedding of a lower-dimensional manifélinto M thatis, in some sense,
compatible with the dynamics dvl. The dynamics oM then induces a dynamical
system onX. Sometimes the higher-dimensional systenibis much simpler than
the system orX, and most of the complexity of the system Bncomes from its
complicated embedding intd. The Master Picture Theorem says that this situation
happens for outer billiards on kites.

Now we will say something more precise. Recall tRat R, x {—1,1}. The
arithmetic graph encodes the dynamics of the first return #hap — Z. It turns
out that? is an infinite interval exchange map. The Master Picture Téraageveals
the following structure for each parameter

1. There is a locally affine map from = into a unionZ of two 3-dimensional
tori.

2. Thereisapolyhedronexchange n@p@ — Edefined relativeto a partition
of E into 28 polyhedra.

3. The mapu is a semiconjugacy betwedhand¥.

In other words, the return dynamics 8f has a kind of compactification into a
3 dimensional polyhedron exchange map. All the objects alimpend on the
paramete®, but we have suppressed them from our notation.

There is one master picture, a union of two 4-dimensionalewlattice polytopes
partitioned into 28 smaller convex lattice polytopes, ttattrols everything. For
each parameter, one obtains the 3-dimensional picturekinygta suitable slice.

The fact that nearby slices give almost the same picturesisdhrce of the Copy
Theorem. The interaction between the maand the walls of our convex polytope
partitions is the source of the Hexagrid Theorem. The Emingdtheorem follows
from basic geometric properties of the polytope exchange iman elementary
way that is hard to summarize here.

My investigation of the Master Picture Theorem is reallyt jstarting, and this
book has only the beginnings of a theory. First, | believéahgersion of the Master
Picture Theorem should hold much more generally. (This isething that John
Smillie and | hope to work out together.) Second, some regrgriments convince
me that there is a renormalization theory for this objectigded in real projective
geometry. All of this will perhaps be the subject of a futurerku
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1.8 REMARKS ON COMPUTATION

As | mentioned in the preface, | discovered most of the phesrandiscussed in
this book using my program Billiard King. Billiard King andlis book developed
side by side in a kind of feedback loop. Since | am ultimateyyng to verify
phenomena that | discovered with the aid of a computer, omggtn@xpect some
computational aspects to the formal proofs. The overathfinere uses considerably
less computation than the proof [ but | still use a computer-aided proofin several
places.

Mainly, | use a computer to check that various 4-dimensi@oavex integral
polytopes have disjoint interiors. This involves a smalloamt of linear algebra,
using exact integers, that one could in principle do by ha@de could do these
calculations by hand in the same way that one could courfi@itoins filling up a
bathtub. One could doiit, butitis better left to a machine s these computations
come from Part 3 of the book.

The experimental method | used has the advantage that | etlexdsentially
all the results with extensive and visually surveyable cotation. The interested
reader can make many of the same visual checks by downlo#dimyogram and
playing with it. | suppose | cannot guarantee Billiard Kinged not have a subtle
bug, but the output from the program makes sense in a way thatiie unlikely
in the presence of a serious problem. Also, the output ofeBillKing matches the
results | have proved in a traditional way in this book.

1.9 ORGANIZATION OF THE BOOK

The book has 6 parts. Parts 1-4 comprise the core of the bod¥art 1, we prove
the Erratic Orbits Theorem modulo some auxilliary resultshsas the Hexagrid
Theorem. In Part 2, we prove the Master Picture Theorem, @in structural
result. in Parts 3 and 4, we use the Master Picture Theorenote the various
auxilliary results assumed in Part 1.

In Part 5, we prove the Comet Theorem and its corollaries rieodarious aux-
illiary results. In Part 6, we prove these auxilliary result

In the Appendix, we discuss some additional phenomena,fbottites and for
guadrilaterals, that we have observed but not proved.

Before each part of the book, we include an overview of that pa
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Part 1. The Erratic Orbits Theorem

In this part of the book, we will prove the Erratic Orbits Them modulo a number
of auxilliary results that we prove in Parts 2—4.

* In Chapter 2, we establish some basic results that allowlfinition of the
arithmetic graph. The arithmetic graph is our main objecttafly. We also
state the Embedding Theorem, a basic structural resulttabewarithmetic
graph that we prove in Part 3.

 In Chapter 3, we state the Hexagrid Theorem, another straigiesult about
the arithmetic graph. We then deduce Theorems 1.7, 1.9, 40drbm the
Hexagrid Theorem. We prove the Hexagrid Theorem in Part 3.

* In Chapter 4, we discuss the period-copying results netmptbve the Er-
ratic Orbits Theorem. Along the way, we introduce the irdegnd superior
sequences, two basic ingredients in our overall theory. keegithe period-
copying results in Part 4.

 In Chapter 5, we assemble the ingredients from previougtengaand prove
the Erratic Orbits Theorem. We note that the arguments weruBarts 5
and 6 to prove the Comet Theorem are independent of Chapligids, for
the reader who plans to work through the proof of the ComebTéra, the
material in Chapter 5 is redundant.

We mention several conventions that we use repeatedly ghmu the book.
Recall thatp/q is an odd rational ifpq is odd. When we sagdd rational we mean
that the odd rational lies ifD, 1). On very rare occasions, we also consider the odd
rational /1. However, we never consider negative odd rationals, orrationals
greater than 1. Alsadi always stands for a kite parameter, and we white- p/q.
Similarly, A, stands forp,/d,, and A, stand forp, /q., etc. Sometimes we will
fail to mention these conventions explicitly.

We imagine that certain readers will be interested mainlgtatement 1 of the
Erratic Orbits Theorem — i.e., the existence of unboundbdorFor such readers,
we sometimes add remarks indicating sections that are wessary for this part of
the proof.
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Chapter Two

The Arithmetic Graph

2.1 POLYGONAL OUTER BILLIARDS

Let P be a convex polygon. We denote the outer billiards map velati P by v/,
and the square of the outer billiards map py= (y’)2. Our convention is that
a person walking fronp to w’(p) sees theP on the right side. These maps are
defined away from a countable set of line segmen®?nr- P. This countable set
of line segments is sometimes called lingit set

" " " " "
i, ,>¢ >< >< >¢,‘ "
>< '
%‘ <

>
(\ (\ AP
‘»4 Sy ,4’
( (
\)

\

Flgure 2.1. Part of the tiling forK (1/3).

The resultin V9], [K], and [GS] states, in particular, that the orbits for rational
polygons are all periodic. In this case, the complement eflithit set is tiled by
dynamically invariant convex polygons. Figure 2.1 shows phthe tiling for the
kite K (1/3).

This is the simplest tilinwe see among all the kites. We have drawn only part
of the tiling. The reader can draw more of these figures, awdlior, using Billiard
King. The existence of these tilings is what motivated mettiolys outer billiards.
| wanted to understand how the tiling changes with the rafiparameter and saw
that the kites give rise to highly nontrivial figures.

INote that the picture is rotated 90 degrees from the usuahaization.
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2.2 SPECIAL ORBITS

Until the last result in this section, the paramete= p/q is rational. Say that a
special intervalis an open horizontal interval of lengthi@ centered at a point of
the form(a/q, b) with a odd. Herea/q need not be in lowest terms.

Lemma 2.1 The outer billiards map is entirely defined on any speciainal and
indeed permutes the special intervals.

Proof: The four order 2 rotations about the verticedafA) send the poingx, y),
respectively, to each of the following points.

(_2_ X, _y)s (_st_ y)s (_X>_2_ y)s (2A_X>_y) (21)

The corresponding outer billiards map is built out of these rotations.
Define

A =2Z[A] x Zogg; Z[A] = {mA+nmneZ} (2.2)

From Equation 2.1, botihA andR x Zyqq are invariant under’. Therefore the
complementary sek® = R x Zyqq — A is also invariant undep’. Note thatA® is
precisely the union of special intervals.

To find the points oR x Zygq Wherey’ is not defined, we extend the sides of
K (A) and intersect them witR x Zyqq. We get 4 families of points.

@2n,2n+1), (@2n,-2n—1), (An2n—1), (2An,—2n+1). (2.3)

Heren € Z. Notice that all these points lie in. Hencey’ is defined on all
points of A®. The first statement of our result now follows from the fa@tth® is
w'-invariant.

For the second statement, note thatis completely defined on any special in-
terval. Buty’ is a piecewise isometric map. By continuiy, is an isometry when
restricted to each special interval. But thehmust map each special interval to
another one. This proves the second statement. O

Remark: For rational kites, the dynamics &hx Zyqq is essentially combinatorial.
Itis just a question of how the special intervals are perehbiethe dynamics. Thus
we are really dealing with an infinite permutation. Of course will sometimes
profit from considering this situation geometrically.

Lemma 2.2 Let Ae (0, 1) be arbitrary. Relative to the kite €A), the entire outer
billiards orbit of any point(«, n) is defined provided that ¢ 2Z [ A] and ne Zyqg.

Proof: The orbit of the poin{a, n) never lands in any of the 4 families of points
discussed in the previous result. Hence, at any step in thig both the forward
and backward iterates are defined. O

When A is irrational, the set2[ A] is a countable dense subsetRf Likewise,
2Z [A] x Zogq is a countable dense setRfx Zqqg.
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2.3 THE RETURN LEMMA

Let y be the square map relative to some kite, as above. As in &t.5, |
E=R; x{-1,1}. (2.4)

Lemma 2.3 (Return) Let p € =. be a point with a well defined outer billiards
orbit. Theny2(p), w~2(p) € Z for some ab > 0.

Remark: The main goal of this section is to prove the Return Lemma. réader
interested in the broad picture might want to skip this ratedious section on the
first pass. To accommodate such a reader, we give a quiclstiewxplanation of
why the Return Lemma is true. The-orbits generally circulate around the kite,
skipping at most 2 lines dR x Zyqq With each iterate. Being made from 2 consec-
utive rays,= serves as an impenetrable barrier to the progress of theiofdth
the forward and backward directions.

To prepare for our proof of the Return Lemma, and also for lage in the proof
of the Pinwheel Lemma in Part 2, we discuss some structuteeomapy. For
eachp € R? at whichy is well defined, we have (p) = p + V for some vector
V that is twice the difference between a pair of verticeK ¢f\). There are a priori
12 possibilities foV, and the following 10 actually occur.

« Vi=-Vs=(0,4).
e Vo= —Vg=(—2,2).
e Vz=—V; = (—2—2A,0).
o Vy=—Vg= (-2, -2).
« Vi=—V]=(-2A,2).
When listed in the order, 2, 3, 4, 4¢, 5, 6°, 6, 7, 8, the vectors defined above turn

in counterclockwise fashion.
For each indey, there is some regioR; C R2 — K (A) such that

peR = w(p)=p+V. (2.5)

The two regionng and RZ are bounded regions. These regions ultimately turn out
to be of no importance to us. The remaining regi®as..., Rg are unbounded and
play an important role. The 10 regions partiti@h— K (A). One can compute this
partition by extending the sides &f in pinwheel fashion and then suitably pulling
these sides back under the outer billiards map.
We now give a precise but terse description of the partitieor. Rﬁ andR;, we

list just the vertices of the polygon. The remaining regians unbounded. The
notationTi, py, ..., Pk, G indicates the following.

+ The two unbounded edges are the rayg and prop.

* P2, ..., Pk—1 are any additional intermediate vertices.
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Finally, to improve the typesetting, we have set (A — 1)~
¢ R (L -1, (L -2), LD
« Ry (L1, (1,-2), 0, -1), (A, D).
e R (A D, 2A, 1), a(2A2, -1 — A), (—A, D).
* R:(—A D, a(2A, A-3), (=L 1).
« R:(A0), (2A, 1), (22, -1 — A).
« R (=L D), a(2A, A—3), (—A, 2), a(2A, 3A—1), (=L, —=1).
« R:(0,1), (—A, 2), a(2A, 3A — 1),
* Re:(—L —1),a(2, A+ 1), (A, - D).
« R (=A, —D),a(2, A+ 1), (=2, 1), (A, —1).
« Re: (A, -1, (-2, -1), (~1,0), T, - ).

Figure 2.2 shows accurately the partition and the vectarsAfe= 1/3. The
numbers indicate the regions in an obvious way. The smalpnesents?ﬁ, for
instance. For the vectors, the rule is that that the taif,olies in R;. The shaded

strip is bounded by the lings= +1. Note a certain “kinship” betweeR, and R,
and similarly betweeiRs and Rg

Figure 2.2: The partition forA = 1/3.
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Figure 2.3 shows the partition for the paramet®es p/7forp=1,2,3,4,5, 6.
The reader can draw the figure for any slice using Billiardd<in

Figure 2.3: The partition for 6 parameters.
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We define
R=R+V, Sj =R NR N(R x Zodd). (2.6)

We puta 1intheij )th spot of the matrix if there is a parametefor which §; # 0.
This means that there is sompes R N (R x Zyqq) such thaty (p) € R;. Both the
partition andy depend on the parameter, but we omit this from our notatiateN
that not all transitions are possible for all parametergetiethe transition matrix.

By,

0.0
OrRrRPrRRPOOOCOOY

Y

2.7)
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cocoocoococorrrod
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Fhrrorrocooo®

DDDRDRD D)

Remark: Though it plays no role in our analysis, we note one prettyraptny:
Reflection in thex-axis swapsR; andR; if i + j = 10. This works even for the
pair (4, 6).

Proof of the Return Lemma: We will consider just the forward orbit. The back-
ward orbit requires the same treatment and indeed follomre Bymmetry. Given
the regions and vectors, the forward orbit of a point cantagtis one region forever.
Starting with a pointz € E, we leti; — i, — --- denote the sequence of regions
encountered by the forwarngd-orbit of z. Letz, = (X, Yk) be the first point inR,, .

Looking at the matrix, we arrive at 3 cases.

Case 1: Supposay = 1 for somek. Looking atR;, we see thaky > 0. The
set{y > 3} is more than 4 units from the regid®,_,, and each of the vectors has
length at most 4. Hencg € {..., —3, —1, 1}. As the orbit proceeds, we just keep
addingV; = (0, 4) until we reachyx € {—1, 1}, and then we are i&.

Case 2: Supposa, = 2 for somek. The same argument places the constraints
on xx andyk as in Case 1. Now we also observe that the{get —3} is disjoint
from Ry. Henceyy € {—1, 1}. Hencez € E.

Case 3: If we never sedy € {1, 2}, then we must havig_; = 8 andiy = 4

for somek. We check easily that in this cagg € Z. The argument is similar to
that in the previous two cases. |
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2.4 THE RETURN MAP

The Return Lemma implies that tlfiest return map¥: & — E is well defined on
any point with an outer billiards orbit. This includes the se

(Ry —2Z[A]) x {-1,1},

as we saw in Lemma 2.2.
Given the nature of the maps in Equation 2.1 comprigingve see that

Y(p)—(p) € 2Z[A] x {—-2,0,2)}.

In Part 2, we will prove the main structural result about thst fieturn map,
namely, the Master Picture Theorem. As a consequence of HestekPicture
Theorem, we get the following result.

3
Y(p)— (p) =2(Acr+€z,€3), € €{-1,0,1}, D ¢ =0 mod 2
j=1
(2.8)
The parity result in Equation 2.8 has the following proofeMectorsV; consid-
ered above all have the form

(2aA+ 2b, 2¢), at+b+c=0 mod?2

The vector¥ (p) — p is some finite sum of these vectors.

We do not have an easy proof for the boyag = 1, but we can easily give a
rough idea. For the reader who skipped the proof of the Réternma above, we
remark that our explanation here also gives a rough reasgrherReturn Lemma
is true. Consider the forwarg-orbit of a point of = that is far from the origin.
This orbit essentially circulates counterclockwise ambtire origin, nearly making
a giant octagon. Looking at our vectors, ..., Vg, we see that this near octagon has
approximate 4-fold bilateral symmetry. Theturn pair (e1(p), €2(p)) essentially
measures thapproximation errorbetween the true orbit and the closed octagon.
There is almost complete cancellation as one goes arousdhdlair octagon, and
this keeps the return pair uniformly small.

Remarks:

(i) Some version of the first return map is considered in mapeps on outer bil-
liards —e.g.,GS], [G], and DF].

(ii) On a nuts-and-bolts level, this book concerns how thie ga(p), e2(p)) de-
pends onp € E. The pair(e1, €2) and the parity condition determireg. | like to
say that this book is really about the infinite accumulatibsroall errors.

(ii) Reflection in thex-axis conjugates the map to the mapy—t. Thus, once we
understand the orbit of the poif, 1), we automatically understand the orbit of the
point(x, —1). Put another way, the unordered pair of return pojifitép), ¥ ~1(p)}

for p = (x, £1) depends only ox.
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Fundamental Map: Recall that2 = R, x {—1, 1}. Givena € R and a parameter
A, define

M= Ma,Z?>— Rx{-11)
by
Maq (M, N) = (2Am +2m+ 2a, (—1)m+”+1). (2.9)

The second coordinate & is either 1 or—1, depending on the parity of + n.
This definition is adapted to the parity condition in Equatih8. We callM a
fundamental mapEach choice o# gives a different map.

Main Definition: M is injective whenA is irrational andM is injective on any
disk of radiusqg when A = p/q. Given py, p2 € Z2, we write p; — p; iff the
following hold.

* {j=M(pj) € E.
* Y() =2
* ||p1 — p2|l is as small as possible.

The third condition is relevant only in the rational case.céwling to Equation
2.8, the choice op, depends uniquely opy, in all cases, antip; — pz|| < /2.
Our construction gives a directed graph with verticegZfn We call this graph
the arithmetic graphand denote it bfa(A). We usually ignore the isolated ver-
tices of the graph. These correspond to points on which tharenap is the identity.

A Convention: When A = p/q, any choice ofa € (0,2/q) gives the same
result. This is a consequence of Lemma 2.1. To simplify thefdas, we choose
o = 0., where Q is an infinitesimally small positive number. When we write
formulas, we usually take = 0, but we always use the convention that the lattice
point (m, n) tracks the orbits just to the right of the poiffsAm + 2n, +1). With
this convention, we have

=~(Py = (P _ P mHn+1

r(a) - FO*(E)’ M(m, n) = (2(a)m+ on, (1) ) (2.10)
We say that thbaselineof T (A)is the lineM ~1(0). The baseline is the line of slope
— A through a point infinitesimally far beneath the origin. Iagtice, we think of
the baseline as the line of slopeA through the origin.

Translation Symmetry: Whenp/q is odd, Equation 2.10 gives
M(C + V) = M(0), vV =(,—-p), (2.11)

for any: € Z2. Hence translation by/ preserved (p/q) as a directed graph.
Whenp/q is even, we hav® (¢ +V) = Ro M(¢), whereR s the reflection in the
x-axis. The magR conjugatest to ¥~1. In this case, translation by preserves
T'(p/q) as a graph but reverses the direction.
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In Part 3 we will prove the following result.

Theorem 2.4 (Embedding) Any well defined arithmetic graph is the disjoint union
of embedded polygons and bi-infinite embedded polygonaésur

LetI'(p/q) denote the component b p/q) that contains the origin. This com-
ponent corresponds to the fundamental orbit discussedéorem 1.7. The com-
ponentl’(p/q) is never a closed polygon wheryq is odd. This is a consequence
of the Room Lemma in Chapter 3. Figure 2.4 shows an example.

Figure 2.4: Some off (7/25), with I'(7/25) in black
In contrast, we have the following result.

Lemma 2.5 If p/q is even, then every componentlofp/q) is a polygon.

Proof: Suppose that some componghis not a polygon. Since translation vy
reverses the direction dn, we haveg # 8 + V.

Let (V) =~ Z denote the group generated by integer multiple¥ ofLet X be
the cylinderR?/(V). Letz:R? — X be the quotient map. By the Embedding
Theoremyz (f) is embedded itX. Sincef corresponds to a periodic orbit(S) is
aclosed loopirX. Sinces is not a polygong () is nontrivial in the first homology
groupHi(X) = Z ~ (V). Becauser (8) is embeddeds (8) must generatél; (X).
But theng = g + V, a contradiction. |
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2.6 LOW VERTICES AND PARITY

Remark: The material in this section is not needed for the proofsateshents 1
and 2 of the Erratic Orbits Theorem.

Let A be any kite parameter. We define tharity of a low vertex(m, n) to be
the parity ofm + n. Here we explain the structure of the arithmetic graph at low
vertices. Our answer will be given in terms of a kind of phasdrgit. Given a
point(x, A) € (0, 2) x (0, 1), we have

PE(X, —1) = (X, —1) + 2(6° A+ €5, €3). (2.12)
For the point(x, A) we associate the directed graph
(e1,62) = (0,0) = (¢, €)).

This gives a local picture of the arithmetic at the low vertex, n) such that
Ma(m,n) = (x,—=1). If Ma(m,n) = (x, 1), then we get the local picture by
reversing the edges. Figure 2.5 shows the final result. Téeeagtges in the figure,
present for reference, conng€; 0) to (0, —1). The gray triangle represents the
places where the return map is the identity.

(0,1) K (2,1)
(4/3,1/3 (2,1/2

Figure 2.5: Low-vertex phase portrait.

Example: Relative toA = 1/3, the vertex—7, 3) is a low vertex. We compute
that

Mi3(A) = (4/3+ a, —1).
Herea is an infinitesimally small positive number. To see the Iqmature of the
arithmetic grapH'(1/3) at (-7, 3), we observe that the poimt= (4/3 + a, 1/3)

lies infinitesimally to the right of the poir#/3, 1/3). Hence(e; , €,) = (0, 1) and
(Gf, E;) = (13 _1)

In principle, one can derive Figure 2.5 by hand. We will explzow to derive it
in 86.8 as a corollary of the Master Picture Theorem.
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Lemma 2.6 No component of (A) contains low vertices of both parities.

Proof: Recallthaf is an oriented graph. ifis a nontrivial low vertex of’, we can
say whethel is left-travelling or right-travelling at . The definition is this: As
we travel along the orientation and pass througthe line segment connectingo
v — (0, 1) lies on either our left or our right. This gives the name to deiinition.
A component of” cannot right-travel at one low vertex and left-travel attheo
Figure 2.6 shows the problem. The cupvevould create a pocket for itself, and
could not escape from this pocket because it must stay ahevwsiseline. The low
vertices ofy serve as barriers. Travelling into the pocketyould have only a finite
number of steps before it would have to cross itself. But tiwerwould contradict
the Embedding Theorem.

o It O
A\ g

Figure 2.6: y travels into a pocket.

To finish the proof, we just have to show that a componeit Bfht-travels at a
low vertexo if and only if v has even parity. We will show that a componentof
always right-travels at low vertices of even parity. Let Mplain why this suffices.
Recall that the fundamental map maps vertices of even parity B, x {—1}, and
vertices of odd parity t® x {1}. Also, recall that reflection in the-axis conjugates
the return map¥ to ¥~L. It follows from this symmetry thaf left-travels at all
low vertices of odd parity if and only if right-travels at all vertices of even parity.
But a glance at Figure 2.5 shows tHatight-travels at all vertices of even parity.
The gray line segment always lies on the right. o

Corollary 2.7 Let A € (0, 1) be arbitrary. Suppose th&dt, € (0,2) x {1} and
é_ € (0,2) x {—1} have well defined orbits. Then the two orbits(@ ) and
Oz (&-) are distinct.

Proof: Suppose, for the sake of contradiction, that the orbitsaiden Then there
is a choice of: such that a componehtof the arithmetic grapl, (A) corresponds
to this common orbit. There are low verticés,, n,) and (m_, n_) such that
M, (M, ny) = &;. Butthen(m,, n,) and(m_, n_) have opposite parity, contra-
dicting the previous result. |
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2.7 HAUSDORFF CONVERGENCE

Here we state the basic results that will allow us to take gadmlimits of orbits
for outer billiards systems with varying parameters. Whe&oimes to taking limits
of arithmetic graphs, we will always use the Hausdorff toggyl

The Hausdorff metric and topology: Given two compact subsel§;, K, ¢ R?,
we defined (K1, K») to be the infimak > 0 such that the sé&; is contained in the
e-tubular neighborhood of the s&t,, and vice versa. The functiah(K1, K3) is
known as thédausdorff metric A sequencéC,} of closed subsets &&? is said to
Hausdorff convergeo C c R?if d(C, N K, CNK) — 0 for every compact subset
K c R2. This notion of convergence is called tHausdorff topology

Remark: In the cases of interest to US, is always an arc of an arithmetic graph
that containg0, 0). In this case, the Hausdorff convergence has a simple mganin
{Cn} converges tcC if and only if the following property holds true. For any,
there is someN’ such than > N’ implies that the firsN steps ofC,, away from
(0, 0) in either direction agree with the corresponding steps.of

Given a parametef € (0, 1) and a point € E, we say that a paifA, ¢) is
N-definedif the first N iterates of the outer billiards map gfare defined relative
to A in both directions. We lef' (A, ¢) be as much of the arithmetic graph as is
defined. We call'(A, ¢) apartial arithmetic graph

Lemma 2.8 (Continuity Principle) Let {¢n} € E converge tq- € E. Let{An}
converge to A. Suppose the orbitds defined relative to A. Then forany N, there
is some Nsuch that n> N’ implies that(¢,, An) is N-defined. The corresponding
sequencedl’(An, (n)} of partially defined arithmetic graphs Hausdorff-convesge
toT'(A, Q).

Proof: Let y,, be the outer billiards map relative f,. Lety’ be the outer billiards
map defined relative té\. If p, — p andy’ is defined atp, theny, is defined

at p, for n sufficiently large andy/ (pn) — w(p). This follows from the fact that
K(An) — K(A) and from the fact that a piecewise isometric map is defined and
continuous in open sets. The Continuity Principle now feidrom induction. O

In the case when the orbit gf relative toA, is already well defined, the partial
arithmetic graph is the same as one component of the ordameiynetic graph. In
this case, we can state the Continuity Principle more simply

—

Corollary 2.9 Let{,} € E convergetq- € E. Let{A,} converge to A. Suppose
the orbit of¢ is defined relative to A and the orbit gf is defined relative to fAfor
alln. Then{I'(An, ¢(n)} Hausdorff converges tb (A, ¢).

We will have occasion to use both versions of the Continuiipnd®le in our
proofs.
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Remark: The remaining material in this section is not needed for tteofs of
statements 1 and 2 of the Erratic Orbits Theorem.

Lemma 2.10 Letse (0, 1). If (y")*(s, 1) is not defined on KA) forsomek| < N,
then s= 2Am+ 2n for some mn € Z such thajm| < 2N.

Proof: We will consider the case whean > 0. The other case is similar. By
induction, we may suppose that (t1, t2) = (y")N1(s) is well defined. Looking
at the maps in Equation 2.1, we see inductively fldt < 2N. If /(1) is not
defined, thert is one of the points in Equation 2.3 for soimé < N. Hence

ty = 2Am +2n’; Im'| < N.
By Equation 2.1 and induction, we have
s=2Am+ 2n; Im| < N +|m’| < 2N.

This completes the proof |

We think of the next result as a rigidity lemma because it shgscertain limits
are independent of how we take them.

Lemma 2.11 (Rigidity) Let A, be any sequence of parameters converging to the
irrational parameter A. Letn € [0, 2] x {1} be any sequence of points converging
to (0, 1). LetI'(¢n, A) be the arithmetic graph @f, relative to A. Then the sequence
{T(¢n, A}, if entirely defined, Hausdorff-converges.

Proof: Lete € (0, 1) be given. Define
Z(A) ={(s,A)lse(0,6), |A-A| <e} (2.13)

Let O(s; A') denote the outer billiards orbit @8, 1) relative toK (A"). Suppose
that one of the firsN iterates ofO(s, A’) is not defined. By Lemma 2.10, we have
m, n € Z such that

s=2A'm - 2n; Im| < 2N. (2.14)

(We use a minus sign for convenience.) Note that 0. Hence, by Equation 2.14
and the triangle inequality,

n
‘A——‘ <|A- A+
m

, n S
A m‘ <€+ 2 < 2e. (2.15)
This is impossible foe sufficiently small. Hence the firdd iterates ofO(s; A') in
both directions are well defined whés) A') € X, (A) ande is sufficiently small.

If all orbits in some interval are defined, then all orbitshat interval have the
same combinatorial structure. Hence, for avythere is some > 0 such that
the combinatorics of the fird iterates, in either direction, oD(s; A’) are in-
dependent ofs, A') € Z.(A). This lemma now follows from the Return Lemma,
which guaranteesthat, 85— oo, the number of returns t& tends toxo as well. O
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Chapter Three

The Hexagrid Theorem

3.1 THE ARITHMETIC KITE

In this section we describe a certain quadrilateral, whiehoall thearithmetic
kite. This object is meant to “live” in the same plane as the arégticgraph. The
diagonals and sides of this quadrilateral define 6 speciattibns. In the next
section we describe a grid made from 6 infinite families ofaflal lines based on
these 6 directions. LeA = p/q. Figure 3.1 accurately show& A) for A= 1/3.

Figure 3.1: The arithmetic kite.

One can construct this figure using straight lines and thergboordinates. The
pairs of lines that look parallel are supposed to be paraflettinga = (q, q), we
have

a—V U b+c
b= U=A 1- A)b W=—= . (31
— a+(1- Ab, A= 2 GD
The vectorsy andW are of special interest to us. We have
Pq Pq q-—p
V=(,-p), W= ( , + ) (3.2)
p+d p+q 2

It follows from the rightmost (double) equality in Equati8ri that'C(A) is affinely
equivalent toK (A).
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Thehexagrid G A) consists of two interacting grids, which we call tlhem grid
RG(A) and thedoor grid DG(A).

Room Grid: When A is an odd rational RG(A) consists of the lines obtained
by extending the diagonals d€(A) and then taking the orbit under the lattice
Z[V /2, W]. These are the black lines in Figure 3.2. In the case whé&nan even
rational, we make the same definition but use the la#if¥, 2W] instead.

Door Grid: Thedoor grid DG(A) is the same for both even and odd rationals.
It is obtained by extending the sides/6tA) and then taking their orbit under the
1-dimensional lattic& [V]. These are the gray lines in Figure 3.2.

/

Figure 3.2: G(25/47). andK(25/47).

Figure 3.2 shows the hexagi@(25/47) and the arithmetic kitéC(25/47). Bil-
liard King allows the user to draw color versions of such fegufor essentially any
rational parameter.
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3.2 THE HEXAGRID THEOREM

First we will talk informally about the Hexagrid Theorem. thre previous section,
we defined two grids, the room grid and the door grid. The Hegdgheorem says
that these two grids control the large-scale structuresmétithmetic graph. Itturns
out that the lines of the room grid serve to “confine” the amiftic graph, in the
sense that the arithmetic graph can cross these lines ongnaspecific locations.
The door grid serves to define the locations — i.e., the doworisere the graph can
cross the lines of the room grid. Thus the Hexagrid Theordate® two kinds of
objectswall crossingsanddoors Informally, the Hexagrid Theorem says that the
arithmetic graph crosses a wall only at a door. Here are fbdefaitions.

Rooms and Walls: RG(A) dividesR? into different connected components which
we callrooms Say that avall is the line segment of positive slope that divides two
adjacent rooms.

Doors: When p/q is odd, we say that door is a point of intersection between
a wall of RG(A) and a line of DG(A). When p/q is even, we have the same
definition, except that we exclude intersection points effdrm(x, y), wherey is

a half-integer. Every door is a triple point, and every watone door. The first
coordinate of a door is always an integer. (See Lemma 1Slexdeptional cases
—when the second coordinate is also an integer — the dodnlibe corner of the
room. Inthis case, we associate the door to both walls auinit. The dooi(0, 0)
has this property.

Crossing Cells: Say that an edge of T crosses a walif e intersects a wall at
an interior point. Say that a union of two incident edge$ afrosses a walif the
common vertex lies on a wall and the two edges point to oppsiies of the wall.
The point(0, 0) has this property. We say thatessing cellis either an edge or
a union of two edges that crosses a wall in the manner justidesc For instance
(-1,1) - (0,0) = (1,1) is acrossing cell for any € (0, 1).

In Part 3 of the book we will prove the following result. Lefl[denote the floor
of y, the greatest integer less than or equal.to

Theorem 3.1 (Hexagrid) Let A€ (0, 1) be rational.

1. T(A) never crosses a floor of R®). Any edges of (A) incident to a vertex
contained on a floor rise above that floor (rather than belayv it

2. There is a bijection between the set of doors and the sebs$iog cells. If
y is not an integer, then the crossing cell correspondincheodoor(m, y)
contains(m, [y]) € Z2. If y is an integer, theiix, y) corresponds t@ doors.
One of the corresponding crossing cells contairsy), and the other one
contains(x, y — 1).

Figure 3.3illustrates the Hexagrid Theoremigg = 25/47. We will explain the
shaded parallelograi(25/47) in the next section. We have shown only the fleeting
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componentsin Figure 3.3—i.e.,those components that actosed polygons. Each

persistent component—i.e., those components that aedgbadygons — is confined
to a single room.

) 'k & A ! L T
f;j \“I/ ’ -
l J] ‘j 05
D
2C 5 it

)

Figure 3.3: G(25/47), R(25/47), and some of (25/47).

The figure for the even case looks similar but slightly diéfe: The reader can
see much better figures for the Hexagrid Theorem using diitieard King or our
interactive guide to the book. The interactive guide shomly the odd case, but
Billiard King shows both the even and odd cases.

The Hexagrid Theorem helps us in two ways. First, the patiftine doors forces
some of the orbits to oscillate on a large scale. Secondgtterp of the walls guar-
antees that the components do not oscillate too wildly faouontrol them. This
controlled oscillation will come in handy later on when wsdaliss period-copying
phenomena.

Remark: The Hexagrid Theorem immediately implies that all speciiits on
K (p/q) are bounded, and hence periodic.
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3.3 THE ROOM LEMMA

The Room Lemma, an easy consequence of the Hexagrid The@réhg main
result we use to force large oscillations of the fundameortzit O(1/q, —1).
Let R(p/q) denote the parallelogram whose vertices are

(0, 0), v, W, V 4+ W. (3.3)

HereV andW are as in Equation 3.R(p/q) is the shaded parallelogramin Figure
3.3. We also define

dO = (Xa [y])a X=—, y= (34)

4q
do lies within 1 vertical unit of the centerline &(p/q), above the midpoint of the

centerline.dy is just below the triple point contained in the interior oéthhaded
parallelogram in Figure 3.3.

Lemma 3.2 (Room) Let p/q be an odd rational. TheR(p/q) is an open polyg-
onal curve. One period df (p/q) connectg0, 0) to dy to (q, —p). This period is
contained in Rp/q).

Proof: First of all, for any value ofA, it is easy to check thdt (A) contains the
arc(—1,1) —» (0,0) —» (1, 1). One can see this from the phase portrait shown in
Figure 2.6. This is to say th&t(p/q) entersR(p/q) from the left at(0, 0). Now
R(p/q) is the union of two adjacent roont® andR,. Note that(0, 0) is the only
door on the left wall ofR;, and(x, y) is the only door on the wall separatiri®y

and R, and(q, —p) is the only door on the right wall oR,. Here(x, y) is as in
Equation 3.4. From the Hexagrid Theorem and the EmbeddiegfEm,I"(p/q)
must connect0, 0) to do to (q, —p). The arithmetic grapfi (p/q) is invariant
under translation byq, — p), and so the whole pattern repeats endlessly to the left
and right ofR(p/q). Hencel'(p/q) is an open polygonal curve. o

We remark that we did not really need the Embedding Theoreoumproof
above! All we require is thatl'(p/q) cannot backtrack as we travel from one
corner of R(p/q) to the other. Lemma 3.3 below gives a self-contained proof of
what we need.

Lemma 3.3 I'(p/q) has valence at every vertex.

Proof: Recall that¥ is the first return map t&, x {—1, 1}. Asin our proof of the
Room Lemmal'(p/q) has valence 2 g0, 0). ButI'(p/q) describes the forward
orbitof p = (1/q, 1) under?. If some vertex of"(p/q) has valence 1, theH has
order 2 when evaluated at the corresponding point. But Wdras order 2 when
evaluated ab. But thenI'(p/q) has valence 1 g0, 0). This is a contradictionO

1] am grateful to Dmitry Dolgopyat and Giovanni Forni for pting this out to me.
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3.4 ORBIT EXCURSIONS

Remark: The material in this section is not needed for the proof of Eneatic
Orbits Theorem.

In this section, we prove Theorems 1.7, 1.9, and 1.10.
Let M, be the first coordinate of the may in Equation 2.10. Let = 1if p/q
isodd andl = 2if p/q is even.

Lemma 3.4 No point of Q(1/q) N E has a first coordinate greater that{p + q).

Proof: Let L be the line of the room grid parallel to the baseline that amstthe
point AW. HereW is as in Equation 3.2. We compute thdi (AW) = A(p + Q).
By the Hexagrid Theorent;(p/q) lies in the strip bounded by the baseline dnd
Looking at Equation 2.10, we see thdyj is constant ori.. Therefore we have the
boundMi(m, n) < A(p + q) for any vertex(m, n) of T'(p/q). O

Lemma 3.5 The first coordinate of some pointin,@/q) N Z exceedd(p+q)/2.

Proof: To avoid an irritating case in which the calculations yielsbaund that is off
by 1 unit, we assume that > 1.

In the odd caséy; (dp) is the first coordinate of a point @.(1/q, —1) N Z, and
we compute thaM; (dp) > (p + q)/2. Heredy is as in the Room Lemma.

Consider the even case. Leg be the line of the room grid throug®®, 0) and
parallel to the walls. By Lemma 2.5, the componE&xip/q) is a closed polygon.
Sincel'(p/q) contains the ar¢—1,1) — (0,0) — (1, 1), an arc that has points
on either side of.y, the polygonl’(p/q) must crosd. ¢ at some point abovéd, 0)
as well. The door orh g immediately abové0, 0) is within 1 unit ofU, the tip of
K(A). See Figure 3.1. By the Hexagrid Theordnip/q) must crosd ¢ within 1
unit of U. Call this crossing pointl;. We compute thaM(dj) > p + g, at least
whenp > 1. ButMy(d}) is the first coordinate of a point i@,(1/q, —1) N E. O

Proof of Theorem 1.7: Lemma 3.5 immediately gives the lower bounds in Theo-
rem 1.7, except in the cage= 1. The unimportant case = 1 requires a separate
argument which we omit. For the upper bounds, we note thdirgtecoordinates

of points in 02(1/q, —1) N E lie in [0, A(p + q)], by Lemma 3.4. The second
coordinates belong to the detl, 1}. This completes the proof. O

Proof of Theorem 1.9: We will give the proof for odd rationals. The even case is
just about the same except for the factor of 2. Supposephgis odd. Sincep
andq are relatively prime, we can realize any integer as an imteg@bination of

p andqg. From this we see that every point of the fosiy, with s odd, lies in the
image ofM;. Hence some point a2, above the baseline &f(p/q), corresponds
to the orbit of eithers/q, 1) or (s/q, —1). Let thefloor grid denote the lines of
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negative slope in the room grid. These lines all have stepgg. Thekth line Ly
of the floor grid contains the point

)

Modulo translation by, the pointg is the only lattice point orLx. Statement 1
of the Hexagrid Theorem says that the edgeB ofcident togy lie betweenL, and
Lyy1 (rather than betweehy_; andLy).

We compute thaM; (¢k) = k(p + g). For all lattice pointgm, n) betweenL
andLy,1, we therefore have

Ml(ma n) € Ika (35)
the interval from Theorem 1.9. This theorem now follows frequation 3.5, state-
ment 1 of the Hexagrid Theorem, and our remarks apiaut O

Remark: We compare the odd case of Theorem 1.9 to a resuKin([The even
case is similar.) The result irK[] is quite general, and so we will specialize it to
kites. In this case, a kite is quasirational iff it is ratibn@he (special case of the)
result in K], interpreted in our language, says that every speciat &rbbntained
in one of the intervalgy, Ji, Jp, ..., where

p+gq-1
Ja = U Iak+i .
i=0
The endpoints of thd intervals correspond toecklace orbits A necklace orbit (in
our case) is an outer billiards orbit consisting of copiethefkite touching vertex
to vertex. Compare Figure 2.1.

Recall that a periodic orbit relative t0 (A) is persistent if there exists a nearby
and combinatorially identical orbit relative t0(A’) for all nearby parameter&’.

Lemma 3.6 Suppose that g E is a periodic point relative to outer billiards on
K (A). Then Q(p) is persistent if and only if the component of the arithmetapd
corresponding to A and p is a closed polygon.

Proof: Lety be a the component of interest. By Equation 2.8, we have
PX(p) — p = 2meA + 2ny, 26, k=1,23,... (3.6)

Heremy, ng € Z andey € {—1, 0, 1} andmy + ng + ¢ is even. For any givek, the
triple (mg, Nk, €k) remains the same for small perturbations of the parametes. T
point is that a finite amount of combinatorial data determifmy, ny). If y is a
closed polygon, thefmy, ng, ex) = (0, 0, 0) for somek. But then'¥¥(p) = p for

all parameters neak. HenceO,(p) is persistent. Conversely,@,(p) is persistent
thenmy A’ + ng = 0 for somek and all A" sufficiently close toA. But this forces
(mk, nk) = (0, 0). Hencey is a closed polygon. |
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Proof of Theorem 1.10: Lemmas 2.5 and 3.6 combine to prove the even case
of Theorem 1.10. Now we establish the odd case.d/etbe an odd rational. Say
that asuiteis the region between two floors of the room grid. Each suifgaisi-
tioned into rooms. Each room has two walls, and each wall ltaain it. From

the Hexagrid Theorem, we see that there is an infinite polgiane of ' (p/q) that
lives in each suite. Lefx(p/q) denote the infinite polygonal arc that lives in the
kth suite. Herd o(p/q) = I'(p/q).

We have just described the infinite family of fleeting compuaeéisted in Theorem
1.10. Allthe other components 6‘f(p/q) are closed polygons and must be confined
tosingle rooms. The corresponding orbits are persistghelma 3.6. The already
described polygonal arcs use up all the doors.

The point(m, n) € Z? lies on the component of the arithmetic graph correspond-
ing to one of the two orbitéM (m, n), +1). HereM is the fundamental map from
Equation 2.9. By the parity result in Equation 2.8, these wimts lie on different
Y-orbits. Therefore each componentﬁfcorresponds to two distinct special or-
bits. In particular, there are exactly two fleeting ortik$ andU,  contained in the
interval I, and these correspondkqQ(p/q). This completes the proof. O
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Chapter Four

Period Copying

4.1 INFERIOR AND SUPERIOR SEQUENCES

We discussed inferior and superior sequences in §1.4. Hesawa bit more. Let
p/q € (0,1) be any odd rational. There are unique rationalgq- and p;./q+
such that
Lagpy Y- max(g-, q+) <d, aps — pg: =£1.  (4.1)
Q- d 0O+
See Chapter 17 for more details.
We define the odd rational.

PP+ —p-|

= , 4.2
a 19+ —0-| *2)

wherep’/q’ is the unique odd rational satisfying the equation
q <aq, Ipd’ —qp| =2 (4.3)

We call p’/q’ the inferior predecessoof p/q, and we writep’/q’ « p/q or
p/q — p’/q’. We can iterate this procedure. Apyq belongs to a finite chain

1 P1 Pn p
— e S e — = —, 4.4
1 a1 On q (“4)
Corresponding to this sequence, we define
Ok+1
dx = floor{ —). 4.5
“ ( 20k ) *5)

We define thesuperior predecessoof p/q to be px/ak, wherek is the largest
index such thatl, > 1. It might happen that the inferior and superior predeassso
coincide, and it might not.

For reference, we repeat the example from 8§1.4. Considesetipeence

1 1 1 3 5 13 21 55 89
193  E B T ET B m I

3/13 has }5 as both a superior and an inferior predecessglHas 313 as an
inferior predecessor and/3 as a superior predecessor. The implied limit of this

sequence is/5 — 2, the Penrose kite parameter.

The inferior predecessor construction organizes all thieatibonals into a directed
tree of infinite valence. The rationaf1is the terminal node of this tree. The nodes
incidentto ¥/1 are 13, 3/5, 5/7, etc. Figure 4.1 shows part of this tree. The edges
are labelled with thel-values from Equation 4.5.
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1 @
"
@ Boe

Figure 4.1: Part of the odd tree.

The tree we are drawing has infinite valence at all nodes. thhexception of
the top node, A1, all the other nodes have the following structure.

1. There is one incoming arrow labelled 0.

2. There are two incoming arrows labelledor eachk =1, 2, 3, ....

We will establish these results in Part 4 of the book. We wi#baestablish the
following result, which identifies certain ends of the treghwthe irrationals in
(0, 2).

Lemma 4.1 (Superior Sequence)l et A< (0, 1) be irrational. There is a unique
sequencépn/gn} of odd rationals such that

Po_1 Poer Py, A= lim . (4.6)

Qo 1 Ont1 On n—00 Qy
There are infinitely many indices n such t2a}, < gn1.

We call the sequendgn/an} theinferior sequenceWe calln asuperior indexf
20n < Ony1- Interms of Equation 4.5, the indexs superior if and only i, > 1.
We define thesuperior sequenct be the subsequence indexed by the superior
indices. Though there are many inferior and superior segpgeoontaining, /dn,
the initial parts of these sequences are determineg,b§,. This comes from the
directed tree structure we have already mentioned. Theetsavesult is also true.
Any inferior sequence with infinitely many superior terms faa irrational limit.
This is a consequence of Lemma 17.4.

Remark: One can also define a similar tree for even rationals. To d9 the
modify Equation 4.3 to reabq — qp'| = 1. Forinstance, 22 and 25 are related
this way. Compare the discussion surrounding Figure 1.Bdnirttroduction.
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4.2 STRONG SEQUENCES

4.2.1 The Main Result

Let A; andA; be two odd rationals. Ldt; andT'; be the corresponding arithmetic
graphs. We fix

€ =1/8. 4.7)

This is an arbitrary but convenient choice.
LetVy = (q1, —p1). Let 1"% denote the period df; connecting(0, 0) to V; and
let 1"1‘1 denote the period df; connecting0, 0) to —V;. We define

i< =rtu (rl N Beql(Vl)), = =rrtu (rl N Beg, (—V4) ).

(4.8)
We are extending one period bf slightly beyond one of its endpoints. Say that
a monotone convergent sequence of odd ratiof@algq,} is strongif it has the
following properties.

1. |A— An| < Cq, 2 for some universal consta6t

2. If Ay < Any, then}e c 'L,

3. If An > Angr, thenI'71— c T

In other wordsI'n;1 copies about & € periods ofl', for everyn. As usual, we
have setA, = pn/0h.
In Part 4 we will prove the following result.

Theorem 4.2 Any superior sequence has a strong subsequence. In partienly
irrational in (0, 1) is the limit of a strong subsequence.

In the next chapter we will prove that any limit of a strongsece satisfies the
conclusions of the Erratic Orbits Theorem. Thus Theoremigiéhe of the key
ingredients in the proof of the Erratic Orbits Theorem.

4.2.2 An Easier Result

The proof of Theorem 4.2 is rather involved. It requiresiadl material in Part 4. It
turns out that we can prove a result nearly as strong as tlai&@rbits Theorem
based on the following easier result.

Lemma 4.3 Let Aj = p;/q; be odd rationals such thaty, — Az| < 1/(203).
« If A; < Ay, thenl'}*e c T3
« If Ay > Ay thenl 71 ¢ T;h

Heree = 1/8 as above. The proof of Lemma 4.3, given in 817.4 and Chagter 1
requires only a small portion of Part 4.
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Let Ax c (0, 1) denote the set of irrationals such that the equation

1
A— p < — P, € Zodd (4.9)

kg2’
holds infinitely often. Lemma 4.3 has the following corojlar

0<

Corollary 4.4 Every Ae A, is the limit of a strong sequence.

Proof: If A € Ay, then there exists a monotone sequence of solutions to iBquat
4.9 fork = 2. This sequence is strong, by Lemma 4.3. O

Combining the last corollary with our work in the next chaptee obtain the
proof of the Erratic Orbits Theorem for al € A,. We close this section with some
observations on the size of the saig.

Lemma 4.5 A has full measure irf0, 1) for any k.

Proof: Any block of 3 consecutive odd terms k in the continued fraction ex-
pansion ofA guarantees a solution to Equation 4.9. It follows from trgodicity
of the Gauss map (or the ergodicity of the geodesic flow on thdutar surface)
that almost evenA has infinitely many such blocks. Hengg has full measure in
(0, 1). See BKS] for the relevant ergodic theory. O

It turns out that every irrational ir(0, 1) belongs toA;. This result is similar in
spirit to Lagrange’s famous theorem stating that everyional A satisfies

p 1

L R
a|  /5g2

infinitely often. Lagrange’s theorem does not imply thatrguerational lies inA;
because the conditions axy, involve a parity restriction. In any case, the 2et
seems to be pretty close to all @, 1) — Q.

For the interested reader, we sketch the proof of the resuiiave just mentioned.

Lemma4.6 A1 =(0,1) — Q.

Proof: (Sketch.) Consider the usual horodisk packing in the uppHrgiane as-
sociated to the modular group. The disk tangeriRtat p/q has diameter /g2.
Remove all horodisks except those based at odd rationalsteliach disk (in the
Euclidean sense) by a factor of 2 about its tangency poinse@ie that the comple-
ment of these inflated disks in the hyperbolic plane has tefinmany components.
Interpret this result in terms af; using the usual connection between the modular
horodisk packing and rational approximation. O

Lemma 4.6 plays no role in our proofs, however.

1| am grateful to Curt McMullen for pointing this out to me anid@for supplying the proof sketched
here.
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Chapter Five

Proof of the Erratic Orbits Theorem

5.1 PROOF OF STATEMENT 1

In this section we will prove the following result.

Lemma 5.1 Suppose that A is the limit of a strong sequefisgl. Then statement
1 of the Erratic Orbits Theorem holds for A.

Statement 1 of the Erratic Orbits Theorem follows from Tleeort.2 and Lemma
5.1. The reader who is satisfied with the Erratic Orbits Theofor all A € A, can
use the much easier Lemma 4.3 in place of Theorem 4.2.

In our proof of Lemma 5.1, we will consider the monotone imsiag case.
The monotone decreasing case is essentially the same: +e1/8 be as in the
definition of strong sequences. Note that our sequence nsrsabng if we pass to
a subsequence. Passing to a subsequence, we arrange that

€0n+1 > 100, (5.1)
Let V, = (On, —pn)- Define
7 =I5+ Voia, (5.2)
Lemma 5.2
| Nl PR r2cry vm>n+2 (5.3)
Proof: We have
r#e - F%+1’

by definition, and
I} 4+ Vot € Tops
becausd ', is invariant under translation by,.;. Our choice of subsequence
gives
I} c T C, Bigg,(0,0) C Beg,,,(0,0) N Ty (5.4)

The starred containment comes from the Room Lemma. Tramglay V.1, we
have

T3+ Vg1 C Begy,, (Vr) N TRy C TptE C Ty (5.5)
Equation 5.3 follows immediately. ]

Figure 5.1 shows schematicaly the sort of binary struct@éave set up. In this
figure, the notationj stands fo;.
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41

21 22

11N 11

Figure 5.1: Large-scale Cantor set structure

Figure 5.2 shows a simplified version of Figure 5.1 that retdine structure of
interest to us. Below we will analyze this figure carefully.

81

61 62

ri=iiaialBEainifnls

Figure 5.2: Large-scale Cantor set structure simplified

Corollary 5.3 The vertex
n-1

on =)= &V (5.6)
k=1

is a vertex oﬂ“%n for any binary sequencs, ..., €n—_1.
Proof: This follows from Equation 5.3 and induction. O

Let IT denote the set of not-eventually-constant sequences.n@ivgs € II,
we form the sequence of translated baselines and trangjegpts

L, = Lon — wn, I, =T% —on. (5.7)
Herew, is based on the first — 1 terms ofs as in Equation 5.6. The linky, is
the baseline of,,, namely, the line of slope Az, through the origin.

Lemma 5.4 {L},} converges in the Hausdorff topology to a line L of slepA.

Proof: This follows from the fact that there is a uniform bound to diance from
Wn to L2n. O
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Lemma 5.5 {I'};} Hausdorff-converges to an open polygonal &rdhat in both
directions rises unboundedly far from L and comes arbityaczlose to L.

Proof: Figure 5.2 shows a pattern of nested rectangldsoges We now formally
define these boxes. Say that the box contairﬂ,h@ R, = R(An), as in the Room
Lemma. We define the 8 smallest boxes in Figure 5.2 as

Ro + €1V3 + €2Vs5 + €3V7, €j € {0, 1}. (58)

The larger boxes have similar definitions. We rank each bograking to the label
of its leftmost translate. The smallest boxes have rank & néxt-smallest have
rank 4; and so on. The following structure emerges.

1. The arc inside a box of rank2s a translate 01“%n and has diameteD (qzn).
This arc contains the bottom corners of the correspondinganal rises up
O(gzn) units toward the top of the box. This is all a consequencesRibom
Lemma and Corollary 5.3.

2. The bottom edge of a box of rank #es within O(1/qzy,) of the bottom edge
of the box of rank B + 2 that nearly contains it. For the leftmost boXes
and Rxn 2 this result follows from the facts that the bottom edges ekth
boxes meet at the origin, their slopes differ®y1/qg3,), and the shorter edge
has lengthO(gz,). Next, sinceVany1 is at mostO(1/qzn) units from the
bottom of Ry.2, we get the same result fd, + Vony1 and Ronio. The
general case now follows from translation.

By construction, the pattern of boxes surroundisgstabilizes when we view
any fixed-radius neighborhood af,. More formally, for anyR, there is soméN
such thatm, n > N implies thatl'3, N Br(wm) is a translate of 3, N Br(wn). Here
we are crucially using the fact that € II, so that the common pattern of boxes
grows both to the left and to the right of the points of interésence the sequence
{I';,} Hausdorff-converges to a limit. The 2 properties above imply thhtrises
unboundedly far fronk. in both directions.

Now consider the claim about the near approach. Call an &r¢ efeadyif this
same arc also belongs g, for m > n. By construction, we get the following
result. For anyk, there is some such thatl’;, contains a steady arc of the form
B — wn. Herep is a full period ofT'k but is contained iT3,. Some vertex of 3
has the form

n-1
ZEiV2j+1’ (5-9)
j=k

The distance from to the baseline of ', is O(1/0x+1). But then the distance
fromov — w, to the baseline dff}, is O(1/0x+1). Buto —wy, is also a vertex of (by
the Hausdorff-convergence) and its distance to the basefin is alsoO(1/gx1)-
We can choose the aft— wy, either to the left or to the right of the origin. Hence
both sides of the limil" come arbitrarily close td . o
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Now we will recognizd™ as an arithmetic graph corresponding to the parameter
Aand a certain offset value Atthe same timel, will be the baseline of this graph.
Similar to Equation 2.10, we define
M(m, n) = (2Am+ 2n, (—1)m+”+1). (5.10)

Giveno = {¢} € 11, the point

a(0) = (Zzek(qum — Pasa) —1) (5.11)
k=1

is well defined because theh term in the series has siZe(1/gx.1) and the
sequencédzx.1} grows exponentially. The union of such limits, taken ovéoél
I1, contains an uncountable set. Throwing out all pointsdri &] x {—1}, we still

have an uncountable set. Takiagrom this uncountable set, the poiat= a (o)

we consider has a well defined orbit, by Lemma 2.2.

Lemma 5.6 T is the arithmetic graph o&, and L is the baseline.

Proof: Let My, be as in Equation 2.10 for the paramefgy. Define

n-1
an = Man(on) = (Z 26k<A2nQZk+1 - p2k+1), —1)- (5.12)
k=1

There is some consta@tsuch that

(A2nO2k+1— Paks1) — (Alpkg1— p2k+1)‘ = Ox1l A=Al < Cayl, Wk < n-—1,

< Cay

Z 26 (AQpk+1 — Pxs1)
k=n

It follows from these estimates and the triangle inequaligt
la —an] < quz_nl.

Hencea, — «a.

By constructionI, is one period of the arithmetic graph @f relative to Az,.
The distance thdt;, extends from the origin in either direction tendsstowith n.
By the Continuity Principle{I';,} converges to the arithmetic graphaf But {T,}
also converges tb. Hencel is the arithmetic graph af.

The lineL,, — w is the baseline for the arithmetic grapf that tracks the orbit
of an. Hencel is the baseline of . O

Combining Lemmas 5.5 and 5.6, we see thdies on an erratic orbit relative to
outer billiards onK (A). But there are uncountably manyto which our argument
applies. This proves Lemma 5.1.
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5.2 PROOF OF STATEMENT 2

The result we prove in this section shows that statement heofErratic Orbits
Theorem implies statement 2. The reader will see from thé¢ leexma that we
do not need the full force of statement 1. We just need theends of a point
sufficiently close to a kite vertex that has a two-sided umioied orbit.

Lemma 5.7 Suppose that A is a parameter ancef0, 2) x {1} has an orbit that
is unbounded in both directions. Then all special orbitatiel to A are either
periodic or unbounded in both directions.

Proof: We write p = (2¢,1). By hypothesis¢ € (0, 1). Suppose thaff has an
aperiodic orbit that is forward-bounded. (The backwardedasimilar.) For ease
of exposition, we suppose théitg 2Z [ A], so that all components of the arithmetic
graphT associated t@ are well defined. In the case whgne 2Z [A], we simply
apply our argument to a sequer{gh} converging tof and invoke the Continuity
Principle. Our robust geometric limit argument works thensaway with only
notational complications.

Let T be the component df that tracksp. The forward directiod”, remains
within a bounded distance of the basellnef T’ and yet is not periodic. Hende,
travels infinitely far either to the left or to the right. Sak has an irrational slope,
we can find a sequence of vertideg} of I',. such that the vertical distance fram
to L convergestq + N for some integeN. Letw, = vy — (0, N). Lety, be the
component ofn containingwn. Note thatM (wn) — p. HereM is as in Equation
2.10.

Y

Figure 5.3: The contradiction.

Let T, be a translation so that, (wn) = (0, 0). By compactness, we can choose
our sequence so thgl, (', )} converges to an infinite polygonal axcthat remains
within a bounded distance of any line parallellto By construction, X travels
infinitely far both to the left and to the right. At the same &irfiT,(yn)} converges
to the arithmetic grapl of ¢. HereY starts at(0, 0), a point within 1 unit of the
baselineL,, = lim T,(L), and rises unboundedly far froin,,. HenceY starts
out belowX and rises abov¥, contradicting the Embedding Theorem. Figure 5.3
shows the contradiction. |
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5.3 PROOF OF STATEMENT 3

In this section we prove that statement 1 of the Erratic @rblieorem implies
statement 3. LeA be an irrational parameter for which statement 1 of the Errat
Orbits Theorem holds. Since outer billiards is a piecewssamietry, the set of
periodic orbits is open iR x Zyqq. We just need to prove that the periodic orbits
are dense.

Let T be an arithmetic graph associated&such thaf” tracks an erratic orbit.
SinceAisirrational, we can find a sequence of vertif@sy, nk)} of odd parity that
convergesto the baseline Af Let yx be the component df that containgmy, Ny).
Note thatyy # I' because, by Lemma 2.B,contains vertices only of even parity.
By the Embedding Theoremny is trapped underneaih. Henceyy is a polygon.
Let |yk| denote the maximal distance between a pair of low verticegon

Lemma 5.8 |yx| » oo as k— oo.

Proof: By the Rigidity Lemma in 82.7, a very long arc ¢f, with one endpoint
(m, nk), agrees with the Hausdorff limit lim, . I'(pn/dn). Here{pn/an} is an ap-
proximating strong sequence. But this limit has verticeahinic of the baseline and
atleast Ye apartforany > 0. Ourresult now follows from Hausdorff continuity.

Let & denote the set of componerjrfsoff such that ' is translation equivalent
to yx and the corresponding vertices are low. The vefteyxn) is low if the baseline
of I' separategm, n) and(m, n — 1).

Lemma 5.9 There is some constani 8o that every point of L is within \units
of a member of\S

Proof: Say that a lattice pointm, n) is very lowif it has depth less than/100

(but is still positive.) The polygomny corresponds to a periodic orkit. Since

& is periodic, there is an open neighborhddgd of & such that all orbits ifJy

are combinatorially identical téx. Let M be a fundamental map associated to
I. ThenM~1(Uy) is an open strip parallel tb. SinceL has an irrational slope,
there is some constaiy so that every point of is within Ny of some point of
M~1(Uy) N Z2. But the components df containing these points are translation-
equivalent toyx. ChoosindJy small enough, we can guarantee that the translations
takingyk to the other components carry the very low verticegdb low vertices.O

Given two polygonal componenté andY of ', we write X > Y if one low
vertex ofY lies to the left ofX and one low vertex oY lies to the right ofX. See
Figure 5.4. In this caseX is trapped underneath, by the Embedding Theorem.

Now we pass to a subsequence so that

[yke1l > LO(Nk + [ ykl). (5.13)

Equation 5.13 has the following consequence. For any intdjewe can find
componentg; of §;, for j = N, ..., 2N, suchyy o< --- < yon. Let Ly denote
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the portion ofL between the two distinguished low points)qgf. Let Ay denote
the set of lattice points withifN units of L. The setAy is a parallelogram whose
base id y, a segment whose length tendsxtowith N. The height ofA tends to
oo as well.

(
\%

Figure 5.4: One polygon overlying another.

Lemma 5.10 The set MZ2 N Ay) consists entirely of periodic orbits.

Proof: LetV be a vertical ray whose-coordinate is an integer. W starts out on
Ln, thenV must travel upward at leadt units before escaping from underneath
yon. This is an application of the pidgeonhole principle. Thepas thatV must
intersect each;, for j = N, ..., 2N, in a different lattice point. Hence any point of
AN is trapped beneatfpy . |

Given the facts that both the base and height\gf are growing unboundedly
and the fact thaf\ is an irrational parameter, the uniQJf,_; M(An N Z?)is dense
in R;. Hence the set of periodic orbits startingRn. x {—1, 1} is dense in the set
of all special orbits. Our proof of the Pinwheel Lemma in Rashows that every
special orbit eventually lands IR, x {—1, 1}. Hence the set of periodic special
orbits is dense iR x Zyqq.
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Part 2. The Master Picture Theorem

In this part of the book, we will state and prove the Mastetlre Theorem. All
the auxilliary theorems left over from Part 1 rely on this rehresult. Here is an
overview of the material.

* In Chapter 6, we will state the Master Picture Theorem. Rbyghe Master
Picture Theorem says that the structure of the return Wap determined
by a pair of maps into a flat 3-tori&®/ A together with a partition oR3/A
into polyhedra. Here\ is a certain 3-dimensional lattice that depends on
the parameter. We will consider the Master Picture Theonem fseveral
points of view, giving lots of example calculations. The ender of Part
2 is devoted to the proof of the Master Picture Theorem. Thdeewho is
keen to see the applications can skip directly from Chapterf&art 3.

* In Chapter 7, we will prove the Pinwheel Lemma, a key tecalrstep along
the way to the proof of the Master Picture Theorem. The Pimivbemma
states that we can factor the return m#pnto a composition of 8 simpler
maps, which we cabtrip maps A strip map is a very simple map from the
plane into an infinite strip.

 In Chapter 8, we prove the Torus Lemma, another key resuite Torus
Lemma implies that there exists some partition of the tantsdpen regions
such that the regions determine the structure of the artibrgeaph. The
Torus Lemma reduces the Master Picture Theorem to a roughndietation
of the singular set. The singular set is the (closure of taepEpoints in the
torus corresponding to points where the return map is nateefi

* In Chapter 9, we verify, with the aid of symbolic maniputatj certain func-
tional identities that arise in connection with the Torusrirea. These func-
tional identities are the basis for our analysis of the siagset.

* In Chapter 10, we combine the Torus Lemma with the functimteantities to
prove the Master Picture Theorem.

Billiard King has a module that shows the torus partition dedonstrates the
Master Picture Theorem. A separate module on Billiard Kihgves all the sets
involved in the proof of the Pinwheel Lemma. We hope that théamal in Chapters
6 and 7 stands on its own, but we strongly recommend that tdderaise Billiard
King as a guide to this material.
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Chapter Six

The Master Picture Theorem

6.1 COARSE FORMULATION

Recall thate = R, x {—1, 1}. We distinguish two special subsets®f

[1]

2 = [ J@k, 2k+2) x {(-1)), - =J@x k+2) x {((-D* ). (6.1)
k=0 k=1
Each setis aninfinite disconnected union of open intenfddsgth 2. The reflection
in the x-axis interchange&, and Z_. The unionZ, U E_ partitions the set
(Ry —2Z) x {#1].
Define
Ra=1[0,1+ A] x [0,1+ A] x [0, 1]. (6.2)

Ra is a fundamental domain for the action of a certain lati\ce This lattice is
defined by the following matrix.

1+A 1-A -1
AA=|: 0 1+A —1]23. (6.3)
0 0 1

We mean to say that 5 is theZ-span of the column vectors of the above matrix.
We define maps

U+ Ex = Ra (6.4)
by the equations
t—1 t+1t 11
#:l:(t, *)— (T, T,E)ZIZ (E,E,O) mod A. (65)

The maps depend on only the first coordinate. In each case e&a to map into
R? and then use the action fs to move the image int®Ra. It might happen that
there is not a unique representativeRR. (There is an issue with boundary points,
as is usual with fundamental domains.) Howevet,df 2Z [ A], this situation does
not occur. The mapg ., andu_ are locally affine.

Here is a coarse formulation of the Master Picture Theorera.will state the
entire result in terms of+), with the understanding that the same statement holds
with (=) replacing(+) everywhere. Le¥W: E — E be the first return map.

Theorem 6.1 For each parameter A, there is a partiti@f® ») . of Ra into finitely
many convex polyhedra. ¥ is defined ordy, & € E4 andu, (&) and i, (&) lie
in the same open polyhedron@ )., then¥ (&) — & = Y (&) — &.
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6.2 THE WALLS OF THE PARTITIONS

In order to make Theorem 6.1 precise, we need to describatheerof the partitions
(Pa)+ and also the rule by which the polyhedron in the partitiored®ines the
vector? (&) — &. We will make several passes through the description, gduit
more detail each time.

The polyhedra ofP 5)+ are cut out by the following 4 families of planes.

e x=t}fort=0,A,11+ A
e {y=t}fort=0,A,11+ A
e {z=t}fort=0,A,1-A, 1

e X+y—z=tjfort=—1+A A1+A2+A

As a first approximation, we say that the connected compsnefithe com-
plement of the above planes are the polyhedra in the paxtithectually, the best
statement is that the polyhedra in the partition are cedainvex unions of these
components. This is to say that the actual partition intylpedira is somewhat
simpler than what one would get just by taking the comple@rgmegions we are
discussing. We will consider the best version at the veryadride chapter.

z=0 (1+A,1+A,0) z=1/2
9

([ @
(0,0,0) (A00) (0,0,1/2) (1/2+A,0,1/2)

Figure 6.1: Two slices of the partition foA = 2/3.

Figure 6.1 shows two slices of the partition for the paramate- 2/3. We have
sliced the figure az = 0 andz = 1/2 and we have labelled several points just
to make the coordinate system more clear. The arrow in itekctdne “motion”
the diagonal lines would make if we increased thepordinate, showing a kind of
movie of the partition.
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6.3 THE PARTITIONS

For each parametek we get a solid bodyRa partitioned into polyhedra. We can
put all these pieces together into a single master pictueed&fine

R= [J (Rax{A})cR" (6.6)
Ae(0,1)
Each 2-plane family discussed above gives rise to a hypeejiéanily inR*. These
hyperplane families are now all defined o¥elbecause the variabkis just the 4th
coordinate oR* in our current scheme. Given that we have two mapsandu_,

it is useful for us to consider two identical copiBs andR_ of R.
We have a fibratiorf : R* — R? given by

f(X,y,2, A) = (z, A). (6.7)

This fibration in turn gives a fibration d? over the unit squarB = (0, 1)2. Figure
6.1 shows the fibef ~%(3/2, 1/2). The base spad® is partitioned into 4 regions,
as seen in Figure 6.2.

A

z

Figure 6.2: The partition of the base space.

All the fibers above the same open region in the base spacdtimgame com-
binatorial structure. Figure 6.3 shows precisely how thiitgan assigns the value
of the return map. Given a poitite =, we have a pair of intege(s; (¢), €5 (¢))
such that

W) =& =2, €], %). (6.8)

The second coordinatg;2, is determined by the parity relation in Equation 2.8.
Similarily, we have(e; ,e;,) foré e =_.
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Figure 6.3 shows a schematic pictureRofFor each of the 4 open triangles in the
base, we have drawn a cluster of 4 copies of a representé@refier that triangle.
The jth column of each cluster determines the value]?bf The first row of each
cluster determines’, and the second row determinq-‘s Light shading indicates
a value of+-1. Dark shading indicates a value-efL. No shading indicates a value
of zero.

= K
1‘ 2

T

Figure 6.3: The decorated fibers.

Given a generic poinf € Z., the imageu(¢) lies in some fiber. We then use
the shading scheme to determiﬁ“e(f) for j = 1,2. (See below for examples.)
Theorem 6.1, together with the description in this sectamstitutes the Master
Picture Theorem. In §6.9 we explain with more traditionahialas how to compute
these values.

Remark: The hard work in the proof of the Master Picture Theorem isasho
ing that Theorem 6.1 holds with respect to the partition weetdefined. Once we
know this, a short finite experiment will determine the shagdn Figure 6.3.
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6.4 ATYPICAL EXAMPLE

Here we will show the Master Picture Theorem in action. Wé explain it deter-
mines the local structure of the arithmetic grdpt3/5) at the point(4, 2). LetM
be the fundamental map associated to

A = 3/5; A =1/10.
We compute
M(4,2) = (8)(3/5) + (4 + (1/5), (-1)*"**) = (9, -1) e E_.

The pointu (9, —1) determines the forward direction and the pqint(9, 1) deter-
mines the backward direction. (Reflection in thaxis conjugate¥ to its inverse.)
We compute

9 11 9 1 31
uy (9,1 = (E’ o E) = (F)’ > E) mod A,

799 7 11
u-9,-1 = (E’ >’ E) = (E’ > 5) mod A.

In 86.6 we will explain algorithmically how to make these qmuations. We have

(z, A) = (1/2,3/5). There we need to look at cluster 3, the cluster of fibers

above region 3 in the base. Here is the plot of the two pointeérrelevant fiber.
When we look up the regions in Figure 6.3, we find thgt, ¢;) = (-1, 1) and
(e1,€;,) = (1,0). The bottom right of Figure 6.4 shows the correspondinglloca
structure for the arithmetic graph.

o+

Figure 6.4: Points in the fiber over region 3.
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6.5 A SINGULAR EXAMPLE

Sometimes it is an annoyance to deal with the tiny positivestantx that arises in
the definition of the fundamental map. In this section we @xiplain an alternate
method for applying the Master Picture Theorem. One sitnatihere this alternate
approach proves useful is when we need to deal with the filbers-ax. We much
prefer to draw the fibers @ = 0 because they do not contain any tiny polygonal
regions. All the pieces of the partition can be drawn cleaHlgwever, in order to
make sense of the Master Picture Theorem, we need to slighdbfine how the
partition defines the return map.

We define thdower boundaryof a polyhedrorP c R? as the portiorS c 6P
such thatx € Simplies thatx + ¢(1, 1, 1) e Sfor sufficiently smalle > 0. Let P
denote the union of the interior & with its lower boundary. When is sufficiently
small, we can set = 0 and determine the return pair using the polyhe@rim
place of the interior oP, which we used above. In practice, we will use this method
whenA is rational. In this case; will always be small enough for our purposes.

We can explain the alternate method in terms of the slicesave trawn above.
We redefine the polygonal regions to include theiver edges. A lower edge is an
edge first encountered by a line of slope 1. Figure 6.5 shoves wé have in mind.

Figure 6.5: Polygons with their lower boundaries included.

We then setr = 0 and determine the relevant edges of the arithmetic graph by
which lower-borderedpolygon contains our points. #f € {0, A, 1 — A}, then we
think of the fiber atz as being the geometric limit of the fiberszat ¢ for ¢ > 0.

That is, we take a right-sided limit of the figures. Whsn not one of these special
values, there is no need to do this, for the fiber is completefined already.

We illustrate our approach with the example= 3/5 and(m, n) = (0, 8). We
compute that = 8 + « in this case. The relevant slices are the ones we get by
settingz = a. We deal with this by setting = 0 and computing

iy (16,1) = (8,9,8) = (4/5,1,0) mod A

4 (16,—1) = (7,8,8) = (0,7/5,0) mod A.

Figure 6.6 shows the relevant fibers. The bottom right of FE@U6 shows the local
structure of the arithmetic graph. For instaneg’,, €;) = (0, 1).
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(@)

Figure 6.6: Points in the fiber.

The only place where we need to use our special definition ofver-bordered
polygonis for the pointin the lower left fiber. This fiber deteénes thex-coordinate
of the edge corresponding o_. In this case, we include the point in the lightly
shaded parallelogram because the point lies in the loweebof this parallelogram.

Figure 6.7: An exceptional case.

There is one exception to our construction that requiregplasation. Referring
to the lower right fiber, suppose that the bottom point agtualthe bottom right
vertex as shown in Figure 6.7. In this case, the point is gamelbusly the bottom
left vertex, and we make the definition using the bottom leftex. The underlying
reason is that a tiny push along the line of slope 1 would mbeegbint into the
region on the left. Actually, this case is not really an exmepif we think of the
left and right hand sides of the fiber as being identified.
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6.6 THE REDUCTION ALGORITHM

Let A be a parameter and letbe an offset value. Le¥l be the fundamental map
associated to the paiA, a), as in Equation 2.9. We define
My =y oM, M_=u_opoM. (6.9)

Here u- is as in Equation 6.5 ang is the reflection in thex-axis. The domain
of u1 is 24, the set from Equation 6.1. Note that andu_ depend on only the
first coordinate, and this first coordinate is not changed.bVhe magy is present
mainly for bookkeeping purposes becapg& ) = E_.

Given a pointp Z2, the polyhedron oR, containingM_.(p) determines the
forward edge ofl" incident to p, and the polyhedron oR_ containingM_(p)
determines the backward edgelbincident top. Concretely, we have

M, (m,n) =(s,s+1,5) mod A,
M_(m,n) =(s—1,s,5) mod A,

s=Am+n+a. (6.10)

Let (m, n) € Z2 be a point above the baselinelof(A). Here we describe how
to compute the points

#+ (Mg (M, n)).
This algorithm will be important when we prove the DiophastLemma in Part 4.

. Letz= Am+n+a.
. LetZ = floor(z).

. Lety=2z+ Z.

1

2

3

4. LetY = floor(y/(1+ A)).

5 Letx=y—Y(1—A) —1.
6

. LetX =floor(x/(1+ A)).

We then have

X—(1Q+ AX
w—(Mg(m, n)) =(y— Q+ A)Y). (6.11)
z—Z
The description of: , is identical except that the third step above is replaced by
y=z+2Z+1 (6.12)

All this algorithm does is use the lattice to move the pointx, y, z) into the
fundamental domaiRRa.
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6.7 THE INTEGRAL STRUCTURE

Let Aff denote the group of affine automorphism&4f We define a discrete affine
group actionA c Aff on the infinite slab

R=R3x (0,1). (6.13)
The groupA is generated by the 3 maps, y», ys. Herey; acts on the first 3
coordinates as translation by th¢éh column of the matrixA o, and on the 4th

coordinate as the identity. We think of thevariable as the 4th coordinate., 72, y3
map the column vectdi, y, z, A)!, respectively, to

X+1+ A X+1—A x—1
y y+1+A y—1
y4 ’ y4 ’ z+1 (6.14)
A A A

The quotienﬁ/A is naturally a fiber bundle ové®, 1). Each fibe(R® x {A})/A is
isomorphic toR3/A a. The regionR, from Equation 6.6, is a fundamental domain
for the action ofA. Explicitly, the 16 vertices oR are

(€1, €2, €3, 0), (2¢1, 262, €3, 1), €1, €2, €3 € {0, 1}. (6.15)

Inplicit in Figure 6.3 is the statement that the regidthsandR_ are partitioned
into smaller convex polytopes. The partition here is defimgthe 4 families of hy-
perplanes discussed above. For each(pajk,) € {—1, 0, 1}, let R, (¢, €2) denote
the closure of the union of regions that assigi) €,). It turns out thalR, (e3, €2) is
a finite union of convex integral polytopes. There are 14 qualiitopes, and they
give an integral partition oR,. Here we list the 14 polytopes. In each case, we list
the vertices followed by the pafe;, €,) that the polytope determines.

0707 ro7rororiyriiriiri
ollof||lof]|all2a]|lo]|]lO]|]O]|]|1
ollollallollallof]allallr] @D

Lol lLadlodLadladbadlodladlLs

r07 07 r07r07r07 1 r1gri
ollxllafl2]l2]f2]|]2]]2
oflol|]lof|lo]||2]|lO|]2]]2 (=1.D,

Lol lodLadbLadbadbadbad el

r0 0 rlrlr1r2
1|2l lallal]l2]]2
0 1la(l2ll2]]2 (=1.-D,

Lol lodLodLadLad Ll

r0 0 ri7ririrlrigorl
1ll21loflallafl2]ll2]]2
ollollollolloll2]]loll2| ©D:

Lol L1dlodLodLadlodLad el

07 07 r07 0707011
ollof||aflallall2]|]0]|]1
ollxllollzll2llal]l2ll2| @D

Lol lodLadLodLadladlod el
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Let:: Ry — R_ be given by the map

(X, y¥,Z,A=1L+A-x,1+A-y,1-2 A). (6.16)
Geometrically,; is a reflection in the 1-dimensional line. We have the general
equation

R_(—€1, —€2) = 1(Ry-(e1, €2)). (6.17)

Thus the partition oR_ is a mirror image of the partition dR,. We can use the
action of A to extend our partitions to give tilings & by convex integer polytopes.
This tiling is our “master picture.”
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6.8 CALCULATING WITH THE POLYTOPES

We will illustrate a calculation with the polytopes we haistdd. Let: andy, be
the maps from Equation 6.7. The regiBn (0, 0) consists of two polygonB; and
P,. These are the last two listed above. We will show that

1(P2) +(1,1,0,0) = y2(Py).
As above, the coordinates f&% are

0 0 0 1 1 1 1 1 1 2 2 2
0 1 1 0 0 0 1 1 1 0 0 1
0 0 1 0 0 1 0 1 1 0 1 1
0 0 0 0 1 0 1 0 1 1 1 1

Recall that:(x,y,z,A) = 1+ A—-x,14+ A—-y,1— 2 A). For example,
1(0,0,0,0) = (1,1, 1,0). The coordinates far P,) are

1 r1rigrogriqrogriqrogriqroq o oY
1 0 0 1 2 1 1 0 1 2 2 1
1 1 0 1 1 0 1 0 0 1 0 0|
LOJ LOoJ LOoJLOdLadJLodLadLod Ll bbby
The coordinates fanP,) + (1, 1, 0, 0) are
r2 r27r23rigr2qrigr2rigr2rigrigriy
2 1 1 2 3 2 2 1 2 3 3 2
1 1 0 1 1 0 1 0 0 1 0 0
LOJ LOJLOJLOdLadJLodLadLod Ll Ly

We havey,(X,y,z, A) = (x+1—A y+ 1+ A,z A). Forinstance, we compute
thaty»(0,0,0,0) = (1, 1, 0, 0). The coordinates for (P,) are

1 1 1 2 1 2 1 2 1 2 2 2

1 2 2 1 2 1 3 2 3 2 2 3

0 0 1 0 0 1 0 1 1 0 1 1

0 0 0 0 1 0 1 0 1 1 1 1

These are the same vectors as listed (85) + (1, 1, 0, 0), but in a different order.

Finally, we illustrate how the general form of the integrattition can justify nu-
merical calculations. Consider the phase portrait desdrib Figure 2.5. Consider
the two rectangles

Q+ = {(tat +17t)| te (07 1)} X [Oa 1])

Q_={(t—1t1)]|te (1)} x[0,1].

Allow Q. to intersect the polytopR.. These intersections partitid@, and Q-
into a small finite number of polygons. The partition@f. tells the behavior of
¥ on points of(0, 2) x {1}. By symmetry, the partition o). tells the behavior
of ¥* on (0, 2) x {—1}. The partition ofQ.. gives us the information needed to
build Figure 2.5. Given the simplicity of the partitions alved, we can determine
the figure just by plotting (say) 1000 fairly dense points in the rectangles. Thisis
what we did.
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6.9 COMPUTING THE PARTITION

Here we explain how Billiard King implements the Master Biet Theorem. We
cannot imagine that a person would want to do this by handit m#ems worth
explaining what the computer actually does.

6.9.1 Step 1
Suppos€ga, b, ¢) € Rp lies in the range of:. or x_. Now we describe how to
attach a 5-tupléno, ..., n4) to (a, b, ).

» Determiningng:

— If we are interested im, thenng = 0.

— If we are interested im_, thenng = 1.
e Determiningn;:

— Ifc < Aandc < 1— A, thenn; = 0.
— Ifc> Aandc < 1— A, thenn; = 1.
— Ifc> Aandc > 1— A, thenn; = 2.
— Ifc < Aandc > 1— A, thenn; = 3.

« Determiningn,:

— If a e (0, A), thenn, = 0.
—Ifae (A1), thenn, = 1.
—Ifae(@,1+ A),thenn, =2.

« Determiningns:

— If b e (0, A), thennz = 0.
—Ifbe (A L), thenns = 1.
—Ifbe (1,14 A), thennz = 2.

» Determiningn,:

— Lett=a+b-c.
— Letng = floor(t — A).
Notice that each 5-tupl@o, ..., n4) corresponds to a (possibly empty) convex poly-

hedron inRa. The polyhedron does not dependrgn It turns out that this polyhe-
dronis empty unless, € {—2, -1, 0, 1, 2}.
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6.9.2 Step 2
Letn = (ng,...,Ns). We now describe two functiong(n) € {—1,0,1} and
ex(n) € {—1,0, 1}.
Here is the definition o1 (n).
* If ng + n4 is even, then
— If na+n3=4orx; < x3sete1(n) = —1.
e If ng + ng4 is odd, then
— If np +n3=0o0rx; > Xz, sete;(n) = +1.
 Otherwise, set;(n) = 0.
Here is the definition of»(n).
e If ng = 0andn; € {3, 0}, then

— If np =0, letex(n) = 1.
— If np, =1, andny #£ 0 letep(n) = 1.

* If np =1andn; € {0, 1}, then

— if ng > 0andng # 0, letex(n) = —1.

— If n < 2 andnz = 0 andng = 0, letep(n) = 1.
e If np =0andn; € {1, 2}, then

— If n; < 2andng # 0, letep(n) = 1.
— If n > 0 andnz = 2 andn4 = 0, letez(n) = —1.

If np =1 andn; € {2, 3}, then

— If np = 2, letep(n) = —1.
— If n, =1 andng # 0, letex(n) = —1.

Otherwise, let,(n) = 0.

6.9.3 Step 3

Let A € (0,1) be any parameter and let > O be some parameter such that
a & 2Z [A]. Given any lattice poin¢m, n), we perform the following construction.

e Let(ag, by, ci) = u+(A, m,n). See §6.6.
» Letn. be the 5-tuple associated(@., b.., c.).
o Letef = e1(ny) andes = ex(ny).

The Master Picture Theorem says that the two edg€&s @h, n) incident to(m, n)
are(m, n) + (7, €).
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Chapter Seven

The Pinwheel Lemma

7.1 THE MAIN RESULT

The Pinwheel Lemma gives a formula for the return Mg — Z in terms of
maps we calktrip maps Similar objects are considered B8] and [J].

Consider apaifX, L), whereX is aninfinite planar strip and is a line transverse
to 2. The pair(L, X) determines two vectois, andV_, each of which points from
one boundary component &fto the other and is parallel to. Clearly,V_ = —V,.
See Figure 7.1.

For almost every poinp € R?, there is a unique integersuch that

E(p):=p+nVy e X. (7.2)

We callE the strip map defined relative (&, L). The mapE is well defined except
on a countable collection of parallel and evenly spacedline

Figure 7.1: A strip map.

Figure 7.2 shows 4 strips,, ..., X4 we associate to the kit€ (A). The labelled
points all lie on thex-axis, and we simply give the first coordinate. One edge of
each strip contains an edge K{ A). The other edge of the same strip is obtained
by reflecting the first edge through the kite vertex that igfest away from the first
edge. Referring to the vectors in 82.3, we associate therégto X ;. We remind
the reader that

Vi=(0,4), Vo=(-22), V3=(-2-2A,0), Vi=(-2,-2). (7.2
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The corresponding strip map; is based or{X, Vj). To make the notation com-
pletely consistent with §2.3, we define

Ijta=Ij, Vi ==Vj, Ej+s = Ej. (7.3)

Figure 7.2: The 4 strips for the parametér= 1/3.

To give formulas for the strip maps, we define vectors

1
W =-(-1,1,3 Wo = —— (-1, A A
1 4( 5 Ly )a 2 2+2A( s I\ )9
1 1
W; = -1, -AA W, =-(-1,-1,3). 7.4
3 2—|—2A( 5 5 )s 4 4( 5 5 ) ( )
For a pointp € R?, we define
Fi(p) = Wj - (p1, p2, ). (7.5)

F(j, p) measures the position @f relative to the stripZ;. This quantity lies in
(0,1) iff pliesinthe interior off;. Letting [] denote the floor function, we have

Ei(p) = p—[Fi(P]V;. (7.6)
We also define amap: R, x Zogq — = by the formula
x(X,4n + 1) = (x, £1). (7.7)

Lemma 7.1 (Pinwheel) ¥ exists for any point oE having a well defined outer
billiards orbit. In all cases¥Y = y o (Es...Ej).
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7.2 DISCUSSION

We call the map in the Pinwheel Lemma fhiswheel mapResults like the Pinwheel
Lemma seem to be foundational for polygonal outer billiagisilar ideas appear
in [K] and [GY], for instance. As we will see in the next section, the Pingthe
Lemma is quite easy for points far from the kite. We are fortedonsider all
points in E because all the unbounded orbits turn out to be erratic;itteytably
come close to the kite.

To prove the Pinwheel Lemma in general, we follow the strateged for the
Return Lemma. We consider all possible sequences of the form

il—)iz—)ig—) sy,
whereR;,, R;,, ... denotes the list of successive regions of the partition emisved
by the forwardy-orbit of some pointz; € Z. We letz; be the first point in the
forward orbitinR,, . Our proofboils down to a case-by-case analysis of the plessi
sequences. In some cases, the proof relies on some luckglicdions.

Clearly, something nontrivial must happen to make the Pesbhemma true for
all points. Notice that the pinwheel map does not involve\/tdaetorsV4t andVg,
and yet these vectors and their corresponding regionseskéd in the dynamics.
Some kind of lucky cancellation must take place that “edits these vectors and
regions from the final reckoning. There are two “symmethcatlated” lucky
accidents, and they are depicted in Figures 7.4 and 7.5 bdlbe/nature of these
accidents dictates the order of our proof. First we deal sétjuences that do not
involve 4 and 8 and then we consider the general case.

As in §2.3, we strongly recommend that the reader use Rilli§ing to better
follow the claims we make here. This program allows the resmlelraw all the
regions in the partition and their translates, superimmptiiem as desired over the
strips. Atthe same time, the reader can plot the dynamidseadtiter billiards map,
checking that all the sets have their advertised properties

Since the Pinwheel Lemma is a nontrivial result for pointarmbe kite, it seems
worth presenting some numerical evidence for the resulindBilliard King, we
compute that the Pinwheel Lemma holds true at the pgints-1) relative to the
paramete for all

1 255 1 16384 6
A—2—56,...,2—56, X—€+m,...,6+m, e =10".
The small number is included to make sure that the outer billiards orbit isiatty
defined for all the points we sample. This calculation faivigll carpets the “near
region” with instances of the truth of the result. While tbeculation does not
prove anything formally, it serves as a good sanity checkttir@Pinwheel Lemma
is true.

We close this section with a discussion of how the Pinwheegtiba fits into the
proof of the Master Picture Theorem. The Master Picture Téraaeally makes
a statement about the pinwheel map. The Pinwheel Lemma thesldtes this
statement to a statement about the miap Thus, if we want to use the Master
Picture Theorem to verify a particular statement solelyalite pinwheel map, we
do not need to know about the truth of the Pinwheel Lemma. phigiple will
come in handy at the end, saving us some tedious work.
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7.3 FAR FROM THE KITE

Here we prove the Pinwheel Lemma for points®far from K. Logically, the
argumentwe give here is not necessary for our overall priab&dPinwheel Lemma.
However, it is an easy argument, and it serves as a guideddratder arguments
we give in the following sections when we come to the real froo

Let K’ be a large compact set surroundiig Define

S =R — K/, j=1234,5,678. (7.8)

K’ contains the two compact regio% and Rg Figure 7.3 shows how the regions
S; sit with respect to the strips;. EachS; shares its unbounded edges with two
consecutive strips as shown.

3

Figure 7.3: Easy case of the pinwheel lemma.

Looking at the figure, we have
Zj11 = Ej(2)), z10= 1 (20), j=1..8 (7.9)

By induction and Equation 7.8, the poit,, lies in the forward orbit og; for each
j =1,...,8. Butthenzyp = ¥(z1) = y o Eg...E1(z1), and we are finished.
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7.4 NO SHARPS OR FLATS

Now we turn to the general proof of the Pinwheel Lemma. In #astion, we
prove the Pinwheel Lemma for sequences that contain neither . Since
ZEc RURU Rﬂ, our sequence has the form— --- — iy, wherei; € {1, 2} and
ix € {9, 10}. By Equation 2.7, the indices increase, and furthermorg ith@ease
by at most 3 each time. We observe, using Billiard King, that

O<k—j <4, = RINR(C ZjN---N Zy_1. (7.10)
Since no sharps and flats are involved, Equation 7.10 implies
zj41 = Ei (z)). (7.11)

We check thaR, N E c X;. Hence, ifi; = 2, we haveEi(z;) = z;. Therefore,
whetheri; = 1 ori; = 2, Equation 7.11 yields

Zp = Eil---El(Zl)- (7.12)
By Equation 7.10, we have
2 € ﬁl NR,CZj,N---NZXZj,_1, Ei,—1...Ei,+1(22) = 25. (7.13)

The first equation above implies the second. Combining Eops{7.11-7.13, we
have

3 = Eiz(ZZ) = Ei2-~~Ei1+l(22) = Eiz...El(Z]_). (714)
Repeating the same argument, we have
zs = Ei,...E1(z2). (7.15)

This pattern continues in this way until we arrivezate Rg U Ryo.

Case 1:Supposey € Rg = R;. Then
2y = Eg...El(Zl). (7.16)

The forward iterates ofy are obtained by repeatedly addig This is the same
as applying the map. Hence

‘P(Z]_) = X(Zk) =xo Eg...El(Zl). (717)

Hence the Pinwheel Lemma holds in this case.

Case 2:Suppose&y € Rijp = Rx. Then

Zy = Eg...El(Z]_) =* Eg...E]_(Z]_) CE (718)
The starred equality comes from the fact that
Eg...El(Zl) € Xg= 2, (7.19)

by Equation 7.10. HencEg = E; acts trivially. The containmentin Equation 7.18
comes from the same argument we gave in case 2 of the prodd Beturn Lemma
in 82.3. By Equation 7.18, we hayg(zx) = z, and again the Pinwheel Lemma
holds.
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7.5 DEALING WITH 4

In this section we will consider sequences that havam4hem but not & In this
section, we suppose that # not the first term. By Equation 2.7, we must have
a— 3—- 4 > ... wherea € {1, 2}.

Our proof is based on the following items.

1. Rg C Z4—2Z3 ande1+V3 € X3— X4.
2. V) =Vs—Vs+Vs.

3. /R\gﬁ RsC ZsN XgN Z7.
One can see these at a glance using Billiard King.

Figure 7.4: The orbit nearR..

Considerzs, the first point in the forward orbit of; that lies in Rfl. (This region
is labelled by a # in Figure 7.4.) From Equation 7.10 and froetfact that 3— 4,
we have

z3 = ExE1(z1) + nV3, n>1 (7.20)
Item 1 gives
EzE2E1(z1) = E3(z3) = 3+ V3, E4E3(z3) = 23+ V3— Vs
Item 2 gives the crucial starred equality in the next equmatio
Z4 = Z3+V£ =* 23+V3—V4+V5 = E4E3(2)+Vs = E4E3E2E1(Z1)+ V5. (7.21)
Equation 2.7 giveg, € Rs orz4 € Rg. If zs € Es, then

Z5 = E5(Z4) = E5...E1(Zl). (722)
If z4 € Rg, then item 3 gives the starred equality in the following doura
75 = E3(24) =" E8E7E6E5(Z4) = Eg...El(Zl). (723)

In either case, the analysis finishes as in the previousosecti
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7.6 DEALING WITH €&
In this section we will consider sequences that contabuénot the portion 2 6.

Our arguments refer mainly to Figure 7.5. By Equation 2.7yt have 5- 6.
Our argument is based on the following items.

1. REC 25—Z5anng+V5c 25— 2.
2. Vg =Vs—Ves+ V.

3. ﬁgﬂ R, c Z7U Zg.

Figure 7.5: The orbit neatR'é.

Letzbe the first pointin the forward orbit @i such thar Rg andletw = y(2).
From the arguments in the last two sections, we have somd. such that

Z = E4E3E>E1(z0) + NVs, w=2+Ve e RRURUR,.  (7.24)
By item 1 above, we have
EsE4EsE>E1(z1) = Es(2) = 2+ Vs, EgEsE4EsE2E1(z) = 2+ Vs — Vg
By item 2, we have
w = E¢EsE4E3E2E1(z1) + V. (7.25)

By Equation 2.7, we have € R; or w € Rip = Ry. The first case is just like the
first case treated at the end of the last section. In the sezas® we have

% Es...E1(z0) =t Eg.. Wi(z1) =2 w = ¥(2) (7.26)

The first equality comes from item 3. The second equality cofreem an argument
similar to case 2 at the end of §7.4.
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7.7 THE LAST CASES

Now we treat the two cases we have not yet treated.
First, suppose the sequence has the portien 8. Letw be the orbit point in
Rg. We have

we RNR, C(—2A,0) x {1}. (7.27)

This forces the entire orbit sequence to bex26’ — 2, and
71 € (2—2A,2) x {1}, Y(z1) =21 — (2—2A,0). (7.28)
Second, suppose the sequence starts Wit4imilar calculation shows that
71 € (0, 2A) x {1}, Y(z) =71+ (2 2A,0). (7.29)

To finish the proof, we just have to compute the pinwheel maphenabove
intervals and see that it match#s One can achieve this with the same kind of
analysis used in the previous sections. However, we prefdfeaent method. We
can use the formula from the Master Picture Theorem to sé¢hth@inwheel map
does the right thing on the above intervals. This is not autacargument, as we
discussed at the end of §7.2.
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Chapter Eight

The Torus Lemma

8.1 THE MAIN RESULT

For ease of exposition, we state and prove(thg halves of our results. The-)
halves have the same formulation and proof.

Let u, be as in Equation 6.5. We writg:, ) o to emphasize the dependence on
the parameteA. Let T4 = R/A, the 4-dimensional quotient discussed in §6.7.
Topologically, T4 is the product of a 3-torus witt0, 1). We now define

U= % (0,1) » T
by the obvious formula

14(ps A) = (e a(p), A). (8.1)

We are just stacking all these maps together.
Referring to the Pinwheel Lemma, we ha¥’¢p) = y o Es...E1(p) whenever
both maps are defined. Lpte E,. We setp, = p and inductively define

pj = Ej(pj-1) € Zj. (8.2)
We also define
6(p) = mind;(p), 0;(p) = distancép;, 0%)). (8.3)

The quantityd(p) depends on the paramet®yso we will writed(p, A) when we
want to be clear about this.

Lemma 8.1 (Torus) Let (p, A), (q*, A*) € E, x (0,1). There is someg > 0O,
depending only oA(p, A) andmin(A, 1 — A), with the following property. Sup-
pose that the pinwheel map is defined pt A). Suppose also that, (p, A) and
1+ (g*, A*) are withiny of each other. Then the pinwheel map is definddat A*)

and(e1(q"), €2(d7)) = (e1(p), €2(p)).

Remarks:

() In the proof of the Pinwheel Lemma, we started our labellivith z;, then
considered, = E1(z1), etc. Here we find it convenient to takg = z;1.

(ii) I discovered the Torus Lemma experimentally, but mynfat proof owes a
considerable intellectual debt to the ideas presente& Jrahd [GS] concerning
outer billiards on quasirational polygons. (Compare timeaxk in the next section.)
My proof also owes an intellectual debt to the pagé?][ in which S. Tabachnikov
describes unpublished work of C. Culter on the existenceeoiodic orbits for
polygonal outer billiards. If all these written sources weant enough, | was also
influenced by conversations with John Smillie.
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8.2 INPUT FROM THE TORUS MAP

We first prove the Torus Lemma assuming that A*. Letq = g*. Inthis section,
we explain the significance of the map . We introduce the quantities

- aredXj_1NZj)
' aredz;n )’

Remark: For a general convex-gon, one can make the strip construction along
the lines of what we have done. The polygon is said tgbasirationalif all the
numbersi; are rational. As mentioned in the introduction, the resu[Ms], [K],
and [GS] is that all outer billiards orbits are bounded relative tmgirational poly-
gons. In hindsight, it is no surprise that these quantitiesedn our proof of the
Master Picture Theorem.

E]:j‘oxxlj’ J=1,,7 (84)

Let p = (X, £1) andq = (y, +1). We have
y — X

1u+(q) - ﬂ+(p) = (tatat) mod Aa t= 2

(8.5)

Lemma8.2 For anye > O, there is ad > 0 with the following property. If
dist(u 4 (x), u4+(y)) < oin T3, then for each k, the quantity. is within e of some
integer k.

Proof: We compute

8+ 8A
aregxpN 1) =8, aregdXiN Xy) = 1+ A
2(1+ A)? 8+ 8A
areqX, N X3) = L aredXzN Xy) = + . (8.6)
A 1-A
This leads to
PO ~~ o~ o~ A 1-A ~ 4A
= = 1’ j‘ = = l = = = = 87
0 a4 1 3 5 7 11 A 2 6 1+ A2 (8.7)
The matrix
1 A-1 2A
1+A (1+1A>? (1+1A>?
H=10 5z =1z (8.8)
0 0 1

conjugates the columns of the matrix definingo the standard basis. Therefore,
if 14 (x) andu, (y) are close inT2 thenH (t, t,t) is close to a point oZ3. We
compute

4A 2 L
A+ A2 1+ A A»l)t = (A2, 41+ 1, 1it. (8.9)

Equations 8.7 and 8.9 now finish the proof. O

H(t,t,t):(
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8.3 PAIRS OF STRIPS

Suppose S, S, V) is triple, whereV, is a vector pointing from one corner of
S N S to an opposite corner. Lel € S andp, = Ex(p1) € S HereE; is the
strip map associated (&, V2). We definen anda by the equations
. aredB) Ilp; — Pl
=, o) —— —M8M8M
aredS N S) : IVa
All quantities are affine-invariant functions of the quiptel(S;, S, V2, p1, p2).

P2 — p1=NV, (8.10)

p2 ’

n=3

S 2| B 3!

§
% )
’
(0,0)] S B
Figure 8.1: Strips and associated objects.

Figure 8.1 shows what we call tls¢gandard pairof strips, whereX; is the strip
bounded by the lines; = 0 andx; = 1. Here we denote points in the plane by
(X1, X2). To get a better picture of the quantities we have definedomsider them
on the standard pair. We have

* a = P+ P12 = P21+ P22,
* 01 = P12

* o2 =1— pz

* n = [p14] (the floor ofx).

Here p;j is the jth coordinate ofp;. The above equations lead to the following
affine-invariant relations. Lettin(x) = x — [x], the fractional part ok, we have

n=[a—o], o2 =1— (o —o1). (8.11)
Again, the relations in Equation 8.11 hold for any pair ofjstr
In our next result, we holdS,, $, V,) fixed but compare all the quantities for

(P1, P2) and another pai(ds, oz). Letn(p) = n(S, &, Va2, p1, P2), etc. Also,N
stands for an integer.



book April 3, 2009

80 CHAPTER 8
Lemma 8.3 (Strip) Lete > 0. There is somé > 0 with the following property. If
lo(py) — o (@)l <4, la(q) —a(p) = N| <4,

then
lo(p2) — o (@R)| <, N =n(q) — n(p).
The numbed depends on only and the distance from (p1) ands (p2) to {0, 1}.

Proof: If ¢ is small enough, theku(p) — o (p1)) and{a(q) — o (q1)) are very
close and relatively far from 0 or 1. Equation 8.11 now sags$df{p,) ando (02)
are close. Also, the following two quantities are both nidamwhile the individual
summands are all relatively far from integers.

a(q) — a(p), (@@ — o (@) — (¢(p) — o (p1)).
But the second quantity is near the integég) — n(p), by Equation 8.11. )

Suppose now tha$, S, S is a triple of strips and/,, V3 is a pair of vectors,
suchthal(S,, $, Vo) and($, S, Vi) are as above. Lgi; € S, forj =1, 2,3, be
such thatp, = Ez(p;) andps = Ez(p2). Forj =1, 2, define

L _aredSins)

= aeds e (8.12)

ai = a(S] ) Sj+la Vj+19 p]9 pj+l)7
It is convenientto set; = o (p2).

Lemma 8.4 There are constants C and D such that= Aa; 4+ Cos + D. The
constants C and D depend on the strips.

Proof: We normalize so that we have the standard pair. Then
Pz =(1—-o02,01+02—1). (8.13)

There is a unique orientation-preserving affine maguch thafl (S;11) = §; for
j = 1,2, andT carries the linex; = 1 to the linex; = 0. Given that N $ has
unit area, we have déf) = 1. Given the description of , we have

T (X, Xo) = (f‘l é) (X1, X2) + (B, 1) = (@X + b+ Axs, 1 — x1).  (8.14)

Herea andb are constants depending 8N S. Settingq = T(p2), the relations
above givex = g1 + 2. Hence

op=a(l—o2)+b+ (a1 +02— 1)+ 02 = Aag + Coz + D. (8.15)

This completes the proof. i
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8.4 SINGLE-PARAMETER PROOF

The Pinwheel Lemma gives a formula for the quantities in EiQn2.8. We have
integersny, ..., N7 such that
Pj+1 = Ej+a(pj) = pj +NnjVji1. (8.16)
Compare Figure 7.3. Given the equations
Vi=(0,4), Vo=(-2,2), V3=(-2-2A0, Vs=(-2-2),

(8.17)
we find that

€1 = N2 — Ng, €2 =N1+N2+N3—Ns—Ng—N7. (818)

We are still working under the assumption, in the Torus Lemtinat A = A*.
Our main argument relies on Equation 8.18, which gives a fdarfor the return
pairs in terms of the strip maps. We define the pojptelative toq just as we
definedp; relative top.

=0

Figure 8.2: The pointspoy andfp.

We would like to apply Lemmas 8.2—8.4 inductively. One ingemience is that
Po andqp do not lie in any of our strips. To remedy this situation, waastvith the
two points

Po = Eo(po), Go = Eo(qo). (8.19)

See Figure 8.1. We havi@, §o € Xo. Lett be the near integer from Lemma 8.2.
Looking at Figure 8.4, we see th@at(Go) — o (Po)| tends to 0 ag tends to 0.
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We define
ok(P) = a(Zk, Zict1, Vi1, Pes Prt1) (8.20)
It is also convenient to write
ok(p) = o (Pw), Aoy = ox(q) — ok(p). (8.21)

Fork = 0, we usefy in place ofpg, andfp in place ofqp, for these formulas.

Remarks:

(i) The functionssy play a big role in our overall proof. The next chapter is dedot
entirely to obtaining, in a certain sense, closed-form eggions for the functions
ok. For later reference, we call these functietrip functions

(ii) Our next lemma is stated in a slightly peculiar way besmthe last-mentioned
quantityng(p) — nk(q) is an integer. But that is the whole point of the lemma: Once
an integer quantity is sufficiently close to 0, it must adtubk 0.

Lemma 8.5 Asn — 0, the pairwise differences between thguantities

ak(q) — ax(p), k(@) — Nk(p), tik
converge td for all k.

Proof: Referring to Figure 8.2, we have
aredXoN 1) =8, ared B(Po)) — aredB(Gp)) = 4y — 4x.

This givesao(q) — ao(p) = t. Applying Lemma 8.4 inductively, we find that

k
oK = (Xo//ik + Zfiai + Cx (8.22)
i=1

for constantgy, ..., & andCy that depend analytically oA. Therefore

k
ak(@) — ak(p) = i+ D & Aai, k=1,..,7. (8.23)
i=1
By Lemma 8.2, the terrhli is near an integer for a. By Lemma 8.3 and induc-

tion, the remaining terms on the right hand side are near & I&imma now follows
from Lemma 8.3. O

Combining our last result with Equation 8.7, we see that

n1(q) — ni(p) = n3(q) — nz(p) = ns(d) — ns(p) = n7(q) — n7(p),

n2(q) — n2(p) = ne(q) — Ne(pP), (8.24)

oncey is small enough. Given the dependence of constants in Lem&ate
necessary bound ondepends on only mifA, 1 — A) andd(p). Equation 8.18 now
tells us thak; (p) = €;(q), for j =1, 2, oncey is small enough.
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8.5 PROOF IN THE GENERAL CASE

Now we turn to the proof of the Torus Lemma in the general c&xe.first result
is the key step that allows us to handle pairs of distinctipatars. Once we set up
the notation, the proof is almost trivial. Our second result variant that will be
useful in the next chapter.

Suppose thalS;, S, Vo, p1, p2) and(S], S, V), a5, g;) are two quintuples. To
fix the picture in our minds, we imagine th@&;, $, V) isnean(§, S;, V), though
this is not necessary for the proof of the result to follow. &da define the quantities
a, pj, n for each of these quintuples. We place hy each quantity associated to
the second triple.

Lemma 8.6 Lete > 0. There is som& > 0 with the following property. If
lo (p1) — o (a7)| < dand|a(q*) —a(p) — N| < J, then|o (pz) — o (d3)| < € and
N = n(g*) — n(p). The numbed depends on only and the distance frora (p1)
ando (p2) to {0, 1}.

Proof: There is an affine transformation such tiatX*) = X for each object
X =8, V2. Wesetq; = T(q}). Thena(d;) = a(ta), by affine invariance.
Likewise for the other quantities. Now we apply Lemma 8.ttiple(S;, S, Vo)
and the pairgp;, p2) and(qi, g2). The conclusion involves quantities with rp
but returning the: does not change any of the quantities. m|

For use in the next chapter, we state a variant of Lemma 8.6thicresult, we
interpret(x) as the image of a real numbein R/Z.

Lemma 8.7 Lete > 0. There is som& > 0 with the following property. If
lo(p1) —o(07)] < dandla(g*) —a(p) — N| < J, then the distance frorw (pz))
to (o(g3)) in R/Z is less thare and N = n(g*) — n(p). The numbe# depends
only one and the distance from (p;) ando (p2) to {0, 1}.

Proof: Using the same trick as in Lemma 8.3, we reduce to the sirgyliable
case. In this case, we mainly repeat the proof of Lemma 8 8isltmall enough,
then({a(p) — o (p1)) and{a(q) — o (q1)) are very close and relatively far frot@).
Equation 8.11 now says that (p,)) and(c (g2)) are close irR/Z. o

In proving the general version of the Torus Lemma, we no losgepose that
A = A* and we return to the original notatigg*, A*) for the second point. In our
proof of this result, we attach-ato any quantity that depends éq*, A*). We first
need to repeat the analysis from §8.2, this time keepingf whthe parameter. Let
n be as in the Torus Lemma. We use the “big O” notation.

Lemma 8.8 There is an integerylsuch thaﬂaﬁl’; — apk — k] < O(n).

Proof: Let H be the matrix in Equation 8.8. Lé&V) denote the distance from
V e R®to the nearest point ii®. Let p = (x, £1) andg* = (x*, £1). Recalling
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the definition ofu ., the hypotheses in the Torus Lemma imply that the fractional
part of

222702 2272
has sizeD (). We compute thato = X/2+ 1/2 independent of parameter. There-
fore

H*(X* X i1 X—) —H (X X411 5) (8.25)

X X X 1
H(E»E +1s E) = H(a0>a0>a0)+§H(_la 13 _1)
The same is true for the starred quantities. Therefore

(3,75 — 1, Dag — (A2, 71 — L, Dao)

= (H™(ag, ag, ag) — H(ao, a0, a0)) < O(n) + [I(H* = H)(=1,1, —=1)[| < O(n).
The lemma now follows immediately from Equation 8.7. O
The integet of course depends ap, A) and(g*, A*), butin all cases Equation
8.7 gives us
lo = la, li=Ils3=Ils=17, l2 =ls, (8.26)

Lemma 8.9 Asy — 0, the pairwise differences between thquantitiesa; — ax
and rf, — ni and I tend to0 for all k.

Proof: Hereo; stands fora(q*), etc. Equation 8.22 works separately for each
parameter. The replacement for Equation 8.23 is

af —ax =W+ XY, W = ai2s — aoi (8.27)

k k k
X=> &o' @)~ D &ai(p) =D &7 —ai) + O(A— A"]), (8.28)
i=1 i=1

i=1

k k
Y = .leci* - ;Ci = O(JA— A")). (8.29)

The estimates oX andY come from the fact thaf andC; vary smoothly withA.
Putting everything together, we have the following.

k
aj — ax = (ag7 — aokk) + D & (o = o) + O(A— AY). (8.30)
i=1
In light of Lemma 8.8, it suffices to show thgt — o; tends to 0 ag tends to 0. The

same argument as in the single-parameter case works héné,emma 8.6 used in
place of Lemma 8.3. O

As in the single-parameter case, Equations 8.18 and 8.26inislv the proof.
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Chapter Nine

The Strip Functions

9.1 THE MAIN RESULT

The purpose of this chapter is to understand the functgrisat arose in the proof
of the Torus Lemma. See Equation 8.21. We continue using ¢ltegtion from
the previous chapter. We call these functietrgp functions Let (x) denote the
fractional part oix. Sometimes we interpréx) as an element dR/Z.

Let Wk c E; x (0,1) denote the set of points wheks...E; is defined but
Ex,1Ek...E1 is not defined. Le& denote the closure qf . (Wk) in R. HereRis
as in Equation 6.6. Finally, let

k-1 k-1
W= Jw. s=Us. k=1,..7. (9.1)
j=0 j=0

The Torus Lemma applies to any point that does not lie irsthgular set
S=U---US. (9.2)

If p e E4 — W, then the point = po, ..., pc are defined. Here, as in the
previous chaptep; = E;(pj—1). Thefunctiongy, ..., ox anday, ..., ax are defined
for such a choice op. Again,s; measures the position @f in X; relative too X ;.
Even if Exy1 is not defined oy, the equivalence class @1 is well defined in
the cylinderR?/(Vi,1). The corresponding functiof.1(q) = o (Gky1) is well
defined as an element Bf/Z.

Letr;: R* > R be thejth coordinate projection. The following identities refer
to the(+) case. We discuss th{e-) case at the end of the chapter.

0'1=<2_27T3>o,u+ on =,. (9.3)
02=<%>0/¢+ on £, — W, (9.4)
G3Z<%>Oﬂ+ on =, — W, (9.5)

04=<1+A_ﬂ12_ﬂ2+7r3>o,u+ on By — W, 9.6)

In the next chapter we deduce the Master Picture Theoremtiiese identities
and the Torus Lemma. In this chapter, we establish the idkentiEquation 9.3 is
true by inspection. The other 3 identities are the nontiriwees.



book April 3, 2009

86 CHAPTER 9

9.2 CONTINUOUS EXTENSION

Since the map; (4 x (0, 1)) is dense iR — §,, we define
gj(r):= nIim aj(Pn, An), tre R—S. (9.7)

Here(pn, An) is chosen so that all functions are defined andp,, An) — 7. Note
that the sequende,} need not converge. So far, we do not know that the limit we
take is well defined. However, the next result clears this up.

Lemma 9.1 The functiony, ..., 6xy1, considered? /Z-valued functions, are well
defined and continuous on R §..

Proof: For the sake of concreteness, we will give the proofin the edsenk = 2.
This representative case explains the idea. First of alctntinuity follows from
the well-definedness. We just have to show that the limit abievalways well
defined. We need to consider, 6., andass. Our argument is essentially inductive.

Here is the base casé; is well defined and continuous on all Bf by Equation
9.3.

Since§ C S, we see that € R— §. Hencer does not lie in the closure of
1+ (Wp). Hence there is sontg > 0 such that;(pn, An) > 6, for all sufficiently
largen. Note also that there is a positive and uniform lower bounithéoquantity
min(An, 1 — An). Note that

(a1(Pn, An)) = (m3(t+(Pn, An)).
Hence

{{a1(Pn, An))} (9.8)

forms a Cauchy sequenceRyZ.
Lemma 8.7 now applies uniformly to

(P, A) = (Pm, Am), @*, A") = (pn, An)

for all sufficiently large pairgém, n). Since{u . (pn, An)} forms a Cauchy sequence
in R, Lemma 8.7 implies thdb,(tm, Am)} forms a Cauchy sequenceRiZ. Hence
a2 is well defined orR — S| and continuous.

Sincer € R—S,, we see that does not lie in the closure @f (W;). Hence
there is somé, > 0 such that;(p,, An) > 0; for j = 1, 2 and sufficiently large
n. As in the proof of the General Torus Lemma, Equation 8.30 sloaws that

{{a2(Pn, An))} (9.9)

forms a Cauchy sequenceRyZ. We now repeat the previous argument to see that
{o3(tm, Am)} forms a Cauchy sequenceRyZ. Hencess is well defined orR— S,
and continuous. O

Referring to Equations 9.8 and 9.9, we define
B = (k) € R/Z. (9.10)

This function will come in handy in our next result.
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9.3 LOCAL AFFINE STRUCTURE

LetX = R—6R c R*. Note thatX is an open and convex polytope, combinatorially
equivalent to the 4-dimensional cube.

Lemma 9.2 Suppose X R— §.. Thena1 is locally affine on .

Proof: Sincedy,1 is continuous or¥, it suffices to prove this lemma for a dense
set of kite parameter&. We can choosé so thatu, (2, ) is dense inXa.

We already know thafy, ..., 6k,1 are all defined and continuous oh We have
already remarked that Equation 9.3 is true by direct inspeci\s we have already
remarked in the previous proof,

Bo=mz0 s

Thus we define
Bo = (m3). (9.11)

Both 6, and o are locally affine orX a.

Letm < k. The second half of Equation 8.11 tells us thatis a locally affine
function of 6m_1 and/?m_l. Below we will prove thal;ém is defined onX and
locally affine, provided tha&, ..., 6 are defined and locally affine ax¥a. The
lemma follows from this claim and induction.

Now we prove the claim. All the addition below is doneRiZ. Sinceu (E,)
is dense inX 5, we can at least defin®, on a dense subset &fa. Define

X' =X
p=X=%1), p'=,£1), t=u(p), 7 =ps(p), t= :
(9.12)
We choosep and p’ so that the pinwheel map is entirely defined.
From Equation 8.23, we have
m
Pr(@) = Bn(2) = (7)) + D (&) x (G (z) = 5(1))). (9.13)

j=1
Heredy, ..., &y are constants that depend én Let H be the matrix in Equation
8.8. We haveH (t,t,t) = H(z' — r) modZ3 becausdt, t,t) = ¢/ — 7 mod A.
Our analysis in 88.2 shows that

({th) = (r o H(t, t,1) —et) = ((r — ex3) o H(z' = 7). (9.14)

Heree € {0, 1} andr is some coordinate projection. The choice ahdzr depends
onk. We now see that

m

Pu() = fn(®) + ((w +eam) o H(z' = 1)) + D _(&f x (G} (z)) =G (x))). (9.15)
j=1
The right hand side is everywhere defined and locally affinendé we defing,
on all of X5 using the right hand side of the last equation. o
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Now we come to a subtle point. We have shown that our functiwadocally
affine when restricted to eadkslice. We would like to remove this caveat and say
simply that our functions are locally affine even whis allowed to vary. The next
result makes a weaker statement along these lines. Onceneéiimresult, we will
use a bootstrap argument to impramalyticto affine Note that the seX, defined
above, is an open convex polytope. Thus it makes sense tdagg function is
analytic onX. Logically, we could give our overall proof without Lemma®elow.
However, Lemma 9.3 is a labor-saving device. The analyticitemma 9.3 allows
us to check the identities above on just a fairly small subket.

Lemma 9.3 Suppose X R — S,. Thenoy,; is analytic on X.

Proof: The constants; in Equation 9.13 vary analytically witih. Our argument
in Lemma 9.2 therefore shows that, ; is an affine function orX, whose linear
part varies analytically wittA. We just have to check the additive term. Sincg
is connected, we can compute the additive termnqf at A from a single point.
We choosep = (¢, 1), wheree is very close to 0. The fact th# — ox1(p, A)
varies analytically follows from the fact that the stripsywanalytically. O

Equations 9.4, 9.5, and 9.6 are formulasd&gras, andag, respectively. Let
fir1 = Okp1 — oypq, k=234 (9.16)

Hereoy, , is the right hand side of the identity fék, 1. Our goal is to show that
frer = (0) fork = 1, 2, 3. Call a parametef goodif f. 1 = (0) on Xa. Call a
subsetS c (0, 1) substantiaif Sis dense in some open interval @ 1).

Lemma 9.4 f,1 = 0 provided that a substantial set of parameters is good.

Proof: By hypothesis and by continuityy,1 vanishes on some open subseof
But the O-function is the only analytic function that can isdron an open subset of
X. O

In the next section we explain how to verify that a parametgoiod. Iff,.; were
a locally affine map fromX 4 into R, we would just need to check th&if,; = 0
on some tetrahedron 0% to verify thatA is a good parameter. Since the range of
fke1 iISR/Z, we have to work a bit harder.

Before we launch into the method, we make one more remarktabewetails
of the verification process. We want to be sure that, at eagfestve can actually
apply Lemma 9.3. Here we explain why we can do this. Obserag ith general,
we have

S C G ((0)).

Given Equation 9.3, we see thdt C R — S|. Henceo; is defined onX. Hence
o3 is analytic onX and locally affine on eack . We use these two properties to
show that Equation 9.4 is true. Butth¥nc R— S, etc. So, we will know at each
stage of our verification that Lemmas 9.2 and 9.3 apply touhetfon of interest.
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9.4 IRRATIONAL QUINTUPLES

We will give a construction irR®. When the time comes to use the construction,
we will identify X 4 as an open subset of a copyRf.

Letcy, ..., s € R3 be 5 distinct points. By taking these points 4 at a time, we can
compute 5 volumes;, ..., vs. Hereo; is the volume of the tetrahedron obtained by
omitting the jth point. We say that¢, ..., ¢s) is anirrational quintupleif there is
no rational relation

5
ch G =0, ¢ €Q, C1C2C3C4Cs = O. (9.17)
i1

If we allow all the constants to be nonzero, then there is yvearelation.

Lemma 9.5 Let C be an open convex subseR5f Let f:C — R/Z be a locally
affine function. Suppose that there is anirratiogal, ..., ¢5) such thatj € C and
f(z;) is the same for all j. Then f is constant on C.

Proof: SinceC is simply connected, we can liff to a locally affine function
F:C — R. ButthenF is affine onC, and we can exten# to be an affine map
from R® to R. By constructionF () — F(¢j) € Zforalli, j. Adding a constant
to F, we can assume thé&tis linear. There are several cases.

Case 1:If F(¢)) is independent of, then all the points lie in the same plane.
Hence all the volumes are zero. This violates the irratipnabndition.

Case 2: Suppose we are not dealing with case 1 and the following & tifeor
every indexj there is a second indéxsuch thatF (¢k) = F (). Since there are
5 points total, this means that the $€t(¢;)} has a total of only 2 values. But this
means that our 5 points lie in a pair of parallel plahgsJ I1,, with 2 points inIT;
and 3 points inl,. Let us say that that, (2, (3 € 11 and¢a, (s € I, But then
v4 = vs, and we violate the irrationality condition.

Case 3: If we are not dealing with the above two cases, then we cabektko
thatF(¢1) # F(¢j) for j =2,3,4,5. Let
g =¢-
Theny; = (0,0,0) andF () = 0. But thenF((j’) eZ—-{0}forj=234,65.
Note thatz)’j =v;forall j. Forj =2,3,4,5,let
C'N _ é‘l/
PR
Thenv/j//v/j e Qforj=234,5. Note thaﬂ:((j”) =1forj =2, 3,4,5. Hence
there is a plané&l such thatj” ellforj=2345.
There is always a rational relation among the areas of thHardgles defined by 4
points in the plane. Hence there is a rational relation amgngg, v;, vZ. But then

there is a rational relation betwees v3, v4, vs5. This contradicts the irrationality
condition. O
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9.5 VERIFICATION

We consider thé+) case first and discuss tlie-) case at the end. Proceeding
somewhat at random, we define

¢j = (8jA+ 1/(2)), 1), j=1,2,3,4,5. (9.18)
We check thap; € =, for Anear /2. Letting
¢i = u+ (), (9.19)
we check that
fk+l(c]) = <O>! J = 13 29 33 49 5. (920)

In the next section, we give an example calculation.

Lemma 9.6 (¢1, ..., ¢5) form an irrational quintuple for a dense set of parameters
A. In fact this is true for the complement of a countable s@iaodmeters.

Proof: The 5 volumes associated to our quintuple are as follows.
¢ v5 =5/24— 5A/12+ 5A%/24.
o 04 = 71/40+ 19A/20— 787A2/120— 4A3.
* 03 =119/60+ 7A/60 — 89A2/15— 4A3.
s vy = —451/240— 13A/40+ 1349A2/240+ 4A3.
* 03 = —167/80— 13A/40+ 533A2/80 + 4A%,

If there is an open set of parameters for which the first 4 afeheolumes has a
rational relation, then there is an infinite set for which fagne rational relation
holds. Since every formula in sight is algebraic, this mehas there must be a
single rational relation that holds for all parameters. tRet the parametrized curve
A = (vs, v4, v3, 02) lies in a proper linear subspaceRt. We evaluate this curve
at A = 1,2, 3,4 and see that the resulting points are linearly indeperideRt.
Hence there is no global rational relation. Hence, for a deset of parameters,
there is no rational relation among the first 4 volumes listddsimilar argument
rules out rational relations among any other 4-tuple oféghe@dumes. O

The (—) Case: Equations 9.4 and 9.5 do not change, except thateplacesu
and all the sets are defined relative®a andu . Equations 9.3 and 9.6 become

1-—
01=< 2”3>o#_ on E_. (9.21)

<A—711—7T2+7T3>

04 = [ely 72
2

Lemmas 9.2 and 9.3 have the same proof in(thecase. We use the same method
as above, except that we use the points

¢ +(2,0); ] =1,234)5. (9.23)
These points all lie irE_ for A near 1/2.

on E_ —S,. (9.22)
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9.6 AN EXAMPLE CALCULATION

Here we work out by hand one of the cases of Equation 9.20. Weealest of the
cases in Mathematic&\]. Consider the case= 1 andj = 1.

When A = 1/2, the length spectrum faf; starts out agl, 1, 2, 1). Hence this
remains true for nearbf. Knowing the length spectrum allows us to compute, for
instance, that

-3
E2Ei(d1) =1 +Vi+ Vo = (7 + 8A, 7) €

for Anear ¥2. The affine functional
(-1, A A
24 2A
takesonthevalue O onthelire= Ay+ Aandthevalue 1ontheline= Ay—2—A.
These are the two edges Bf. (See §7.1.) Therefore
(-1, A A 3
212A  4+4A

y) = Xy, 1)- (9.24)

o2(p1) = (_73 +8A,7, 1) .

At the same time, we compute that
U (1) = (1/4)(=7+ 24A, 1+ 4A, =7 + 16A),

at least forA near /2. WhenA is far from 1/2, this point will not lie inRa. We
then compute

1+ A—mo(us()) 3
1+A A4 4N
This shows thaff>(¢1) = (0) for all Anear 12.
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Chapter Ten

Proof of the Master Picture Theorem

10.1 THE MAIN ARGUMENT

First we recall some notation from previous chapters.

Let Sbe the singular set defined in Equation 9.2.

« Let Sdenote the union of hyperplanes listed in Chapter 6.2.

Letd denote distance on the polytope

Letd(p, A) be the quantity from the Torus Lemma in §8.

Below we will establish the following result.
Lemma 10.1 (Hyperplane) S c S andd(p, A) > d(u+(p, A), §).

The Hyperplane Lemma essentially says that the singulés setall and simple.
Before we prove the Hyperplane Lemma, we will finish the probthe Master
Picture Theorem.

Say that aball of constancyin R — Sis an open balB with the following
property. If(po, Ag) and(pz, A1) are two pairs angk(p;, A) € Bfor j =0,1,
then(po, Ag) and(p1, A1) have the same return pair. Here is a consequence of the
Torus Lemma.

Corollary 10.2 Any pointr of R— S is contained in a ball of constancy.

Proof: If z is in the image ofux, this result is an immediate consequence of the
Torus Lemma. In general, the image (£, x (0, 1)) is dense irR. Hence we can
find a sequencér,} such thatr, — 7 andty, = x4 (pn, An). Let 25 > 0 be the
distance front to S. From the triangle inequality and the second statementeof th
Hyperplane Lemma,

G(pn, An) >l =01 > 0

for largen. By the Torus Lemmaz, is the center of a balB, of constancy whose
radius depends only ofy. In particular — and this is really all that matters in our
proof — the radius oB,, does not tend to 0. Hence, forlarge enoughs itself is
contained inB,,. O
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Lemma 10.3 Let (po, Ag) and (p1, A1) be two points of=, x (0, 1) such thAat
1+ (Po, Ag) and i (p1, A1) lie in the same path-connected component 6f B.
Then the return pair fof pg, Ag) equals the return pair fotpy, A).

Proof: LetL ¢ R— Shea path joining points

70 = u+(Po, Ao), 11 = 4 (P1, Ar).

By compactness, we can coueby finitely many overlapping balls of constangy.

Now we just need to see that the Master Picture Theorem hmidsie component
of the partition ofR — S. Here is an example calculation that does the job. For each
a = j/16,forj =1, ..., 15, we plot the image

un(Ra + 2n), n=1,..,2% (10.1)

The image is contained in the slize= a. We see that the Master Picture Theorem
holds for all these points. The reader can use Billiard Kinglpbt and inspect
millions of points for any desired parameter.

We have really proved only the half of the Master Picture Theothat deals with
E, andu .. The proof of the half that deals with_ and x«_ is exactly the same.
In particular, both the Torus Lemma and the Hyperplane Lerhata verbatim in
the (—) case. The proof of the Hyperplane Lemma in ¢tk case differs only in
that the two identities in Equation 9.21 replace EquatioB8s8d 9.6. We omit the
details in the(—) case.

10.2 THE FIRST FOUR SINGULAR SETS

The strip function identites make short work of the first fpigces of the singular
set.

» Given Equation 9.3,

Sc{z=0U{z=1}. (10.2)

» Given Equation 9.4,
Sc{y=0u{y=1+A}. (10.3)

« Given Equation 9.5,
Sc{x=0U{x=1+ A}. (10.4)

» Give Equation 9.6,
Sc{x+y—-z=1+AjlU{x+y—z=-1+ A} (10.5)
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10.3 SYMMETRY

We use symmetry to deal with the remaining pieces. Suppostasewith a point

p € E;. We define the pointp = po, p1, ... €xactly as in Equation 8.2. However,

this time we do not know a priori that all these points are aafimAs we proceed in

our analysis, we will see that these points are defined foeasingly large values of

j. Forthe purpose of illustration, we will show the case whépdaints are defined.
Let p denote reflection in the-axis. Then

p(Zo_j) =Zj, qj = p(Po—j), j=1234 (10.6)

Here we use the convention that indices repeat mod 8, as\viopeechapters.

In Figure 10.1, the disk in the center is included for acigtuirposes, to cover
up some messy intersections. In the figure we show the caasgdiffior the vectors
—V; and -V, to remind the reader of their values. It is convenient to evrilvik
rather tharlk because there are far fewer minus signs involved.

Figure 10.1: Reflected points.

Here is a notion we will use in our estimates. Say that a SErigominatesa
vectorV if we can translat®/ so that it is contained in the interior of the strip. This
is equivalent to the condition that we can transhtso that one endpoint of lies
ond X and the other lies in the interior.
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10.4 THE REMAINING PIECES

10.4.1 The Se§,
Suppose € Wy. Thenps andgg are defined, and, € 0X4. Given that
Vs = (0, —4)
and they-coordinates of all the points are odd integers, we have
Pa— s = (0,2) + k(0,4

for somek € Z. Given thatX, dominatesps — g4, we havek € {—1, 0}. Hence
ps = qs £ (0,2). If ps € 05, theng, € 0X4. Any vertical line intersect¥, in a
segment of length 4. From this we see tpaties on the centerline of4. That s,
o4(p) = 1/2. Given Equation 9.6, we have

SSc{Xx+y—z=AlU{x+y—z=2+ A}.

10.4.2 The SeS
Suppose thap € Ws. Thenpg andgs are defined, ands € 0 3. Given that
Vo= —Vs=(=22),
we see that
ps — s = €(0,2) + k(2, 2), ee{-1,1}, keZ.

The criterion tha; dominates a vectdk, y) is that|x + Ay| < 2 + 2A.
Y3 dominates the vectap; — ps. If ¢ = 1, then

|2k +2 4+ 2Ak| < 2+ 2A
forcesk e {—1, 0}. If ¢ = —1, then the condition
[2k — 2 + 2Ak] < 2+ 2A

forcesk € {0, 1}. Henceps — g3 is one of the vector&+2, 0) or (0, £2). Now we
have a case-by-case analysis.

Suppose thatz lies in the right boundary of;. Then we have one of the
following two conditions.

p3=03—(2,0), pz =gz + (0, 2).

Any horizontal line intersect&s in a strip of width 24+ 2A. So, o3(p) equals
either /(1 + A) or A/(1+ A), depending on whether or nps = g3 — (2, 0) or
ps = gz + (0, 2). A similar analysis reveals the same two values whglies on
the left boundary of3. Given Equation 9.5, we have

Sc{x=AlUu{x=1}.
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10.4.3 The Ses
Suppose thap € Ws. Thenp; andq; are defined, and, € 9 Z,. We have
P2 — G = (P3 — G3) + k(2 + 2A, 0). (10.7)

The criterion tha; dominates a vectdi, y) is that|x — Ay| < 2 4 2A.

Let Xy, ..., X4 be the possible values fqiz — g3 as determined in the previous
section. Using the values of the vectotsand the fact thak, dominatesp; — 0y,
we see that

P2 — 0 = X +€(2A,2), € €{-1,0,1}, j €{1,2,3,4}. (10.8)

Note that the vectoRA, 2) is parallel to the boundary &,. Hence, for the pur-
pose of computing,(p), this vector plays no role. Essentially the same calculatio
as in the previous section now gives us the same choices fpy as we had for
o3(p) in the previous section. Given Equation 9.4, we have

Scly=AU{y=1}

10.4.4 The Sets,
Suppose thap € Wy. Thenpg andg; are defined, and; € 6X1. We have
P — 0 = (P2 — 02) +k(=2,2). (10.9)

Note that the vectai2, 2) is parallel toZ,. For the purpose of findingy (p), we can
do our computation mo, 2). For instance(2, —2) = (0, 4) mod (2, 2). Given
Equation 10.8, we have

pr— = €1(0,2) + €2(2A, 2) + k(0,4) mod (2, 2). (10.10)

Herees, €2 € {—1, 0, 1}. Given that any vertical line intersecs in a segment of
length 4, we see that the only choices égf p) are

(k/2) + 2¢ A, € €{-1,0,1}, keZz
Given Equation 9.3, we see th§tc {z= AU {z=1— A}.

10.5 PROOF OF THE SECOND STATEMENT

Our analysis above establishes the first statement of thergigne Lemma. For
the second statement, suppose that, (p, A), S) = ¢. Given Equations 9.3-9.6,
we have

0i(p) > ¢, i=123,4

Given our analysis of the remaining points using symmeligy,dame bound holds
for j =5,6,7,8. Inthese cased; (p, A) is a linear function of the distance from
u+(p, A) to Sj_1, and the constant of proportionality is the same as for texn
9—j.
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Part 3. Arithmetic Graph Structure Theorems

In this part of the book, we use the Master Picture Theoremrdgepmost of the
structural results for the arithmetic graph that we quotelart 1.

In Chapter 11, we prove the Embedding Theorem.

In Chapter 12, we prove some results about the symmetritheafrithmetic
graph and the hexagrid.

In Chapter 13, we prove statement 1 of the Hexagrid Theonamgely, that
the arithmetic graph does not cross any floor lines.

In Chapter 14, we prove a variant of statement 1 of the Heddgreorem. We
call the result the Barrier Theorem. Though we do not needrésult until
Part 6, the proof fits best right after the proof of statemeaiftthe Hexagrid
Theorem.

In Chapter 15, we prove statement 2 of the Hexagrid Theonamgely, that
the arithmetic graph crosses the walls only near the dodrs twWo statements
of the Hexagrid Theorem have similar proofs, though statéraéas a more
elaborate proof. We think of the proof of statement 2 of theaddgid Theorem
as the main event in this part of the book. To make our argug@miore
smoothly, we defer a technical result, the Intersection to@nuntil the next
chapter.

In Chapter 16, we prove the Intersection Lemma, the teehreésult left over
from the proof given in Chapter 15.

Many of the proofs in this part of the book require us to praagous disjointness
results about some 4-dimensional polytopes. We will givershomputer-aided
proofs of these disjointness results. The proofs involvig ansmall amount of
integer linear algebra. To help make the proofs surveyatgl&yillinclude computer
images of 2 dimensional slices of our polytopes. These fig@aiereproducible on
Billiard King, serve as sanity checks for the computer claltons. We will include
many figures from Billiard King, but it usually goes withowtysng that the reader
can see much more using the program.
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Chapter Eleven

Proof of the Embedding Theorem

11.1 NO VALENCE 1 VERTICES

LetT = T,(A) be the arithmetic graph for a paramefeand some: ¢ 2Z [Al.
The reader will see from our proof that the choicexds not important. As a first
step in the proof of the Embedding Theorem, we show that aitraal vertices of
T have valence 2. Dynamically, a vertex of valence 1 corregptma poink € =
such thax # ¥ (x) = ¥1(x).

Let p € Z? be a nontrivial vertex of . Letq, andq_ be the two neighbors gf.
We would like to show thaF has valence 2 gp. If this fails, then we must have

p#0dy=0-. (11.1)

This means that the maps, andM_ from 86.6 assign the same vectorgo Put
another way, this situation occurs iff there is some noratiit,, €2) € {—1, 0, 1}
such that

ARy (e1,€2) N (Ro(e, €2) + (1,1,0,0)) # 0. (11.2)

A visual inspection and/or a computer search reveals theast one of the two sets
above is empty unleggs, ¢;) is one of

1,1, (-1,-1), (1,0, (—1,0). (11.3)

It follows from Equation 6.17 that Equation 11.2 holds {er, ¢2) if and only if it
holds for(—e1, —€2). Thus we have to deal just with the paifis 1) and(Z, 0).

Below we will give a formal argument, based on a small amodinhachine
computation, that rules out the above kind of intersecti®@efore we do this,
however, we will show some convincing pictures of the retdsets. As in 86.3,
we show(z, A) slices of polytopesifR, andR_. We draw the slices dR, with dark
shading and the slices & with light shading. LetB; denote thejth component
of the base spac®, as in Figure 6.2.

Over the region8, andBs, at least one oR, (1, 1) or R_(1, 1) is empty. Figure
11.1 shows typical slices of

ARy (1,1), A(R-(1,1)+(1,1,0,0)

over By andB;. In all cases, we see that the interiors of the two kinds afggeare
disjoint from each other.
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Figure 11.1: Slices ofAR, (1, 1) andA(R-(1,1) + (1, 1, 0, 0)).

Figure 11.2 shows typical slices of

AR:(1,0),

over each of the regior®, B, B, Bs. We see the same disjoint interiors as above.

A(R-(1,0)+ (1,1,0,0)

‘ﬁw
N \

g%g%g% ‘%%
M%M%&% ‘QSS
%%N%N%NESSM
NN ON N AN N X

Figure 11.2: SlicesAR, (1, 0) andA(R_(1, 0) + (1, 1, 0, 0)).
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Now we give a formal argument. We work R, as discussed in §6.7. All the
polytopes of interest are convex integral polytopes. Te out Equation 11.2, we
need to consider all possible paii®;, P,) of integral convex polytopes such that

P1 C AR, (€1, €2), P, ¢ Ro(e1,€2) + (1, 1). (11.4)

We hold the second polytope fixed and move the first one aroyrtkdebaction of
the entire lattice. At first it looks as if we have an infinitdazdation, but actually
we will reduce the problem to a finite calculation.

Recall thatA is generated by the three elemepisy,, y3. Let A’ C A denote
the subgroup generated byandy,. We also define\}, C A’ by the equation

Ao = {ay1 + a2l lal, |ag| < 10}. (11.5)

Lemmall.llety € A — Al

P =y (Qu), Q1 C Ri(e1, €2), P, c R_(e1,€2) +(1,1,0,0).

Then R and B have disjoint interiors.

Proof: If y ¢ A’, then the third coordinates of points i lie in [n, n + 1] for
some integen # 0. On the other hand, the third coordinates of point®irie
in [0, 1]. HenceP; and P, have disjoint interiors in this case. This means that we
have to worry only about elements Af.

Suppose now that e A’ — A’ In this caseQ); is contained in the ball of radius
4 aboutP,, buty moves this ball entirely off itself. m|

Now we have a finite problem. Given
y € Ao, Pi=7(Q1), QiCRi(e,e2), P2C R (e1,€2)+(1,1,0,0),

we produce a vector

w = w(Py, P,) € {-1,0,1}* (11.6)
such that
max v-w < min o-w. (11.7)
vevtx(Py) vevix(Ps)

This means that a hyperplane separates the interi@; dfom P,. In each case
we find o (P, P,) by a short computer search and perform the verification using
arithmetic with integers.

Remark: It seems rather lucky that we could find such simple hypegdaepa-
rating the polytopes. However, every coordinate of evetytppe lies in{0, 1, 2},
and the relevant pairs of polytopes often have several péirsrtices in common.
This situation makes the existence of the very simple séipgrhyperplanes less
surprising.
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11.2 NO CROSSINGS

Given that every nontrivial vertex df has valence 2, and also that the edgeb of
have length at mos{/2, the only way thaf" can fail to be embedded is if there is a
situation like the one shown in Figure 11.3.

p2
p
N

A
W/
pl

Figure 11.3: Embedding failure.
Let M, andM_ be the maps from 86.6. Given the Master Picture Theorem, this
situation arises only if
Mi(py) € Re(1,1), M+(p2) € Re(1, —1) (11.8)
This equation implicitly involves 4 cases, depending onglgm choices. Since
p2 = p1+ (O, 1), we have
M+(p2) = M+(p1) +(1,1,1,0) mod A. (11.9)

In particular, the two pointd(p;) and M(p.) lie in the same fiber oR over
the (z, A) square. We see by inspection that no fiber intersects Roth, 1) and
R, (1, —1). In light of the nature of the partition, we need to only chdckbers.
(See the discussion following Figure 6.2.) This rules oefth, +) case. The same
check rules out thé—, —) and(—, +) cases. The only possibility is

My (p1) € Ri(1, 1), M_(p2) € R-(1, -1). (11.10)
Modulo A, we have
M_(p2) = M_(p1)+(1,1,1,0) = My (p1)+(0,0,1,0) = My (p1)+(1,1,0,0).
In short,
My (p1)=M_(p2) —(1,1,0,0) modA. (11.11)

Lettingx € R* be any representative M, (p;), we see that the orbitx intersects
both sets

R, (1, 1), R_(1,-1)—(1,1,0,0).
Hence
AR (L DHN(R-(1,-1) —-(1,1,0,0) # @. (11.12)

We mean that there is a pdiPy, P,) of polytopes, withP; in the first set andP; in
the second set, such thiat and P, do not have disjoint interiors. We rule out this
intersection using exactly the same method as in step 2.
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Figure 11.4: Slices of AR (1, 1) andA(R-(1, —1) — (1, 1, 0, 0)).

Here is an illustration just like Figures 11.1 and 11.2. Fégll.4 shows slices of
AR (1, 1), A(R(1,-1)-(1,1,0,0)

over B, andBg. OverBy andB;y, at least one of the sets is empty.
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Chapter Twelve

Extension and Symmetry

12.1 TRANSLATIONAL SYMMETRY

Referring to §6.6, the map¥l, and M_ are defined on all oZ2. This gives an
extension of the arithmetic graph to all#f. We denote this full extension Hy.

Figure12.1 show§(3/7), aswellasthe hexagr@(3/7), from §3.1. The bottom
of the shaded parallelogram is the baseline. In the ratizas®, both the arithmetic
graph and the hexagrid are invariant under a certain laflicé translations o 2.
The shaded parallelogram is the fundamental domai®fdn this section we give
the formulas for the lattice and establish the translatieypametry.

7

JO >

N

Figure 12.1: T'(3/7) andG(3/7).
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Lemma 12.1 The extended arithmetic graph does not cross the baseline.

Proof: The arithmetic graph describes the dynamics of the pinwinegl®. Note
that® is generically defined and invertible &1 x {—1, 1}. Reflection in thex-axis
conjugatesb to ®~1. By the Pinwheel Lemmab mapsR, x {—1, 1} into itself.
By symmetry the same goes far . Hence® and®~! also mapR_ x {—1, 1}
into itself. If some edge ofl' crosses the baseline, then onelobr @~ will map
apointofR, x {—1,1} intoR_ x {—1, 1}. This is a contradiction. a

LetA(p/g) = 1if p/gis odd and lett(p/q) = 2 if p/q is even. Define

2
® =2V +2V, Y= 12(0, (P Zq) ) L= i(p/q). (12.1)

Referring to Figure 12.1, the short edges of the paralleimgare translates of
V and the long edges are translatesvdf Thus the shaded parallelogram is a
fundamental domain for the action 6fon R2.

Lemma 12.2 The arithmetic grapi (p/q) is invariant under®.

Proof: We will consider the odd case. The even case is similar. We hlready
seen that” is invariant undel . We just have to show invariance fgf. Referring
to the notation in 6.6, we have

2
M (X + V) — Ma(X) = (4, t,t) mod A, t= (pzq) L (122
By the Master Picture Theorem, it suffices to prove lat, t) € A. Setting
2
a=pq, b— pq—qu , c=t, (12.3)

we expresst, t, t) as an integer combination of vectorsAnas follows.

1+A 1-A -1 t
[ 0 }b[HA]H[_l}:[t] (12.0
0 0 1 t
This completes the proof. O

Remark: One can probably also see rotational symmetry by lookindgatre 12.1.
We will treat this kind of symmetry below.

Our nextresult deals with the hexagrid and the arithmeteck{ A). Both objects
are defined in §3.1. Recall that the hexagrid consists of emgrid RG and a door
grid DG. HereRGis composed of 2 families of parallel lines abé is composed
of 4 families of parallel lines. The lines &G are all parallel to the two diagonals
of K£(A), and the lines oDG are all parallel to the sides &f(A). Referring to
Figure 12.1, notice that each corner of the shaded pargitao lies on 6 lines —
one per family — of the hexagrid. Our proof of the followinguét is based on this
phenomenon.
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Lemma 12.3 The hexagrid is invariant under the action ®f

Proof: Again, we treat the only odd case. L&t= G(p/q) denote the hexagrid.
By constructionG is invariant under translation by. We just have to show that
the same holds fov’. We will show thatV’ contains 6 lines 06. Translation by
V’ then maps each family of parallel lines in the hexagrid ®fitsnd so the whole
hexagrid is invariant.

Let W be as in Equation 3.2. For convenience, we repeat the forfoul&.

W:( Pa__pq +q—p).
P+a’ p+q 2

/ p p+q
V' = 2V+ > W. (12.5)
The second coefficient is an integer. Given that the roomRf&ls invariant under
the latticeZ [V /2, W], the room gridRG is also invariant under translation b/.
This gives 2 lined.; andL, one from each family oRG.
Note that the door gridDG is invariant only undei [V], so we have to work

harder. We need to produce 4 lines®6 that containv’. Here they are.

We compute that

» The vertical lineL 3 through(0, O) certainly containgd/’. This line extends
the bottom left edge of (A) and hence belongs DG.

 Let L4 be the line containiny’ and the point

—(p+0)
2
We compute that the slope bf, coincides with the slope of the top left edge
of IL(A). The origin contains a line oD G parallel to the top left edge of
KC(A), and hence every pointifif V] contains such a line. Hendg belongs
to DG.

Vez[V].

* Let L5 be the line containiny’ and the point
—pVeZ[V].

We compute that the slope bf coincides with the slope of the bottom right
edge of/C(A). The same argument as in the previous case showd that
belongs taDG.

* Let Lg be the line containiny’ and the point

q;szeZ[V].

We compute that the slope bf coincides with the slope of the top right edge
of (A). The same argument as above shows thdtelongs toDG.

The linesLq, ..., Lg are the desired lines. O
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12.2 A CONVERSE RESULT

Here we show thab is, in some sense, the maximal group of translational symme-
tries of the arithmetic graphs. L&t be the map from the Master Picture Theorem.
We state our result for the may., but the argument is the same fdr_.

Lemma 12.4 Leto, v € Z2. Then M. (v1) = M, (v2) modA iff v; = v, mod®.

Proof: As usual,A = p/q. The proof of Lemma 12.2 shows that= v, mod®
implies M, (v1) = M, (v2) mod A. We must establish the converse. Suppose that
M, (v1) = My (v2) modA. Let

w = v —v2 = (M, N). (12.6)
Our hypothesis implies that
(t,t,t) e A, t=Am+n. (12.7)

We would like to see that this equation implies thate ®. Recall thatA is the
Z-span of the columns of the matrix in Equation 6.3. The bottowof this matrix
is (0,0, 1). From this we conclude thate Z. Since

t= %” +n, (12.8)

we see thaty dividesm. But now we can subtract multiples ® = (g, —p) to
arrange tham = 0. That is, we can assume that= (0, n). Hencet = n. Note
that

(n,n,n) = (2n,2n,0) mod A. (12.9)
Therefore we have the equation
2n| _ _[1+4+A 1-A
2] e[ 4]0 4] 12.10)
The solutions are
4 2
a=_—P4_ =9 (12.11)
(p+a) p+q

Sincep andq are relatively primepq is relatively prime to( p+ q)2. Sincea € Z,
we have thatp + g)? divides 4. Hence

2
n=k(p:q) , keZ. (12.12)

Whenp/q is odd, we haver = kV’, by Lemma 12.1. Wheip/q is even, the fact
thatn € Z forcesk = 4k’ for somek’ € Z. Hencew = k'V’ in this case. O

Lemma 12.4 has the following immediate corollary.

Corollary 12.5 The maps M and M_ from the Master Picture Theorem are well
defined and injective or?/®.
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12.3 ROTATIONAL SYMMETRY

Let p/q be an odd rational. Legp, /g, be as in Equation 4.1. Lebe the rotation
l(ma n) = V+ - (ma n)a V+ = (q+9 _p+) (1213)

The fixed point of is (1/2)V,.. This point lies very close to the baselineﬁ(p/q).
Figure 12.2 show§'(7/17) centered on this fixed point.

Figure 12.2: T'(7/17) centered on the poirf.2, —5)/2.

Below we prove that(T') = T, as suggested by Figure 12.2. Combining this
result with the translation symmetry above, we see thatiootdy z about any of
the points

B+0, B =(1/2)V,, 0e® (12.14)
is a symmetry of.

Remark: In particular, there is an involution swappiri@, 0) andV, + kV for
anyk e Z.
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Lemma 12.6:/(T) =T.

Proof: Let M, andM_ be as in 86.6. We use the offset value= 1/(2q). Recall
that Ra is the fundamental domain for the actiont&f= Aa. Letp be reflection
through the midpoint of the spaé&,. Below we will derive the equations

M, (m,n) = p o M_(@z(m, n)), M_(m,n) = p o M, (z(m, n)). (12.15)

Given these equations, we verify by inspection that ouiifg@mtof Ra is symmetric
underp and has the labels appropriate to force the type determiyned b

po M+(ma n)a po M—(ma n)
to be the 180-degree rotation of the type forced by
M—(ms n)> M+(m> n)'

Indeed, we can determine this with an experiment performesthg rational that is
complicated enough such that all regions are sampled.
Now we derive Equation 12.15. We will derive just the firstfhdhe derivation
of the second half is entirely similar. We have
m 1
M, (m,n) = (t,t +1,t) mod A, t=p—+n+—.
q 2q
Next, using the fact that, p — p.q = —1, we have

(12.16)

M_(G@(m,n)) = (' —1,t',t") mod A,

, (POt ) (pm ) 1 (pm ) 1
t=(=-—p)-(=+n)+==—(=—+n)- = =-t.
(q P q 29 q 29

In short
M_(@(m,n)) = (-t — 1, —t, —t) mod A. (12.17)
We compute easily th&2 + A, A, 1) € A. Hence the points
X=(t,t+11), y=(-t-1,-t,-t)+ 2+ A AL (12.18)

are representatives of the poirs, (m, n) and M_(:(m, n)) in R, We compute
the average.
x+y 1
=-(1+A1+A1).

5 51+ + A1
This is the midpoint ofRa. But thenp interchangex andy. Sincep preserves
the elements of\, we see thap interchanges the full orbitAx andAy. But then
p interchangeg\x N Ry with Ay N Ra. But these two points ar®l, (m, n) and
M_(z(m, n)). This establishes the first half of Equation 12.15. O
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12.4 NEAR-BILATERAL SYMMETRY

Our pictures of arithmetic graphs show near-bilateral sytnyn In this section
we explain how this arises. Looking at Figure 12.2, we setttieae is a natural
correspondence between components above the baselinerapdrents below the
baseline. Our first result explains this near-bilateral syatry. There is a second
kind of bilateral symmetry that meets the eye in Figure 1.5208. After proving
our first result, we will explain how this other kind of nedfatteral symmetry arises.

Figure 12.3: T'(15/52).

We say that a mag from T to T is a combinatorial isomorphisnif J maps
vertices to vertices and edges to edges.

Recall that a low vertex is one that is above the baseline ihirwd vertical unit
of it. Say that dow componenis a component of above the baseline that contains
a low vertex. Say that this componentaddd if it contains odd low vertices, and
evenif it contains even low vertices. By Lemma 2.6, this notiomvisll defined.

Lemma 12.7 For any rational A, there is a combinatorial isomorphishi’ — T’
that swaps the componentspfabove the baseline with the one below the baseline.
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Proof: Let E1 = Ry x {—1, 1}. Recall that¥: =, — Z, is the first return map.
We can exten®’ sothatitis also the return map frad. to =_. We have proved the
Return Lemma and the Pinwheel Lemma for the return map,tpbut essentially
the same arguments work wiv in place of=, . Thus the portion of below the
baseline tracks the dynamics of the MBp=_ — Z_ just as the portion above the
baseline tracks the dynamicsWf =, — =,.

Let ¥/ be the first return map 8 x {—1, 1}. If p € E-, then¥¥?(p) € E-.
The correspondence — ¥Y/2(¢) gives a bijection betweet-orbits in 2, and
W¥-orbits in Z_. The map? is the square o#/2. We definel . (m, n) = (n, n’),
where(m, n) corresponds tg and(nY, n’) corresponds t&#¥/2(¢&).

We could setl = J, and be finished, but we can somewhat improve the con-
struction. There is a second involution that is just as gaodl,a We can match
¢ e E4 to the point¥~Y2(¢) e Z_. Call this mapJ_. BothJ, andJ_ have the
same action ocomponentsbut they have different actions on individual points.

If y is a component of above the baseline that is not low, we use (s J,..
For even low components we u$e- J, . For odd low components, we ude=J_.
This is our combinatorial isomorphism. O

Lemma 12.7 does not really explain the near-bilateral symmee see in Figure
12.3. Here is the explanation. Lebe the symmetry discussed in the previous
section. Themo J permutes the componentsiofbove the baseline. In particular,
1oJ preserve$ but reverses its direction. This is the symmetry seen inr€iga.3.

Now we work out a few more properties 8f Our first result really uses the
improved version of.

Lemma 12.8 If v is a low vertex, thed(v) = » — (0, 1).

Proof: Let M be the fundamental map. Léh, n) be an even low vertex. Let

(x, —1) = M(m,n) € (0,2) x {—1}.

We compute
P2(x, —1) = y?(x, -1) = (x —2,1) = M(m,n — 1). (12.19)
HenceJ(m, n) = (m, n — 1). Similarly, if (m, n) is an odd low vertex, then
P2(x, 1) = p2(x, 1) = (x — 2, =1) = M(m, n — 1). (12.20)
Hencel(v) = v — (0, 1) wheno is a low vertex. O

We say that] is pseudolineaif there is a linear isomorphisid: R? — R? such
thatJ is a bounded distance frodn(in the sup norm.) IfJ exists,J is unique. We
call J themodelfor J. Since we do not need the final result for any purpose, the
proof will be a bit sketchy.

Lemma 12.9 Jis pseudolinear, modelled on the affine map J such tligt) = V
and J\W) = —W. Here V and W are as in Equation 3.2.
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Proof: (Sketch) Letting(x, 1) be a point on=, aboutN units from the origin,
we roughly trace out the Pinwheel map. First we add someéntegltiple of the
vector (0, 4), then we add some integer multiple of the vedte®, 2), etc. When
we reach=_ we have a vector of the form

X + (2Acy + 20y, £1).

Here (cy, dn) depends linearly oMN up to a uniformly bounded error. Given a
pointo = (m, n), we have

J@) = v + (cn, dn), N = 2Am-+ 2n. (12.21)

This shows thafl is pseudolinear.

Let J be the linear map on whichis modelled. Given the action dfon low
vertices, we see that(V) = V. To show that] (W) = —W, we consider how the
pair (ck, di) associated t&W depends otk. Taking the limit ak — oo, we get
an exact formula that showgW) = —W. We omit the details of this calculatiofl
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Chapter Thirteen

Proof of Hexagrid Theorem |

13.1 THE KEY RESULT

The proof of Hexagrid Theorem | is the same in the odd and essex

Say that dloor line is a negatively sloped line of the floor grid. Floor lines all
have slope- A. Say that dloor pointis a point on a floor line. Such a point need
not have integer coordinates. The mapsandM_ from §6.6 are constant on floor
lines. Thus, ifL is a floor line,M+ (L) is a single point.

Lemma 13.1 If pis afloor point,then M(p) = (f,0,0) mod A for somes € R.

Proof: Suppose firstthap/q is odd. SinceM_ is constant on floor lines, it suffices
to consider floor points of the form

_kp+9)
==
These points are the intersections of the floor lines withytlagis. Note that is an
integer becausp + g is even.

To compute the image of the poi(@, t), we just have to subject the pointo
the reduction algorithm from 86.6. The first 4 steps of theoatgm lead to the
following result.

O, 1), t keZ. (13.1)

l.z=t.
2. Z =floor(t) =t because is an integer.
3.y=2t =k(p+09) =kgld+ A).
4. Y = floor(y/(1 + A)) = kq.
Hencez = Z andy = (1+ A)Y. Hence
M_(0,) =(x— 1+ AX,y— 1+ AY,z—-2)=(5,0,0) (13.2)

for some numbef € R that depends oA andk.

When p/q is even, the floor grid has a different definition: Only therefleor
lines are present in the grid. That is, the numkén Equation 13.1 is an even
integer. Hence, for the floor lines in the even case, the nummisean integer. The
rest of the proof is the same. |
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13.2 A SPECIAL CASE

Say that a floor point ispecialif it lies in Z2. For instance(0, 0) is a special floor
point. So are the points in Equation 13.1. In this section ieprove statement 1
of the Hexagrid Theorem for special floor points.

Lemma 13.2 The arithmetic graph rises up above the baseline at a spéciat
point.

Proof: Letv be a special floor point. By Lemma 13.1, we hae(v) = (8, 0, 0)
modA. In particular,ML (v) lies in the kind of singular fiber that we considered in
86.5. The fiber we mean {g = 0}. The slices as shown in Figure 6.3 determine the
nature of the edges of the arithmetic graph, although teeskurrently of interest
to us are not shown there. We are interested in following tbthod discussed in
86.5, where we set = 0 and consider the singular situation. The poixits(ck)
andM, (¢«) both lie in the(0, A) slices of the partitions. Figure 13.1 does for these
slices what Figure 6.3 does for the generic slice. The pdinfzk) always lies along
the bottom edge of the fiber, and the pdihf (¢i) just above the edge contained in
the liney = 1. The relevant edges are highlighted.

(X,#) (Y. +)

(X,—) (Y.-)
Figure 13.1: The (0, A) slices.

From this figure we can see that the only edges emanating froane those
corresponding to the pairs
O, 1), (1,0, 1,1, (-1,1).
All of these edges point into the half-plane above the releflaor line. This is
what we wanted to establish.
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13.3 PLANES AND STRIPS

We say that an edge of the arithmetic graph is arossing cellif e crosses the
arithmetic graph in an interior point. If statement 1 of thexidgrid Theorem fails,
then a crossing cell must exist. One vertex of a crossindieslabove a floor line
and one vertex lies below. We shall be interested in the abong vertex. Call
this vertex thaop vertexof the crossing cell.

For each paifer, €2) € {—1,0, 1}?, let Z(e1, €2) C R? denote the set of points
(m, n) such that some floor line separates, n) from (m, n) + (e1, €2). The set
¥ (1, €2) is a countable union of open infinite strips, one per floor.lidepending
on the choice ofey, €2), the strips lie either above the floor lines or below them.
We shall be interested in the above-lying strips. Thespstorrespond to the pairs

(-1,0), (-1, -1, O, -1), 1, -1). (13.3)

Lemma 13.3 Let ¢ be a crossing cell and letbe the top vertex of c. Then we have
v € X (€1, €2) for one of the choices in Equation 13.3.

Proof: This is a tautology. ]

Now we switch gears and talk about the situatioR LetTI_ c R®denote the
plane given by = y. Equivalently,IT_ is the plane through the origin generated
by the vectorgl, 0, 0) and(1, 1, 1). LetI1_(0) c II- denote the line through the
origin parallel to(1, 0, 0). Define

ny =IM_-+(1,1,0), I1,(0) =T1_(0) + (1, 1, 0). (13.4)
LetIT(4) c I1. denote the strip bounded by the two lines
I1.(0), L (0) + 4(1, 1, 1). (13.5)
We take the strips to be openliiy, and we always také > 0. We define
Mer, €2) = —(Ae1 + €2). (13.6)

Lemma 13.4 Let A = A(e1, €2). Suppose thaim, n) € X (e, €2). Then
Mi(m, n) € 14 (4).

Proof: We considerthe case bf_ and the pai(—1, 0). Inthiscasel(—1,0) = A.
The other cases have essentially the same pro@h,lf) € X (-1, 0), then there is
somex such thaix, n) lies on a floor line and & m— x < 1. Given the definition
of M_, there is some & s < A such that

M_(m,n) — M_(m, x) = (5, S, S).
By Lemma 13.1,
M_(m,n) = M_(x,n) +(s,s,5) = (5,0,0) +s(1,1,1) mod A.
This completes the proof. |
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13.4 THE END OF THE PROOF

Let R be the polyhedron partition from the Master Picture Theoeassociated
to A. For each paif(ey, €2) above, letR.(e1, €2; A) denote the finite union of
polyhedra corresponding to the p&if, €2). In our next result AR denotes the
orbit of R under the latticeA = A 5 from the Master Picture Theorem.

Lemma 13.5 The following is true for either choice of sign, for any paster A,
and for any(ey, €2) in Equation 13.3.

IIi(e1, €2; A) N ARL(€1, €2, A) = 0.

Proof: Our notation above emphasizes the dependence on the parakneive
check the disjointness for all parameters at the same tiree. L

Mi(ene)= |J (il e A) x (A)). (13.7)
Ac(0,1)

Let IT*(...) denote the portion ofI(...) between the hyperplang¢s = 0} and
{x = 2}. The elemeny; from Equation 6.14 preserves bdiH. . .) and the tiling.
Also, sincey translates by at most 2 units in thledirection,I1*(...) contains a
fundamental domain for the action pfonTI(...). Hence, to establish our result,
it suffices to establish

IT% (€1, €2) N ARx(e1, €2) (13.8)

for all relevant choices. HerR. (e, €2) is one of the convex integral polytopes
described in 86.9. The sktt’, (1, €2) C I1 is the interior of a convex integral poly-
hedroninR?. In (—) cases, the vertices of this polyhedron are (perhaps redtigia

0 2 0 2 0 2 0 2

0 0 —€2 —€2 0 0 —€1 — €2 —€1 — €2

0 0 —€2 —€2 0 0 —€1 — €2 —€1 — €2

0 0 0 0 1 1 1 1
Using a method just like that in §11.1, we check Equation I8ct&ll relevant
choices. O

Suppose that statement 1 of the Hexagrid Theorem fails foegmarameteA.
Then there is some crossing cellBy the Master Picture Theorem, one of the two
mapsM.. (sayM,) is such that

M, (v) € Rler, €25 A), (13.9)
where(e1, €2) is one of the pairs from Equation 13.3. By Lemma 13.4, we have
Mi(v) C T4 (€1, €25 A). (13.10)

But these last two equations together contradict Lemma. 1BHis contradiction
establishes statement 1 of the Hexagrid Theorem.
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13.5 AVISUAL TOUR

Our computational proof of Lemma 13.5 does not really givead fior what is going
on. Here we illustrate the result with images taken fromi&itl King. To draw
figures, we will identify the planeH .. with R? using the projection

(X, Y,2) = (X, 2). (13.12)

In fact, this simple projection will be our constant compamiior the rest of this part
of the book. All our constructions depend on the paramatdyut we sometimes
omit A from our notation.

Under the identification, the sets

7 (Ry(ey, €2; A) N II) (13.12)

are rectangles whose sides are parallel to the coordinagt &ur proof of Lemma
14.3 in the next chapter justifies this claim.

The coordinates of the rectangle vertices are small rdtammbinations of 1 and
A and can easily be determined by inspection. The whole figurezariant under
translation by(1+ A, 0). The thick line on the left correspondslib_ (0), the black
dot is(A, 0), and the white dot i$1 + 2A, 0).

The unlabelled rectangles in Figure 13.2 show one periddedtifing of the strip
I1(1+ 2A) for the parameteA = 1/3. The shaded and labelled rectangles to the
right of the partition give the shading scheme. For instatiedark left rectangle
corresponds t&R_(—1, —1). The white rectangles have various labels that do not
matter to us. The line corresponding to the labekef ¢,) indicates the placement
of the top edge of the strii_ (1(e1, €2)). In each case, the relevant strip lies below
the relevant shaded piece of the partition.

"~ -

(01_1)

— @-1

(-1,0)

¢ O (o)
Figure 13.2: The (—) case forA = 1/3.
Figure 13.3, taken from Billiard King, shows the partitiaf¢he stripI1_(2) for

several parameters. We show somewhat more of the tilingithgigure 13.2. One
can match part of the top right of Figure 13.3 with Figure 13.2
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Figure 13.3: The (—) case forA = 1/4,1/3, 3/5, 4/5.

Figures 13.4 and 13.5 show the same thing for(thgcase. Here the black dot
is (0, 0) and the white dot i1 + A, 0). These figures are not as interesting. Only
the levels(—1, —1) and(—1, 0) play a role, and there are no close calls.

1-1)

(_110)

® O (o)
Figure 13.4: The (+) case forA = 1/3.
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Figure 13.5: The (+) case forA = 1/4,1/3, 3/5, 4/5.
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Chapter Fourteen

The Barrier Theorem

14.1 THE RESULT

Let p/q be an even rational. L&t = (g, —p). Referring to Equation 4.1, one of
the two rational9../g+ is even and one is odd. Let/q’ denote whichever of these
rationals is odd. (We allow the case whptyq’ = 1/1.) We callp’/q’ the odd
predecessoof p/q. We say that thdarrier is the line parallel td/ that contains

the point
(o, P+ ) (14.1)

2

Theorem 14.1 (Barrier) Let e be an edge of (p/q) that crosses the barrier line.
Then there is some k Z such that the translate ¢ kV is an edge of (p/q).
Moreover, there are only two such edges modulo translatior p/].

We will not need the Barrier Theorem until Part 6 of the booke Teader who is
interested in only the Erratic Orbits Theorem can skip thispter. The reason that
we prove the Barrier Theorem here is that the proof involvewdification of the
argumentwe gave in the last chapter. Also, our proof of statd 2 of the Hexagrid
Theorem uses some of the ideas we presentfirst in the prdod &arrier Theorem.
Compare §16.5.

The interested reader can observe, using Billiard King, ttieaBarrier Theorem
and the Hexagrid Theorem are specially related: The ariticrgpeaph always crosses
the barrier line within 1 unit of a line from the door grid. Wéllmot establish this
fact because we do not need it for any purpose.

We have stated the precise version of the Barrier Theoretwihaeed for our
applications, butthe Barrier Theorem is really part of a@robust general theorem.
If we replaceA’ by some parameteX* that is close tA in the sense of Diophantine
approximation, then we get the general result that the sparding “barrier line”
is not frequently crossed bly. The basic reason is that* serves as a kind of
memory of the Hexagrid Theorem for the parameter The two graph$’ andT*
mainly agree along\*, and the only crossings take place at the few mismatches in
the graphs.

Figure 14.1 illustrates the Barrier Theorem for the par@amat= 12/47. The
bottom straight line in the figure is the baseline. The togigttt line is the barrier.
The black component i§(12/47). The reader can see other parameters using
Billiard King.
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Lﬂwmﬁv oﬂﬁﬂﬁﬁ

Figure 14.1: Components 0?(12/47) and the barrier.

Before we give the formal proof of the Barrier Theorem, weidate the main
idea. In the previous chapter we saw that mapped the points d? of interest
to us, namely those contained in the strip

2 (€1, €2),
into a strip
I (A(e1, €2)) C R (14.2)
We then showed that
I_(Ae1, €2)) N R_(e1,€2) = @ (14.3)

for the relevant pairs. We did the same thing fe) in place of(—). In all, we had
8 cases to consider.

For the Barrier Theorem, we have a similar setup. This tiroedver, the strips
we getare slight translates of those in Equation 14.2. Ttadl sranslation causesthe
intersection in Equation 14.3 to be nonempty but quite sndde tiny intersections
give rise to the crossings we see in the Barrier Theorem. Tdie point is to bound
the number of potential new crossings.
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14.2 THE IMAGE OF THE BARRIER LINE

Let A be the barrier line. Here we prove an analog of Lemma 13.1 fitoen
previous chapter. There is one result f§r> A and one result foA" < A. We
will concentrate on the cas&’ > A. At the end of the chapter, we will deal with
the other case.

Lemma 14.2 Suppose that’A> A. There is some red such that

M_(A) = (/3, 1/q, o). (14.4)

Proof: The key fact here is that
qA - A =1/q. (14.5)
Since A is parallel to the baselingyl_ is constant om\. Hence we just have to
compute
P+q
7

To compute the image of the poif@d, t’), we just have to subject the poititto
the reduction algorithm from 86.6. The first 4 steps of theoatgm lead to the
following result.

M_(0, t), t =

l.z=t".
2. Z =floor(t") = t’ becaus¢’ is an integer.
3. y=2t=p'+q'=0'1+ A)=q A+ A +q A -A=0d1+ A+ (1/9).
4. Y =floor(y/(1+ A)) =1
Hencez = Z andy = (1+ A)Y + (1/q). Hence
M_O0,t) =x—A+AX,y— 1+ AY,z—-2)=(p,1/q,0) (14.6)

for some numbeg € R that depends oA andk. |
For any relevant se&X c R3, we define
X'=X+(0,1/q,0). (14.7)

We define the strip& (¢1, €2) exactly as in the previous chapter, except that we use
the barrier lineA as the bottom of the strips rather than the floor lines. Wewste |
translating the strips. Now that we know Lemma 14.2, the sarmgement as in the
previous chapter shows that

Mi<2(el, ez)) = 1T, (Aer, €2)). (14.8)
We draw figures using the projection map
”(Xﬂ y? Z) = (X7 y)’ (14'9)
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just asin the previous chapter. Note th&X’) = = (X). Therefore the composition
7w o M1 mapsZ (e, €2) to precisely the same planar set as in the previous chapter.
Even though the domains have changed, the ranges have not.
What changes is the projection of the intersectiodIgf with the partitionR..
That is, there is a difference between the two planar patefnectangles:

H(Hi N Ri), E(H/i N Ri) (1410)

Say that the planes cutting out the partitionRf are thepartition planes These

planes belong to 4 families and are listed in §6.2. The fahgwesult explains how
the rectangle pattern changes. Incidentally, this resyitaéns why we really do
get a pattern of rectangles.

Lemma 14.3 Let W be a partition plane. Then the two linegW N I1.) and
= (W N II,) either coincide or are exactly/q apart in the plane.

Proof: The result depends on only the normals of the planes invaweldnot on
the (initial) positions. Thus we can work witfi_ and with 4 planes through the
origin, each parallel to one of the partition planes in theffecent families. For
ease of notation, |dil = I1_ and lets = 1/qg. Here are the 4 cases.

e LetW = {z = 0}. The mapX — X’ preservedV. Therefore we have
I'NW = (IT N W)'. Butthenz (I' " W) = =z (IT N W). We remark that
IT1 N W is the line through the origin parallel {@, 0, 0). Hencex (IT N W)
is a horizontal line.

e LetW = {z = 0}. The mapX — X’ preservedV, and the same argument
works as in the previous case. We remark fifiat W is the line through the
origin parallel to(0, 0, 1). Hencer (IT N W) is a vertical line.

e LetW = {y = 0}. In this caseW N II is thex-axis andwW N I1’ is parallel
to thex-axis but contains the point

(0,0,—s) =(0,s,0) —s(1,1,1) +s(1, 0, 0).

In this case]I N W andIl’ N W are exactlys units apart and the map is
an isometry. The images underare parallel horizontal lines exacgyunits
apart from each other.

e LetW = {x+y —z = 0}. Inthis case, we compute thatN IT andW N IT’
are the lines given by the parametric equations

t(0> 13 1)3 (_Ss S, 0) + t(os 19 1)

The corresponding lines(W N IT) andz (W N IT’) are parallel vertical lines
exactlys units apart.

This completes the proof. ]



book April 3, 2009

THE BARRIER THEOREM 129

14.3 AN EXAMPLE

We consider the parametér = 4/15. We consider the plang_ and its corre-
sponding translatél’ . Here we illustrate Lemma 14.3 in action.

Figure 14.2 shows one period for the paramet@s4 The left hand side of Figure
14.2 showse (I1_ N R_), and the right hand side shows$II” N R_).

B

1";

N //\é

(4,6) (8,—3) ==
~_ N

Figure 14.2: The slicedl1_ andIT’_.

I~

Comparing the right hand side with the left hand side, weaeateveral changes.
First, 3 new regions have become visible. Two of these repgéwa long and thin,
and one of them is a little square. The common width of thegmns is ¥/15.
Second, some of the other regions have slightly changedabsitions. In all cases
when an edge moves, the offset is bAL %, as predicted by Lemma 14.3.

We compute that the two relevant crossings occur at the p@iné) and(8, —3).
Figure 14.2 illustrates the locations of the poiis (4, 6) andM_ (8, —3) and the
corresponding crossings of the barrier that arise frometh@sges. The tall thin
region, which gets labelle®, —1), causes a downward crossing(dt6). The
leftmost shaded region, which is labelléd1, 0), has shifted downward slightly
so as to meeM_ (8, —3) and cause a leftward crossing. Were we to analyze the
figure relative to the paramet&f = 3/11, these offending points would be assigned
noncrossing edges.
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14.4 BOUNDING THE NEW CROSSINGS

In the new setting, our analysis for statement 1 of the Haaalgreorem does not
completely succeedecause of the emergence of the new regions and the slight
perturbations of the existing regions. Let us analyze therés. Referring to the
right side of Figure 14.2, the images of the relevant vestalblie on a diagonal line
of slope 1. This line starts somewhere on the bottom edgeedfléd rectangle and
wraps around when it hits the right edge. Considered m&dAl the difference in
thex-coordinates between successive pointy/ s 1

The bottom of each modified rectangle is at mo&t Uinits lower than the orig-
inal. Since the original rectangle was disjoint from thesvaint strip, the modified
rectangle intersects only the togdLrim of the same strip. Thus each modified
rectangle gives rise to at most one new crossing. The hddkbmes bounding a
new region come from partition planes in different familié®oking at the cases
in the proof of Lemma 14.3, we see that one of these lines mavesne does not.
Thus a new region has width exactlydl Likewise, a new region has height exactly
1/qg. Therefore each new region gives rise to at most 1 crossing.

Looking carefully at which shaded regions actually move domhenII_ is
replaced byil’_, we arrive at the 4 shaded regions shown in Figure 14.3. Kae i
trick to get down to 2.

/

Figure 14.3: Some of the shaded rectangles.

Note that any diagonal line intersects at most 2 of the 4 asievectangles.
Therefore what seems like 4 potential crossings is just 2 argument works much
the same for other parameters. Figure 14.4 shows the pfoiuBether parameters.
In each row, the left hand side shows the slice correspontirgjatement 1 of
the Hexagrid Theorem, and the right hand side shows therpeduslice we are
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interested in here.

Figure 14.4: The (—) figure for A = 3/19, 8/19, 15/19.

The figure forIl, is easier to analyze. Recall from the proof of the Hexagrid
Theorem that all the relevant rectangles were well aboveahge of the corre-
sponding vertices. See Figures 13.3 and 13.4. Thus we oty thavorry about
the emergence of new rectangles. The only new rectangle ¢ogenwvithin range
is a rectangle labelle@-1, 0) that emerges at the very bottom. Hence there is at
most 1 crossing. See Figure 14.5.
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Figure 14.5: The bottom row off1,. andIT’,..

Allin all, there are at most 3 barrier crossings within ongqe Also, the number
of barrier crossings is even because every component is/gqral Hence there are
exactly 2 barrier crossings. The major components do chasbdrrier, and hence
this accounts for the 2 crossings.

14.5 THE OTHER CASE

An analysis similar to thte one above takes care of the caseWh< A. However,
we will take a different approach based on symmetry. Agtdenote the barrier
line. There is nothing special about the fact that lies above the baseline. We
could consider the corresponding line. below the baseline. Her&_ is parallel

to V and contains
P — (o, #). (14.11)

Actually, to do things exactly right, we think of, and A_ lying infinitesimally
near, but below, the lines we have defined. Thus, in particBlalies aboveA _.
We compute that

M(P-) = (ﬁ, 1/q,0)

for somep € R. Thus, by considering._ in place ofA ., we have returned to the
case already analyzed. But now we can apply the rotationatrstry: considered
in §12.3. Assuming thalA_) = A, the result forA ; follows from the result for
A_.

It is not quite true that(A_) = A,. Infact,:(A_) is parallel toA , and exactly
1/q vertical units beneath _. Thus we have actually proved the Barrier Theorem
for a barrier that is lower by a tiny bit. This result suffices &ll purposes.

To obtain the stated result right on the nose, we note Bhais the only point
adversely affected:(P-) lies beneatt ,, wheread_ lies onA_. However, recall
that we consider these lines to be infinitesimally beneagHittes through integer
points. Thus, as mentioned abo¥e,lies aboveA _. So, eventhoughA_) # A,
all the relevant lattice points lie on the correct sides.

This completes the proof of the Barrier Theorem.
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Chapter Fifteen

Proof of Hexagrid Theorem Il

We will prove statement 2 of the Hexagrid Theorem for odcbradis. The even case
has an essentially identical proof. Here we remark on ondl glifference. Call a
point in R? bad if it has the form(m, y), wherey is a half-integer. According to
statement 3 of Lemma 15.1 below, a door cannot be a bad pdim¢iodd case. In
the even case, we simply declare that a door cannot be a batd Sek the definition
in Chapter 3. Having ruled out the bad points in both casegmof is practically
independent of parity.

15.1 THE STRUCTURE OF THE DOORS

Our proof of statement 2 of the Hexagrid Theorem requiresrefagbanalysis of
the doors. In this first section, we will establish a techhieault about the doors.
Say that awall line is a line of positive slope in the room grid. These lines afe al
parallel to the vectow, from Equation 3.2. Recall th& is the lattice, from §12.1.
We distinguish two special kinds of pointsRt.

e Type 1l:(aq,b/p),witha,b € Z.
e Type 2:(ap, b/q), witha,b € Z.
A point could have both types. Here is our structural result.
Lemma 15.1 The following are true.
1. Any two wall lines are equivalent ma
2. The only points oZ? lying on wall lines are elements 6f.
3. Every door on k has type 1 or type 2 (or both).
Proof: Statement 1: Recall that® is generated by andV’, the vectors from
Equation 12.1. Modulo translation %/[V], any wall line is equivalent td_q or

L1. We just need to show that these two wall lines are equivabezdch other mod
©. We check explicitly that the following equation holds.

1
v’+%Ve@mL1.

Hence addition by some vector @ carriesLq to L;. Hencel o andL; are equiv-
alent mod®.
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Statement 2: By statement 1, it suffices to consider the case wimem) < Lo.
Any pointinLg is a real multiple oWV. Such a point has the form

S
W=_———(2pq, (p+9)?—2p?. 15.1
2prq 2Pe (P ) —2p°) (15.1)
In order for this point to lie irZ?, the first coordinate must be an integer. Hence
k
s= KP+a) keZ. (15.2)
pPa

Hence

Ky Pa+@-p92
pa
Sincep andq are relatively prime, the numerator and denominator of #tiemal

on the right side of Equation 15.3 are relatively prime. Hepq dividesk. Hence
(m, n) is an integer multiple of the point

n

(15.3)

(P+a?®
2

(p+q)W=(pq, p2)=2v’+ pV € ©.

HereV andV’ are the vectors generati®y as in Equation 12.1.

statement 3: Let K denote the arithmetic kite associated to the parametel. Cal
a line in the door gridopif it is parallel to one of the top two edgesif Call aline
in the door gridbottomif it is parallel to one of the bottom two edges/of Call a
doortopif it lies on a top door line, andottomif it lies on a bottom door line.

Our argument crucially uses the poltin Figure 3.1. We have

9% — p*+2pq
U= . 15.4
(p. T2 (15.9
The bottom doors are evenly spacedlgn Two consecutive ones are
q q° - p*+2pq b
0,0, —U=(, ):(,—. 15.5
) 0 q 2 a5 (15.5)

Every bottom door or( is a multiple of the nontrivial one we have listed. Hence
every bottom door has type 1.
The top doors are evenly spacedlof Two consecutive ones are

(0,0), U = (p,b/a). (15.6)
Every top door orlg is an integer multiple of the nontrivial one we have listed.
Hence such doors have type 2. O

Remark: Inthe even case, statement 1 of Lemma 15.1 has a trivial pfonftwo
wall lines are equivalent modulo translations by integeltiples of V.
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15.2 ORDINARY CROSSING CELLS

The bijection between crossing cells and doors describedatement 2 of the
Hexagrid Theorem commutes with the action of the symmeioyg®. The point
is that® preserves both the hexagrid and the arithmetic graph. Hegastatement
1 of Lemma 15.1, it suffices to consider those crossing dedisdrosd. o.

We first deal with two trivial cases. Recall that the pdiditO) gives rise to two
doors. One of the doors, which we den@®0)., is attached to the wall above
(0,0). The other door, which we denot®, 0)_, is attached to the wall below
(0, 0). Any door lying in® is equivalent to one of these, by statement 2 of Lemma
15.1. One of the crossing cells has verti¢eg, 1), (0, 0), and(1, 1). We associate
(0, 0),. to this crossing cell. Another crossing cell has verti@s-1) and(—1, 0).
We associate the do@®, 0)_ to this cell.

Henceforth we consider crossing cells that criogbut are not equivalent maél
to either of the ones we have just described. We call thesainéng crossing cells
ordinary cells Given an ordinary celt, leto; denote the vertex afthat lies to the
right of Lg. (The first statement of the next lemma justifies the exigario..)

Lemma 15.2 An ordinary cell ¢ has a single edge that crossesirt its interior.
Moreoverp. + (€1, €2) & Lo for any choice ofey, €2) € {—1, 0, 1)2.

Proof: Letc be a crossing cell. If an edge ofails to crosd. ¢ at an interior point,
then a vertex of lies onL . But thenc = (0, 0) mod®, by statement 2 of Lemma
15.1. Ifoc + (€1, €2) € Lo, thenoe = (—e1, —€2) mod®, by statement 2 of Lemma
15.1. Hencé—e1, —e2) is the right vertex of a crossing cell. This happengfgr)
and (0, —1), but these are the special crossing cells we have alreadildthriThe
only point in Lo within reach of eithe(1, —1) or (1, 0) is (0, 0), and we already
know that(0, 0) does not connect to these points. The remaining 4 choicés lie
the left of Lg. This rules out all cases. O

Now we describe the bijection between ordinary crossinig eeld doors. Below
we will prove the following result.

Lemma 15.3 (Separation)Let ¢ be an ordinary cell and let. be the right vertex
of c. Then lg separates. fromuo¢ + (0, 1).

We writeve = (m, n). Letd € (n, n+ 1) be the point such th&m, §) € Lo. We
define

Y(c) = (n,0). (15.7)
Lemma 15.4 (Door) Leto be an ordinary crossing cell. Then(c) is a door.

The mapc — Y(c) is certainly injective. To finish our proof of the Hexagrid
Theorem, we will prove the following result.

Lemma 15.5 (Surjection) The mapY is a surjective map from the set of ordinary
crossing cells to the set of doors og that do not lie in®.
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15.3 NEW MAPS

The key to our proof is to use variants of the mafys andM_ from Equation 6.6.
Let A be the lattice from the Master Picture Theorem. We will prcelmapsA ;-
andA_, which have, mod\, the same action dd, andM_ onZ2. However, the
action of A, on all of R? is quite different from the action d¥l. on R?.

Now we give the definition. LeA € (0, 1) be any parameter. Define

II={x+y=A} (15.8)

The planell plays the same role in the proof of Hexagrid Theorem Il that th
similarly named plane plays in the proof of Hexagrid Theotem
For (m, n) € R?, we define

Ar(m,n) =(X,Yy,2),

X=2AQ-m+n)—m, y=A-X, z=Am. (15.9)
We also define
A_(m,n)=A,(Mmn)+ (—A, A D0). (15.10)
Note thatA.(m, n) e I1. Indeed A is an affine isomorphism fromR2 onto I.
We found the map4 .. after considerable trial and error.

Lemma 15.6 Suppose thaim, n) € Z2. ThenA (m, n) and M. (m, n) are equiv-
alent modA.

Proof: Letos, vs, 03 be the three columns of the matrix defining So,
v1=(14+A,0,0), v2=(1-A1+A0), vz =(—1,-1,1).
Let
C, =—142m, C=1—m+2n, Cz3=n.
We compute directly that

My (m, n) — A, (M, n) = C1v1 + Cov2 + C303.

M_(m, n) — A_(m, n) = c1v1 + (C2 — L)vo + Cavs.

This completes the proof. O

We introduce the vector
c=(AA1eA. (15.112)

Referring to the proof of our last result, we have= v, + v3. This explains why
¢ € A. Note thatII is invariant under translation lzy.

Below we will specialize to the case whé&n= p/q is an odd rational. Also,
we will extendA . so that it acts linearly oRR?. Now we will see the difference
betweenA . andM... We will see thatA . is specially adapted to the wall lines.

Let Lo denote the wall line through the origin.
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Lemma 15.7 AL (Lo) is parallel to¢ and containg—2A, A, 0).

Proof: We refer to the points in Figure 3.1. The poilltsand(0, 0) both lie onL.
We compute

p?
p+q
HenceA (Lo) is parallel to;. We compute that ;. (0, 0) = (2A, —A, 0). o

Ay (W) —A.((0,0) = ¢

We introduce the notatiofl (x) to denote the line ifl that is parallel tq- and
contains the pointx, A — x, 0). For instance,

A.(0,0) e TI(2A), A_(0,0) e TI(A). (15.12)

LetI1(r, s) denote the infinite strip bounded by the lifdgr ) andII(s).

For each pair of indice&, €2) € {—1, 0, 1}, we let X (¢1, €2) denote the set of
points(m, n) such thatL, separate$m, n) from (m + €1, n + €2). We care only
about the integer points iB (e, €2), but our definition allowgm, n) € R? — Z2
as well. Note that (e, €2) is an infinite strip whose left boundaryli. Now we
define constants

1. 1(0,1) = 2A,
2. (=1, -1)=1+0A- A%
3. 2(=1,0) =1+2A- A%
4. A(=1,4+1) =1+ 4A— A2
We have included B = 0 above to make the pattern more clear.

Lemma 15.8 Let (e1, €2) be any of thel pairs listed above. Let = A(ey, €2).
Then

AL(Z(es, €2)) = 1A, 2A), A_(Z (e, €2)) = TI(A—1, A). (15.13)

Proof: GiventhatA_ = A, +(—A, A, 0), it suffices to establish the first equation.
In light of Lemma 15.7 and the fact that, is an affine isomorphism frofR? to I,

it suffices to check what happens to a single point on the ightdary component
of X (€1, €2). Indeed, in all cases, we can chose the p6id;, €2). We compute

1. AL(0,—1) = (0, A, 0) € IT(0) = TI(2A — A(0, 1)).

2. Ap(L,1) = (=142A,1— A, A) € TT(A2+2A—1) = TI(2A— A(—1, —1)).
3. AL(1,0) = (-1, 14 A, A) e* TI(1 — A?) = TTI(2A — A(—1, 0)).

4. Ai(1,—1) = (—1—2A, 143A, A) € TI(A2=2A—1) = TT(2A—A(~1, 1)).

This completes the proof. |
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15.4 INTERSECTION RESULTS

Here we describe some intersection results that we proveinéxt chapter.
For ease of notation, we define

L, ((e1, €25 A)) = T1(2A — A(ex, €2), 2A), (15.14)

IM_((e1, €2; A)) = IT(A — A(e1, €2), A). (15.15)

To be precise, we takH_.((¢1, €2)) to be the interior (relative tdl) of the strip.
These strips correspond to those in Lemma 15.8.

As usual, A R denotes the orbit oR under the latticeA. In the next resultX®
denotes the interior oX. We prove the following result in Chapter 16.

Lemma 15.9 (Intersection) The following hold for all A< (0, 1).

1. For each pair(es, €2) from Lemma 15.8,
I+ ((e1, €2; A)) N ARG (€1, €2; A) = (0, 0).

2. Let(ey, €2) be either(—1, —1) or (—1, 1). Then
[T+ ((e1, €2; A)) N AR (€1, €2; A) C 0114((O0, 1)).

3. Let(ey, €2) be either(—1, 0) or (0, 1). Then
I+ ((€1, €23 A)) N AR, (€1, €2; A) € TI(0, 1).

Remark: Let I1,4 denote the plane we considered in the proof of Hexagrid Theo-
rem |. By construction, the vectét, 1, 1) is contained iMlyg. Thus, when we use
the method of §6.5 to implement the Master Picture Theoreenn@ed only look

at howIlI, g intersects thénteriors of the polyhedra in the partitions. On the other
hand,(1, 1, 1) is not contained in the planBpe, = II. It turns out thatll does
intersect the lower boundaries of some of the polyhedraénptirtition, and this
creates the crossings. In other words, case 3 of the Intessé@mma is nontrivial.

Proof of the Separation Lemma: Supposec is an ordinary crossing cell. Let
v = v be the right vertex. Suppose that the left vertex is (€1, €2). There is
some choice of sign (say) such that

A (v) € Tl ((e1, €2; A)) N AR, (€1, €25 A). (15.16)

The first containment comes from Lemma 15.8. The second iconégt comes
from the Master Picture Theorem. Applied directly, the MagRRicture Theorem
refers to the maphl., but Lemma 15.6 lets us replabé,. with A.

The intersection in Equation 15.16 is empty in case 1 of theréection Lemma.
By Lemma 15.2, we have ¢ X.(0,1). HenceA (v) ¢ oI1,(0, 1). Hence case
2 of the Intersection Lemma does not apply here. We must hese3. By case 3,
we havey € I1.(0, 1). Butthen, by Lemma 15.8, we hawes interior(X (0, 1)). O
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To prove the Door Lemma and the Surjection Lemma, we needderitte how
IT.((0, 1)) intersectsR, (—1,0) and R, (0,1). The planell = {x +y = A} is
transverse to all the planes listed in 86.2. Hehicdoes not share any faces with
the polyhedra in the partition. We find the edges by inspgdtie partition. We
see the figure by plotting the intersection of the partitidtthe slightly perturbed
plane.

IM+(s,s,9) (15.17)

Whene is small, we see some very thin rectangles. Taking the ligdét-a 0, we
find the edges. See §16.5 for detailed figures.
To show the final answer, we will use the projection

r(X,Y,2) = (X, 2). (15.18)

Once againg maps all intersections to rectangles having horizontalhatcal
sides. We have

(@) =a(=A A1) = (—A1). (15.19)

Thus, translation by the vectgr A, 1) identifies the top points and the bottom
points in Figures 15.1 and 15.2. These figures are meant tdib#e, and invariant
under translation by— A, 1). We show just one period.

We give two labels to the vertices in Figures 15.1 and 15.2e [abel(x, y)
denotes the coordinates of the vertex. The lgiel, ¢;)) pair associated to the
point. We also label the lines liyey, €2)). If a setX is labelled by((e1, €2)) on the
left hand side, it means that

AL(p) € X — X € R, (€1, €). (15.20)

The labels on the right hand side have the same interprefatith (—) replacing
(+). The gray vertices correspondao. (0, 0). The white dots are labell&€do, 0)).

((0,1)) ~((-1,0) ((0,0))
® o T 00
((-1,1) ((-1,2))

((0,2)) ((-1,0))

((1.2))

o © 000 O
(0,0) (A0) (2A,0)

Figure 15.1: The edge intersections fér = 1/3.
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Figure 15.2 shows the result of superimposing the left aghitthand sides of
Figure 15.1.

(-A,1) (0,1) (A1)
O—O

\
((0.1)) | ((-1,0)

(0,1) ((=1,0))

((0,2)) /\((—1,0))

o—C
(0,00 (A0) (2A0)

Figure 15.2: Superimposed figures

Lemma 15.10 Let ¢ be an ordinary crossing cell. Let be the right vertex of c.
Thenz o A, (vc) lies in one of the labelled segments of Figure 15.2.

Proof: Our proof starts out exactly as in the Separation Lemma, amdse the
notation there. From the Separation Lemma, we concludevtlatz (0, 1). Let
us suppose first that, as in the proof of the Separation Lerimaahoice of sign is
(+), so that

Ay(v) € I1L((0, 1)) N R, ((e1, €2)). (15.21)

Then A (v) must lie in one of the open segments on the left hand side afr€ig
15.2. The black and gray dots correspond to the specialingpsslls we have
already analyzed, and the white dot is labell&éd] 0)).

Now suppose that the choice of sign(is). Then

A_(v) € II_((0, 1)) N R_((é1, €2)). (15.22)

We get all the same conclusions féor in place ofA ., using the right hand side of
Figure 15.1 instead of the left hand side. Herice(v) lies in the vertical segment
in the right hand side of Figure 15.1. However, since

ToA_()=moA, (v)— (A0,

this means thai ; (v) lies on the right hand vertical segment of Figure 15.20
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15.5 THE END OF THE PROOF

Proof of the Door Lemma: Letv = (m, n) be the right vertex of an ordinary
crossing cell. Lefr(c) = (m, 8). Heren is the floor off. Let

A+(U) = (X> Y, Z)' (1523)
There are two cases to consider. Suppese A (v) lies in one of the open
horizontal segments of Figure 15.2. Then
x,y,2) =, A—t,0) mod A, t € (0, A)U (A, 2A). (15.24)

By Equation 15.24, the third coordinate &f,_(v) is an integer. By the definition of

A, we haveAm = pm/q € Z. Henceq dividesm. Hencev = (kq, n) for some

k € Z. Hencev lies in the intersection df o with a door line. Hence is a door.
Supposer o A, (v) lies in a vertical segment in Figure 15.2. Looking at the

positions of the vertical line segments in Figure 15.2, weeha

x = kA, keZ. (15.25)
From the definition ofA ., we have
m X
2(1_m+n)_K=KEZ' (15.26)

Hencem/A € Z. Hencem = kp. But then the first coordinate of (c) coincides
with the first coordinate of a door ong, by statement 3 of Lemma 15.1. Since
Y (c) € Lo, we now see thdl'(c) is a door. ]

Proof of the Surjection Lemma: We would like to see that each door actually
arises in our construction above. There are two cases.

Type 1: By statement 3 of Lemma 15.1, each type 1 door has the tagnb/ p),
wherea € Z andb/p is not a half-integer. Leh be the floor of(b/p), let
v = (aq, n), andet(x,y,z) = A, (v). We will show thato is the right vertex
of an ordinary crossing cell.

Since the first coordinate ofhas the fornag, we havex € Z. Sincev € £(0, 1),
we haveA, (v) € TI(0, 2A). Hence Equation 15.24 holds. We rule out the case
thatt = A becausé/ p is not a half-integer. Henca . (v) lands in a horizontal
strip in Figure 15.2. Hence one of the edgesf(ﬁmanating from is either(0, 1)
or (=1, 0). This edge crossdsy because € (0,1) c (-1, 0). Hencev is the
right vertex of a crossing cell.

Type 2: By symmetry, it suffices to consider the type 2 doorslgn By state-
ment 3 of Lemma 15.1, such a door has the f¢ap, b/q). Leto = (ap, n), asin
the first case. With the same notation as above,

x=2A(l—ap—n)—agA=aA (15.27)
for somea’ € Z. Also, A, (v) € II(0,2A). HenceA, (v) lands in one of the

vertical strips of Figure 15.2. The same argument as in theipus case finishes
the proof. |
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15.6 THE PATTERN OF CROSSING CELLS

Our proof is finished (modulo the Intersection Lemma), butweild like to say
more about the beautiful order of the crossing cells. Wegirethese final details
without proof. They can be gleaned from what we have said eb®&irst of all,
there are two crossing cells consisting of edges of stope These crossing cells
correspond to the black and gray corner dots in Figure 15t&s@& are the trivial
cases we ruled out first.

The remaining crossing cells correspond to the labelled gpgments in Figure
15.2. There are exactly+ q crossing cells mo®. These cells are indexed by the
value of¢ — n. The possible numbers are

0%, Pt a-il,
p p q q
Excluding 0 and 1, we have the ordinary crossing cells. Weeo&iance Figure 15.2
by locating the images of these crossing cells. Figure 1508vs the pattern for
p/g = 3/5. The general case is similar. The lines inside the dots shewature
of the crossing cell. The dashed grid lines in the figure aesqmt to delineate the
structure.

One can think of the index values in the following way. Sweess the plane
from right to left by moving a line of slope-5/3 parallel to itself. (The diagonal
line in Figure 15.3 is one such line.) The indices are ordacabrding to how the
moving line encounters the vertices. The lines we are usingespond to the lines
in I1 that are parallel to the vectgr

1/3 0
/R
N %

-

|-

-7
L -

I

I

|

|
—d_- -

|

I

3/5(

-
-Z -
z

I~

- (515

-
-1
-
-

4/5(]) -

-

L - _L__-__L
|
|
|
L7
-

\

- () 215

° '\
2/3

Figure 15.3: The pattern of crossing cells
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Chapter Sixteen

Proof of the Intersection Lemma

16.1 DISCUSSION OF THE PROOF

One way to prove the Intersection Lemma is just by inspect@ame can play with
Billiard King and see that the result is true. Given the sienpture of the partitions
involved, a falsehood in the lemma would be easily deteethipla small amount
of experimentation.

Rather than just appeal to experimentation, we will expdaproof that involves
finding the intersection patterns of finitely many convetidatpolytopes ilR*. The
proof we give is similar to that presented in previous chaptereviously, e.g., in
§11.1, our method was straightforward. Here there is a ieahoomplication that
we need to address. This chapter is really about dealingthigtcomplication.

Let X(...; A) c R® denote some subset Bf that depends on the paramesfer
For such an object, we define

X = (X5 A) x {A). (16.1)

A

For instance, the seR. (¢1, €2) are exactly the convex polytopes from §6.7.
Let S c R® denote the infinite slab bounded by the plafes: 0} and{z = 1}.
Let

St (e, €2 A) = Tuler, €23 ANS, (16.2)

We include the boundary piecés(...) N 8S. Thus we are including the tops
and bottoms of the parallelogram but not its sides. Figur@ povides a good
impression of what this parallelogram looks like.

The setX} (e1, €2) is contained in a hyperplane Bf. Unfortunately, this set is
not a polyhedron. For instance, the vertices vary quadtftiaith the parameter.
Tgus our method breaks down: We cannot contbles, €2) just by its vertices in
R*™.

The trick is to coverZ(...; A) by 2 quadrilateral®Q1(...; A) andQa(...; A)
whose vertices vary linearly with the parameter. The lineaiation in itself is not
enough to guarantee that the corresponding un@@ts. .) andQ-(. . .) are convex,
but it turns out that these unions are indeed convex intggrighedra. When we
useQ(...) andQz(...) in place ofX(...), we create no new interesections — at
least not in the interiors. Thus], we prove the Intersectiomma for these larger
sets by the same method we used in §11.1. When we are finishedengret the
results in terms of the original sets.
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16.2 COVERING PARALLELOGRAMS

16.2.1 Two Methods

As a first step in making the quadrilateral covering, we dbsaan entirely planar
construction in which we cover a planar parallelogram byQamgles. After we
set up the construction, we will relate it to the Intersatti@mma. The only nod
we give to the Intersection Lemma in this subsection is thaingist on working in
thexz-plane. This is the range of the projectinrwe used in the last chapter.
Let A € (0, 1). Allthe parallelograms we consider have the following pdjes.

« Their bottom side lies in the linfz = 0}.
 Their top side lies in the lingz = 1}.
 Their other sides have slopeA.

All the rectangles we consider always have their sides [gdutal the coordinate
axes.

Figure 16.1 shows a very simple method for coverthwith 2 rectangles. The
gray dot in this figure has second coordinatelt seems easier just to amalgamate
these rectangles into a single one, but we prefer to alwayer tbe parallelograms
with 2 rectangles. This allows us to have more uniform notati

N

Figure 16.1: Covering a parallelogram with a rectangle.

Figure 16.2 shows a different coveringBfwith 2 rectangles.

A
AN

Figure 16.2: Covering a parallelogram with 2 rectangles.

Our geometric construction is determined by the followinfipimation.

1. The gray dot lies on the left edge Bf Thez (meaning second) coordinate
of this dot isA.

2. The line connecting the 2 white dots is parallel to the sifeP.

We will give 4 examples of these constructions in action. \¢etinue working
with the parameteA. The reader will recognize the constants from Lemma 15.8
and its proof. LetP(r, s) denote the parallelogram, as above, such that the bottom
vertices ardr, 0) and(s, 0).
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16.2.2 Example 1

Consider the paralleograf(0, 2A). Using the first method, we covét(0, 2A)
with rectangleQ; andQ,. The vertices of); are

(0,0, (0, A), (2A,0), (2A, A). (16.3)
The vertices 0fQ; are
O, A), 0,1, (2A, A), (2A, 1). (16.4)

Compare item 1 in the proof of Lemma 15.8.

16.2.3 Example 2

LetA = A(—1, —1) = 1 — A%. We coverP(2A — 1, 2A) with 2 rectangle®); and
Q2 using the method above. The coordinateQefare

(=1+2A,0), (=1+2A, A), (2A, 0), (2A, A). (16.5)
The coordinates of), are
-1+ A A), -1+ A1), (2A, A), (2A,1). (16.6)

Compare item 2 in the proof of Lemma 15.8. Note that the coarteis of parallel-
ogramP vary quadratically withA, whereas the coordinates of the rectangles vary
linearly.

16.2.4 Example 3

Leti = A(—1,0) = 14+ 2A — A%, We coverP(2A — /, 2A) with 2 rectangle®;
andQ; using the method above. The coordinateQafare

(=1,0), (=1, A), (2A,0), (2A, A). (16.7)
The coordinates of), are
(=1-A A, (-1-A1), (2A, A), (2A,1). (16.8)

Compare item 3 in the proof of Lemma 15.8.

16.2.5 Example 4

Leti = A(—1,1) = 14+ 4A — A2 We coverP(2A — 1, 2A) with 2 rectangle®;
and Q; using the method above. The coordinateQafare

(=1-2A,0), (=1-2A,A), (2A, 0), (2A, A). (16.9)
The coordinates of), are
(=1-3A,A), (-1-3A,1), (2A, A), (2A,1). (16.10)

Compare item 4 in the proof of Lemma 15.8.
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16.3 PROOF OF STATEMENT 1

The projectionz (X, y,z) = (X, z) is an isomorphism from the plang to the
xz-plane. The inverse map is given by
771(x,2) = (X, A= X, 2). (16.11)

For any pair(e1, €2) considered in the previous section, we def@g (e1, €2; A)
to be the inverse image of the relevant versioQgfconstructed above.

Example: The vertices 00Q, (-1, —1; A) are
(—1-3A,4A+1 A), (-1-3A,4A+1,1), (A —-AA), (A -A1).
Once we make this construction, we have

2
(e e A C | Qe e A). (16.12)
j=1

To find the covering forZ_(...) we simply add the vecto— A, A, 0) to all the
coordinates.

We can easily work out the vertices of the correspondingdedisional polytopes.
We just compute the vertices At= 0 and atA = 1 and take the convex hull. Thus
the vertices 00Q,, . (—1, —1) are

-1 -1 0 0 -4 2
1 1 0 0 5 -1
0 1 0 1 1 1

0 0 0 0 1 1

Working out the remaining 7 polytopes for tlie-) case is similar. Once we
have these, we find the polytopes for {r€) case by adding—1, 1, 0, 0) to all the
vertices. These polytopes are stored in Billiard King.

We use the same method as in §11.1 to show that the 2 polytopes

Qj,+(e1, €2), 7 (Re(e1, €2))

have disjoint interiors for aly € A and all possible choices. This time we need to
use vectors if—2, —1, 0, 1, 1}* to separate out the polytopes. This shows that the
2 regions

$% (€1, €2), 7 (Re(er, €2))

have disjoint interiors for all choices.
There is one last detail to check. Recall tBat R? is the slab between the
planes{z = 0} and{z = 1}. We still have the a priori possibility that the 2 sets

2(..; A*NaIS, R(...; A

are not disjoint for someé\ and some set of choices. In this case, a point in the
interior of the infinite stripZ(...; A) lies in the interior ofR(...; A). But then
some point in the interior oE*(...; A) also lies in the interior oR(...; A). We
have already ruled this out.
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The proof we have given hides the pretty relationships betviiee various sets.
The reader can get a better feel for why the Intersection Lansntrue using the
hexagrid demo in Billiard King.

Here we show some representative images from this demo. Wégdss the pair
(=1, -1) in the (—) case. Figure 16.3 shows the parallelograrn(—1, —1; A)
and the tilingR_ N Z. The slanting lines are part of the parallelogram and so are
the top and bottom of the figure. The top is the ljgze= 1}, and the bottom is the
line {z = 0}. We use the usual planar projection to draw the figures. T¢tamgles
R_(—1, —1; A) are darkly shaded. The rest of the tiling is lightly shadedti¢¢
the exact fit.

l :
-
| B

B |

Figure 16.3: X* (-1, —1; A)andR_(A) for A= p/5. Herep =1, 2, 3, 4.

The picture is similar for other parameters and other clsad@n(e1, €2) pair.
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16.4 PROOF OF STATEMENT 2

Recall that
Ma={x+y=ACcR?

for each parameter. Here we wrifes to emphasize the dependenceAn The
hyperplane

= (Ia x (A)}) (16.13)
A

is perpendicular t@l, 1, 0, —1).

Say that a vector ilR* is positiveif it lies on the same side dfl as the vector
(1,1,1,0). Say that a convex integral polytope Rt is semipositivef all of its
vertices either lie ol or else are positive.

Lemma 16.1 Let Pa be a polyhedron in the orbib R, (e1, €2; A). Let P be the
corresponding polytope. If

Mi(e1, €2 AN P # 0, (16.14)

then P is semipositive.

Proof: Let Xa = I+ (€1, €2; A). By statement 1 of the Intersection LemnXg, is
disjoint from the interior ofP. However,X 4 is not disjoint fromo P,. Moreover,
Xaisanopensetiil . From these properties, we see tRatcannot have vertices
on both sides ofIa. Letxa € P, N Xa. By definitionxa + (s,s,s) € Pa for
smalls. Letx = xa x {A}. Thenx € 6P andx + (s, s,s,0) € P. Thisis possible
only if P has some positive vertices. |

To finish the proof, it is just a matter of listing the semigivs polytopes and
examining the vertices that lie di. Asin §11.1, it suffices to examine a large but
finite part of the orbit. Recall thak is generated by the three elemepisy,, ys.
Let Ao C A be the set

A1o = {a1y1 + azy2 + agys| |aul, |azl, |as| < 10}. (16.15)

An argumentsimilar to thatin Lemma 11.1 shows that any s&etion of the kind in
Equation 16.14 foP € AR is equivalentmod\ to an intersection with® € A;gR.

Examining all the vertices of these finitely many polytopes, find that the
intersection points of

I (-1,1 AN AR, (-1, 1; A)

are all equivalent mod to (0, A, 0) € 611,.(0, 2A), and moreover that there are no
intersection points in the other cases. This establishésment 2 of the Intersection
Lemma.
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16.5 PROOF OF STATEMENT 3

We prove statement 3 by the same method that we used for sat@minspecting
the vertices, we find exactly the pattern shown in Figure 1B&ther than dwell on
this calculation, we show some figures from Billiard King.flbe

n% =1a+27%1,1,1). (16.16)

This is a slightly perturbed plane.

In Figure 16.4, we fix the parametér = 1/3 and we plot the intersection of
1® with the tiling fork = 3, 4, 5, 6. The lightly shaded rectangles correspond to
the label(0, 1). The darkly shaded rectangles correspond to the lgb®l0). The
figure evidently converges to what we have on the left harelafidFigure 15.1. The
right hand side of Figure 15.1 is similar.

Figure 16.4: Perturbed slices.
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In Figure 16.5, we keeg = 5 and show the parametefs = p/5 for p =
1,2, 3, 4. The detail outside the parallelogram, though intergsimirrelevant for
our purposes.

Figure 16.5: Perturbed slices.
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Part 4. Period-Copying Theorems

In this part of the book, we will establish some results oriquecopying. Our

efforts culminate in the proof of Theorem 4.2, the final reseleded for the proof
of the Erratic Orbits Theorem. In Parts 5 and 6 we will use sofitiee other results
we prove in this part.

In Chapter 17, we prove some results about Diophantinecxppation.

There are two main topics. The first is an analysis of the iofeand su-

perior sequences from Chapter 4, including a proof of theeBapSequence
Lemma. The second is the analysis of a device we callDiophantine

constant We introduce the Diophantine constantin 8§17.4 and it péanyisn-

portant role in our subsequent results. The reader inedtestly in Lemma
4.3 can skip everything in this chapter except §17.4.

In Chapter 18, we prove the Diophantine Lemma. This resuté source
of most of our period-copying results. As a quick applicatiwwe use the
Diophantine Lemma to prove Lemma 4.3, the final ingrediettiéproof of
the Erratic Orbits Theorem for almost every parameter. Hagler who is
satisfied with the Erratic Orbits Theorem for almost evemapgeter can stop
reading the book after this chapter.

In Chapter 19, we state and prove the Decomposition TheoFéis theorem
is an enhancement of the Room Lemma in 83.3. Our proof of tteoibe
position Theorem is somewhat more tedious than we would tikeit turns
out that Theorem 4.2 requires only a part of the Decompasitteeorem that
is easier to prove. When the time comes, we will indicate vil\aecessary
and what is not. We do need the full Decomposition Theorenotwrwork
in Parts 5 and 6, however.

In Chapter 20, we prove Theorem 4.2 by combining the Diogihah.emma
and the Decomposition Theorem.
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Chapter Seventeen

Diophantine Approximation

17.1 EXISTENCE OF THE INFERIOR SEQUENCE

We will describe a hyperbolic geometry construction of tifeiior sequence defined
in 84.1. Our proof is similar to that for ordinary continueddtions. SeeBKS].
Also, see Be] for background on hyperbolic geometry, aridd] for the classic
theory of continued fractions.

Our model for the hyperbolic plane is the upper half-plaffec C. The group
SL,(R) acts isometrically by linear fractional transformatiofite geodesics are
vertical rays or semicircles centered Bn The Farey graphis a tiling of H? by
ideal triangles. We joirp;/q; and p2/d2 by a geodesic iff p1gz — p201| = 1. The
resulting graph divides the hyperbolic plane into an infisigmmetric union of ideal
geodesic triangles. The Farey graph is one of the most lhelaeoinstructions in
mathematics. Figure 17.1 shows some of the edges of the §aply. The vertical
lines in Figure 17.1 represent geodesics connecting 0 aodd. t

Figure 17.1: The Farey graph.

We modify the Farey graph by erasing all the geodesics thntextt even fractions
toeach other. InFigure 17.1 these geodesics are shownyinigraremaining edges
partitionH? into an infinite union of ideal squares. T2 oo, co)-triangle group
mentioned in Theorem 1.5 is the full isometry group of theelygraph that respects
the shadings in Figure 17.1.
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We say that dasic squards one of these squares that has all vertices in the
interval (0, 1). Each basic square has two opposing vertices that are dabigjl
positive odd rational;/g; and pz/dz2. These odd rationals satisfy

|P102 — P20i| = 2. (17.1)

Ordering so that;; < gy, we call p1/q; the headof the square, an@,/q, thetail
of the square. We draw an arrow in each odd square that poimsthe tail to the
head, as imp1/q1 < p2/0.. We call the odd squanéght-biasedif the rightmost
vertex is an odd rational, arldft-biasedif the leftmost vertex is an odd rational.
Figure 17.2 shows a prototypical right-biased ideal square

/

0/1 1/3 1/2 1/1

Figure 17.2: A right-biased ideal square.

The general form of a right-biased square is

a 281 + ap a+ a a
— —. 17.2
by’ *20; + by b1+ by’ b2 (17.2)

The general form of a left-biased square is

a Oal+az .a1+2a2 22
b’ by + by’ by + 2by’ b,

(17.3)

The rightmost vertex in a right-biased square is the hea@. |@itmost vertex in a
left-biased square is the head.

For an irrational parametek, we simply drop the vertical line down fromo
to A and record the sequence of basic squares we encounter. riidHerinferior
sequence, we list the heads of the encountered squares a&audonerepeaters.
Every time we encounter a new rational on our list, this ral@nd its predecessor
are the two odd vertices of an ideal square. The nesting piep®f the squares
guarantee convergence.
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17.2 STRUCTURE OF THE INFERIOR SEQUENCE

Now suppose thatp,/qs} is the inferior sequence approximatidg Referring to
Equation 4.1, we writé\, = pn/dn and(An)+ = (pn)+/(Gn)+- We have

(An)- < An < (An)+, (17.4)

and these numbers form 3 vertices of an ideal squages the tail of the square.

Lemma 17.1 The following are true for all indices m.
1. Let N> m. Then -1 < Aq iff Am—1 < An.
2. If An—1 < Am, then(dm)- = dm-1 + (Gm)+-
3. If An-1 > Am, then(Gm)+ = dm-1 + (Gm)--
4. Either An < A < (Am)y or (Am)- < A < An.

Proof: Statement 1 follows from the nesting properties of the idgabres encoun-
tered by the vertical geodesicas it converges té\.
For statement 2, note th#{,,_; < Ay iff these two rationals participate in a
left-biased basic square, which happengdff). < (dm)—. By definition,
Om-1 = [(Om)- — (Om)+|-

When(gm)+ < (gm)-, we can simply remove the absolute value symbol and solve
for (qm)—. statement 3 is similar.

For statement 4, we will consider the case wign < An_1. The other case is
similar. At some pointy encounters the basic square with vertices

(Am)- < Am < (Am)+ < Am-1.
If Ami1 < Am, theny exits Sbetween(An)- and An. So,
(Am)- < A < An.

If Anr1 > Am, theny exits Sto the right of Ap,. If y exits Sto the right of(An)+,
theny next encounters a basic squ&avith vertices

(Am)+ < O < E < An-1,

whereO andE are odd and even rationals, respectively. But tAgnvould not be
the term in the sequence aft&,_;. The term afterA,_; would lie in the interval
[O, An-1). This is a contradiction. O

Let [x] denote the floor ok. Letd, be as in Equation 4.5. That s,

%:[%“} N=0,1,23..

20
Relatedly, define

%:[%”} N=0,1,23.. (17.5)
On
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Now we come to our main technical result about inferior seges. This result
is similar to results one sees for the successive terms diincau fraction approx-
imants. Seel)a]. Before we give the result, we make several clarifying réma
about it.

Remarks:

(i) In the result below, the notatioAn—1 < Am > Amni1 means thaAy_1 < An
andAn > Amy1, and similarly for the other lines.

(ii) There is a basic symmetry in the result below. If we swhjin@qualities, then

the signg+) and(—) all switch. This symmetry swaps cases 1 and 3 and likewise
swaps cases 2 and 4.

(iii) The same results hold fgp in place ofq. We usedj just for notational conve-
nience.

Lemma 17.2 The following are true for any index m 1.

* Jn is odd,

* (Om)+ < (@m)-,

* (Om+1)+ = AmOm + (Gm)+,

* (Om+1)- = (Am + 1)0m + (Om)+-
2. If Am—1 > Am < Amy1, then

* JOmis even,

* (Om)- < (@m)+,

* (m+1)+ = dmOm — (Gm)-,

* (Omt1)— = AmQOm + (Gm)+-
3. If A1 > Am > Amya, then

* Jm is odd,
* (Om)- < @m)+,
* (Om+1)+ = (Am + 1)0m + (Om)-,
* (Omt1)— = AmQm + (Gm)-.
4. If An_1 < Am > A, then

* Jn is even,

* (@m)+ < (@m)-,

* (Om+1)+ = dmOm + (Am) -,
* (Am+1)- = dmOm — (Gm)+-
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Proof: Cases 3 and 4 follow from cases 1 and 2 by symmetry. We willidens
case 1 in detail, and case 2 briefly at the end.

In case 1, the vertical geodesicto A passes through the basic squ&reith
vertices

Am-1 < (Am)- < Am < (Am)+.
SinceA, < Amy1, the geodesig next crosses through the geodesicconnecting
Anm t0 (Anm)+. Following this,y encounters the basic squagsork =0, 1, 2, ...

until it crosses a geodesic that does not hAygas a left endpoint. By Equation
17.3 and induction, we get the following list of vertices the square,.

P KEDpnt () K Dpm+ 2Pm)s _ KBok (P ()4

Om  (K+D0m+ @m)+  (ZK+D)Gm+2(Gm)+ KO + (Gm)+
Here§ is a left-biased square. But then there is sdnsech that

Pm+1 _ (2k + 1) pm + 2(pm)+ (Pm+1)+ _ Kpm + (Pm)+ 17.7)
Om+1 (2k + 1)Gm + 2(Gm)+ (Om+1)+ KOm + (Om)+
Since(qm)+ < (Om)-, we have
2(m)+ < Om. (17.8)
But then we have
Pt _ Pm _ 22 e( 2 2 ) (17.9)
Omit Om (K4 103 +20m(@Om)+  \(2Zk+ 203" (2K + 1)Om

Hence
om=(2k+1)=1 mod 2

Herek = dn. This takes care of the second implication. Equation 17 thés
formula for (Qmy1)+. Lemma 17.1 now gives the formula f@m.1)—.

In case 2, the vertical geodesicagain encounters the basic squ8rerhis time
y exits S through the geodesic joinin@Am)_ to An. This fact follows from the
inequality

Am > An_1 > (Am)-,

a result of Lemma 17.1. Following thig, encounters the basic squargs for
k=0,1,2,..untilit crosses a geodesic that does not hayeas a right endpoint.
The coordinates for the vertices §f are just like those in Equation 17.7, except
that all the terms have been reversed and €3g¢hs switched ta(-)_. The rest of
the proof is similar. ]

Remark: Animportant corollary of Lemma 17.2 is that either of thddeling data
determines the inferior sequence uniquely.

» The sequencgjy}.
* The sequencfl,} and the sequende,}, whereay, is the sign ofAn 1 — Ay.

The sequencéd,} in itself does not have enough information to determine the
inferior sequence uniquely.
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17.3 EXISTENCE OF THE SUPERIOR SEQUENCE

The following result completes the proof of the Superiori8stge Lemma.

Lemma 17.3 dy, > 1infinitely often.

Proof: We can sort the indices of the sequence into 4 types, depgodimvhich
case holds in Lemma 17.2. If this lemma is false, theventually has odd type.
But it is impossible fom to have type 1 and fon + 1 to have type 3. Hence
eventually has constant type, say type 1. (The type 3 casa $iaslar treatment.)
Looking at the formula in case 1 of Lemma 17.2, we see thatehaencd(qn), }
eventually is constant. But then

r = lim (On)+Pn
n—oo qn

exists. Since

(Gn)+ Pn = —1 mod g,

On — oo, we must have € Z. But then limp,/g, € Q, and we have a contradic-
tion. O

Lemma 17.4 Ifdy, > 1, then

Pyv_Pml 2 N, ‘A—@< 2
dma3,

ON  Om Om| = dma3’

Proof: The first conclusion implies the second. We will considerdhse when
Anm < Ams1. By Lemma 17.1, we have

1

AN — Anl < (A —Ap=—.
| N m| > |( m+1)+ m| CIm(CIm+1)+

(17.10)

If mis an index of type 1, then

(m+1)+ = dmOm + (Om)+ > dmQm. (17.11)
If mis an index of type 2, then Lemma 17.2 tells us that

1 1
(Om+1)+ = (Gm+1)— — Gm = dmOm + (Om)+ — Om > (dm - _)Qm > Edem-

2
(17.12)
Combining Equations 17.10-17.12 we obtain the result. O

Remark: The superior sequence has Diophantine approximation giepsimilar
to those of the sequence of continued fraction approximakithile these two
sequences are related, they are generally not the samené&dthiag, the superior
sequence involves only odd rationals. We can, for exametéinly find irrationals
whose sequence of continued fraction approximants cergdfisinly even rationals.
In this case, the two sequences are forced to be different.
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17.4 THE DIOPHANTINE CONSTANT

17.4.1 Basic Definition

We have two odd rationals; = p;/gq1 andA; = py/d2. We define the real number
a = a(A;, Ay) by the formula

2
L —— (17.13)
01 (07) aql
We call(Az, Az) admissibléf a(Ag, Az) > 1.
Define
a= B+ oy (17.14)
1
If Ay < Ay, we define
Q =floor((a/2) — A1) + 1+ 41. (17.15)
If Ay > Ay, we define
Q =floor((a/2) + 21) + 1 — A1. (17.16)

Remark: The only fact relevant for Lemma 4.3 is theat> 4 implies thatQ > 2.
The reader who cares mainly about Lemma 4.3 can skip thefréssa@hapter.
17.4.2 Meaning of the Constant

Let [x] denote the floor ok. We say that an integer is goodif
[uAd] = [nAs]. (17.17)

Our next result is meant to apply whéA;, A) is admissible. Also, we consider
the case wherd; < A,.

Lemma 17.5 (Goodness)f u € (—q1, Qqp) N Z, thenu is a good integer.
We will prove this result in two steps.

Lemma 17.6 If u € (—q, 0), theny is good.

Proof: Sinceq; is odd, we have unique integef@andM such that

uAL= M+ (j/m), ljl < /2 (17.18)
By hypothesesa > 1. Hence

1Az — Aq| < 2/0F (17.19)
in all cases. If this result is false, then there is some mtéysuch that
wA2 < N < uhAs. (17.20)
Referring to Equation 17.18, we have
j 2 2
m<,uA1—N§,uA1—,uA2<|—'u2|<—. (17.21)

01 a1 O
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If | =0, thenq; dividesu, which is impossible. Hencg| = 1. If j = —1, then
1A is 1/q; less than an integer. Henge®; — N > (g1 — 1)/q;. This is false, so
we must havg = 1.

From the definition oft;, we have the following implication.

#€ (0,0 and upi=1 moda = U= —210.
(17.22)
Equation 17.18 implies
M—F)l — i e Z.
1 1

But thenup; = 1 modq;. Equation 17.22 now tells us that= —/110;. Hence
|u| < q1/2. But now Equation 17.21 is twice as strong and giyés= 0. Thisis a
contradiction. O

Lemma 17.7 If u € (0, Qq), theny is good.

Proof: We observe tha® < a, by Equation 17.15. If this result is false, then there
is some integeN suchthaiuA; < N < u Ay If wAy = N, thenq dividesu. But
then

U =02 >at > Q.
This is a contradiction. Hence

,uA]_ <N < ,qu. (17.23)
Referring to Equation 17.18, we have
[l 2u 2
—<N-uA<pu(Ae—A)=—" < —. (17.24)
01 agf G

Suppose that € {0, 1} in Equation 17.18. Then

1 1
1——§N—/1A1§/1A2—/1A1<—,

a1 Qu
a contradiction. Hencg = —1. Henceu > aq;/2.
Sincej = —1, Equation 17.18 now tells us thap; + 1 = 0 moddq;. But then
1= Ko + (d1)+ (17.25)

for somek € Z. On the other hand, from Equation 17.15 and the factghatQq;,
we have

w<Ko+ @)y, K= (ﬂoor((a/z) — 1)+ 1). (17.26)
Comparing the last two equations, we h&ve k' — 1. Hence
k < (ﬂoor((a/z) - /11)). (17.27)
Therefore

u< (floor((a/Z) - il))ql + A10p < agp/2.
But we have already shown that> aq;/2. This is a contradiction. O
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17.5 A STRUCTURAL RESULT

Now we will explain how the Diophantine constant interactthwhe inferior se-
quence we defined above. L&t= p/q be an odd rational. We say thatis anear
predecessoof Aif A’ precededA in the inferior sequence but does not precede the
superior predecessor & The inferior and superior predecessorg\adre the two
extreme examples of near predecessora.dflere is a nice characterization of the
Diophantine constant for these pairs of rationals.

Lemma 17.8 If A’ is a near predecessor of A, then the following are true.
1. If A < A thenQq' =g + Q4.
2. If A > A, thenQq' =q +q-.

Proof: There is a finite chain
A=A - -« An=A. (17.28)
Referring to Equation 4.5, we have
d]_ZO, d2=---=dm_1=0.
By Lemma 17.1A; < Az iff A’ < A. We will consider the case whely, < A;.
The other case is similar. Recall that

2 a q,
A—A = , Q=floor(=—1)+1+21, L=t (17.29
a(@)? (2 ) q’ ( )

Hence
Q' =q(N+1)+q,, N = floor((a/2) — 2). (17.30)
There are two cases to consider, depending on whéthisrodd or even. Here
d1 is as in Equation 17.5. W, is odd, then we have case 1 of Lemma 17.2. In this
case, we will show below thak = N. By case 1 of Lemma 17.2, we have
(2)4 = dis + ()4 = N + (o) + (17.31)
If J, is even, then we show below théit = N + 1. By case 2 of Lemma 17.2, we
have
(O2)4 = di0 — (1)— = (1 — 1)1 + g4 = Nag + (1) +- (17.32)
We obtain the same result in both cases.
Repeated applications of Lemma 17.2, case 1, give us

0 = (Om)+ = ... = (R)+ =
Ng +d, =
(N+1g' - +d, =
Qq —d.
Rearranging this gives statement 1. ]

We have some unfinished business from the previous resuibése, we define
a a
A== N =floor{ - — 1 17.33
3 (5-4) (17.33)
Also, the sequencds,} and{d,} are as in Lemma 17.2.
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Lemma 17.9 If Ay < Ay andJd; is odd, then g = N.

Proof: Rearrangingthe basic definitionafA’, A) and usingA’ = A; andA = An,
in Equation 17.28, we have

a 1
2 flAL— Anl’
By Lemma 17.1 and monotonicity, we have
1 a 1
dilAr— (Al 2 qflAL— Ay
After some basic algebra, we have
(R)+ @ @
di+ 41 =" - < —. 17.35
1A 01 27 201 ( )
The starred inequality is case 1 of Lemma 17.2. The lower bagives us
di < (a/2) — 11 (17.36)

Here l, is the same a$ in Equation 17.29. Sincéy € Z, we obtaind; < N. On
the other hand, the upper bound gives us

a
N = floor(z - /11) < roor(zq—qz1 - 11) < di. (17.37)
In short,N < d;. Combining the two halves give$ = d;. O

Lemma 17.101f A; < A, andd; is even, thend= N + 1.

Proof: The proof is very similar to that for the other case. Here weatine the
2 changes. The first change is ttidt — 1) + 1, occurs on the left hand side of
Equation 17.35, by case 2 of Lemma 17.2. This gives us

di < N+1.

The second change occurs on the right hand side of Equati@.1By case 2 of
Lemma 17.2, we know that flotm,/q;) is even. Hencejp/(2q;) has a fractional
part less than /2. But, also by case 2 of Lemma 17.2, has a fractional part
greater than 2. Hence

roor(ﬂ - 11) = floor(i) —-1<d; -1
201 20m

This gives us the bound < d; —1, orN +1 < d;. Putting the two halves together,
we haved; = N + 1. O
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Chapter Eighteen

The Diophantine Lemma

18.1 THREE LINEAR FUNCTIONALS

Let p/q be an odd rational.
Consider the following linear functionals.

F(m,n) = (ap,l) (M, n). (18.1)
_(a-p -29)
G(m,n) = (—p+q’ —p+q) (m, n). (18.2)
_ (—pP*+4pg+q? 2q(q—p)),
H(m, n)_( DT (pra)? (m, n). (18.3)

We haveF = (1/2)M, whereM is the fundamental map from Equation 2.10.
We can understan@ andH by evaluating them on a basis.

q2
H(V) = G(V) = q; H(W) = —G(W) = : 18.4
(V) =G(V)=q (W) (W) D1 q (18.4)

HereV = (q, — p) andW are the vectors from Equation 3.2. We can also understand
G by evaluating on a simpler basis.

G(g,—p) =0q; G(-1,-1) =1 (18.5)

We can also (further) relat& and H to the hexagrid in Chapter 3. A direct
calculation establishes the following result.

Lemma 18.1 The fibers of G are parallel to the top left edge of the arithmet
kite. The fibers of H are parallel to the top right edge of th#hametic kite. Also,
VGl < 3and|[VH| < 3.

HereV is the gradient.
Given any interval , define

A(l) = {(m,n)] G(m,n), H(m,n) € I} N {(m, n)| F(m, n) > 0}. (18.6)

This set is a triangle whose bottom edge is the baseliig pfq).
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18.2 THE MAIN RESULT

Lemma 18.2 (Diophantine) Let (A3, Az) be an admissible pair of odd rationals.
LIfA < A letl =[—a1+ 2, Qo — 2].
2. If Ay > A letl =[—Qa1 + 2,01 — 2].

Thenl'; andT agree onA1(1) U Ax(l).

Figure 18.1illustrates our resultféq = 7/25andA, = 11/39. We have plotted
the arithmetic graphs for both parameters and then supesegthem. The “lines”
that stick out in the figure are the places where the graplagdie. These “lines”
are essentially parallel to the lines of the hexagrid fanesitgraph. (For the two
graphs, the respective hexagrid lines are nearly paralkedth other on account of
the nearness of the two rationals involved.) The shadedmagiA;(—q;, Qqy), a
set very slightly larger than(1). The setsA;(1) andA,(1) are almost identical.

Figure 18.1: The Diophantine Lemma for/25 and 1¥39.
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18.3 A QUICK APPLICATION

Here we use the Diophantine Lemma to prove Lemma 4.3. Thigplas our
proof of the Erratic Orbits Theorem for almost every paranets we indicated in
Part 1. The reader who is satisfied with this result can staging the book at the
end of this chapter.

We will prove Lemma 4.3 wheA; < A,. The other case is similar. By hypoth-
esis, we have

a(Ag, Ap) > 4. (18.7)
From Equation 17.15, we get
Q> 2 (18.8)
Let Ry = R(A;) be the parallelogram from the Room Lemma. Let
u=W, w=V,+W (18.9)

denote the top left and right vertices Bf. We compute

i > —Q1+2, Hi(w) = % +oq1 <QQr—2
P1+ 01 P1+ 01
(18.10)

The inequalities hold ongg; is sufficiently large. Given the description of the fibers
of G, we have

Gi(u) = -

Gu) < G() < H(@®) < H(w), Yo € Ry. (18.112)

The middle inequality uses the fact thafo) > 0. In short, we have made the
extremal calculations. This calculation shows that A;(l) forallv € R;. The
Diophantine Lemma now shows thigt andT", agree inR;.

Whenvo lies in the bottom edge dRr;, we have

Gi(v), Hi(v) € [0, qa] - (18.12)
Given the gradient boundd/G;| < 3 and| VHj| < 3, we see that
G1(v), Hi(v) € [-01 + 2, Qo + 2], (18.13)

provided thab is within q;/4 of the bottom edge dR;. Hencel'; andI'; agree in
theq:/4 neighborhood of the bottom edgeR{.

By the Room Lemma],“% C Ry Hencel“% c TI',. The calculation involving the
bottom edge oR; shows thaﬂ“%ﬁ c I'; for e = 1/4. Since the right endpoint of
I} is far to the right of any point ofii™, we havel';* c T3, as desired.

Remark: We proved Lemma 4.3 fotr = 1/4 rather thane = 1/8, which is
what we originally claimed. We do not care about the value af long as it is
positive.
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18.4 PROOF OF THE DIOPHANTINE LEMMA

We will establish the case whely < A;. The other case has a nearly identical
proof. Recall that an integer is good if

[nA] = [nA2] (18.14)

We call ¢ 1-goodif u + € is good for alle € {—1,0,1}. We can subject a
lattice point(m, n) to the reduction algorithm in §6.6. Fére {1, 2}, we perform
the algorithm relative to the paramet&s. This produces integeb$y, Yy, andZ,.
Below we prove the following result.

Lemma 18.3 (Agreement)Suppose, for at least one choicedo€ {1, 2}, that the
following numbers are afl-good.

°m

e m— Xy
m-Yy

e m+Yy — Xp.

Thenl'; andT, agree at(m, n).
Next, we prove the following result.

Lemma 18.4 (Good Integer) If (m,n) € A1(l) U Ax(l), then the integers in the
Agreement Lemma all lie i6—qg; + 1, Qq; — 1) for at least1 choice ofd € {1, 2}.

By the Goodness Lemma in §17.4, all the numbers in the Agrathsenma are
1-good. The Diophantine Lemma now follows immediately.

Remarks:

(i) As one can see in Figure 18.1, the Diophantine Lemma almd&svfor points
below the baseline. One can give a proof for points below #seline that is nearly
identical to the proof we give for points above the baselifve.have stated only the
“above” case because the restriction makes our argumeneadier and this is the
only case we need for applications. In light of the symmaetsuits we established
in 812.3 and §12.4, the fact that the result holds symméiyriahove and below the
baseline should not be surprising.

(i) As one can see from Figure 18.1, the Diophantine Lemntuite sharp. We
think that the sharp version runs as follows. The two aritticgaphs agree at any
pointin A1(—0qz, Qqp) thatis not adjacent to a point that lies outsidg —q;, Qqy).
The slight fudging of the boundaries is an artifact of ourgsraOur proof of the
Decomposition Theorem in Chapter 19 would go easier if wethagharp version
of the Diophantine Lemma at our disposal, but the result veeehere is the best
we can do.
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18.5 PROOF OF THE AGREEMENT LEMMA

Lemma 18.5 Lety, v, Nj € Z and
,uAj—I-U
Nj=|—"].
. [1+ A }

Suppose there is sorle= {1, 2} such that both: — Ny andu — Ny + 1 are good.
Then N = Na.

Proof: Here[ ]isthe floor function, as above. Forthe sake of comttamh, assume
without loss of generality. thadl; < N,. Then

UAL+v < No(Ar+ 1), (t = N2)AL < N2 —v

No(Az+ 1) < uPo+v, N2 —v < (u — Np)As.

The first equation implies the second in each case. The setand imply that
« — Nz is not good. On the other hand, we have

,uAl—i—v<(N1—|—1)(A1+1), Al(m—N1—|—1)<N1+1—n.

(N1 + DA+ A < uAsr+v, Ao(m— N +1) >Ny —1+n.
The first equation implies the second in each case. The setand imply that
« — N; + 1is not good. Now we have a contradiction. o

Corollary 18.6 Referring to the Agreement LemntX, Y1, Z1) = (X2, Y2, Z3).

Proof: We apply the reduction algorithm from 86.6. We focus on the case,
indicating the small differences for tlie-) case as we go along.

1. Leth = A,-m+ n.

2. LetZ; = floor(zj). Sincem is good, we hav&Z; = Z,. Call this common
integerZ.

3.y, =2+ Z; =2z; + Z. Hencey; = mA; + n’ for somen’ € Z. [We have
yi =2zj + Z + linthe(+) case.]

4. Recall thaty; = floor(y; /(1 + A)). To see thal; = Y, we apply Lemma
18.5 to(u,v, Nj) = (m,n’,Y;j). Here we use the fact thah — Y, and
m— Yy + 1 are good. We seét = Y; = Y. [We apply Lemma 18.5 to
(«,v, Nj) = (m,n" +1,Y;) in the(+) case.]

5. Letxj =y; —Y(1— Aj) — 1. Hencex; = (m+ Y)A; +n”.

6. Recall thaiX; = floor(x;/(1+ A)). To see thaX; = X,, we apply Lemma
18.5to(u, v, Nj) = (m+Y,n”, X;). Here we use the fact that+ Y — Xy
andm+Y — Xy + 1 are good integers. o
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In the next result, all quantities excefst and A; are integers.

Lemma 18.7 If u — dN — ¢; is good, then the statement
(,uAj +v) — N(dAj +1) <eAj+e
is true or false independent of 1, 2.

Proof: Assume without loss of generality. that the statement stonj = 1 and
false forj = 2. Then

(lu—dN—Gl)Al <e+N-—-v< (,u—dN—Gl)Ag,
a contradiction. O

Let M, andM_ be asin §6.6. By the Master Picture Theorem, it suffices tavsho
that the two image#, (m, n) andM_(m, n) land in the same polyhedra for both
A; and A;,. We have already seen that the basic integ&sY, Z) are the same
relative to both parameters. Here we recall the planes friem. §

e Z,theunionz=0lU{z=AlU{z=1- AlU{z=1}.
e Y, theunionly=0u{y=AlU{y=1U{y=1+ A}.
e X,theunionix =0U{x=AlU{x=1U{x=1+ A}.
e T,theunionx+y—z= A+ j}forj=-2,1,0,21.

Letting S stand for one of these partitions, we say tiads goodif, for both sign
choices and both parameters, the polts(m, n) land in the same component of
R. — S. Here we seR. = R3/A, the domain of the maphl... By the Master
Picture Theoreml'; andT", agree aim, n), provided all the partitions are good.
The proof works the same for ti{g-) and the(—) cases.

* For Z, we apply Lemma 18.7 t@u, v, d, N) = (m, n, 0, Z) to show that the
statemeng; — Z < e1Aj + ez is truly independent of for e; € {—1,0, 1}
ande; € {0, 1}. The relevant good integers are— 1 andm andm + 1.

e ForY, we apply Lemma 18.7 tGu, v, d, N) = (m, ', 1, Y) to show that the
statemeng; — Z < e1Aj + e is truly independent of for ¢; € {0, 1} and
€2 € {0, 1}. The relevant good integers are— Y andm —Y — 1.

e For X, we apply Lemma 18.7 t@u,v,d, N) = (m+ Y,n”, 1 X). The
relevant good integersame+ Y — X andm+Y — X — 1.

» For7, we define
oj =X = XA+ AN+ = YA+ A)) = (7= D).
We haves; = (m— X)A; 4+ n” for somen” € Z. Leth € Z be arbitrary.
To see that the statemesit < A; + h is truly independent of, we apply
Lemma 18.7 tqu, v,d, N) = (m— X, n"”, 1, 0). The relevant good integer
ism— X —1.
Remark: Our proof does not use the fact that— X + 1 is a good integer. This
technical detail is relevant for Lemma 18.10.
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18.6 PROOF OF THE GOOD INTEGER LEMMA

We will assume thatm, n) € Ay (1), for one of the two choice® € {1, 2}. Herel
is as in the Diophantine Lemma. Our proof works the samé fer1 andd = 2.
We setp = py andqg = ¢, etc.

We will show that all the integers that arise in our proof ofilrea 18.3 lie in
(—a1, Qq1). These integers have the folh+ ¢ for e € {—1, 0, 1}. We will show,
for all relevant integers (except one), théte J: = (—q1 + 1, Qg1 — 1). For the
exceptional case, see the remark following Lemma 18.10.

Lemma 18.8 me J.

Proof: We havez = Am+ n > 0. We compute

— 2<G =m-— . 18.15
h+2<G(mn)=m TTA=M ( )

2z(1- A
Qg —2>H = _— 18.16
—2>H(mn)=m+ arae > ( )
These inequalities establish thate J. |

Lemmal8.9m-Y e J.

Proof: We haveY > 0. Hencem —Y < m < Qq; — 2. We just need the lower
bound and worry about the lower boundmnr- Y. We first deal with the algorithm
in 86.6 for the(—) case. LetG = G(m,n). We havey = z+ Z < 2z. By the
definition of Y, we have

vy Y . 2 y < 22 (18.17)

1+A~1+A 1+ A

At least one of the first two inequalities is sharp. This givethe second inequality.
Now we know that

2z
m—-Y>m——=G>— 2. 18.18
T TEAT AT (18.18)
The last equality comes from Equation 18.15. In¢ie¢ case, we add 1 t8, giving
m-Y > —q + 1. O

Lemma 18.10m— X € J U {Qq; — 1}.

Proof: The condition thaf (m, n) > 0 implies thaty > Y > 0. Hence
X=y—-YQ1-A)-1le[-1,y—-1]. (18.19)
HenceX € [-1,Y — 1]. Hence
m—Xe[m-Y+1m+1]c JU{Qaq: — 1},
by the two previous results. |

Remark: As we remarked at the end of the proof of Lemma 18.3, the imtege
m — X 4 1 does not arise in our proof of Lemma 18.3. The relevant argg — X
andm — X — 1 are good, by the result above.
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Lemmal8.11m+Y — X e J.

Proof: Our proof works the same in th{g-) and(—) cases. Lemma 18.10 gives us
Y — X > 0. Hence

m+Y—-X>m>—-q+1

This takes care of the lower bound. Now we treat the upper ¢howe have

Y:ﬂOOI’( y )<L 1—|—X=f|oor(1+i)2 X

1+A) "1+ A 1+ A 1+A
Hence

Y-X-1<
y—X 1

1+ A
1

1-A <
1+AT 1A
1-A 1

2z =2

A1A2 T1¥A

*

H-—m+

<
1+A

H-m+1

The first equality comes from Equation 18.19. The secondlgguames from
Equation 18.16. The starred inequality comes from the uppand in Equation
18.17. Addingm to both sides, we have

m+Y-X<H+1<Qq -1

This completes the proof. |
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Chapter Nineteen

The Decomposition Theorem

19.1 THE MAIN RESULT

The Room Lemma confines one period@f/q) to a certain parallelograf(p/q)
whenp/q is odd. In this section we explain a sharper result, along#mee lines,
that confines one period &f(p/q) to a union of two parallelograms. The reader
might want to glance at Figure 19.1 before reading the dafirstthat follow.

Given an odd rational = p/q, we construct the even rationals. = p+/0+.
We let A’ be the inferior predecessor &Af and we letA* be the superior predecessor,
as in 84.1. For each rational, we use Equation 3.2 to condtiecorresponding
V andW vectors. For instancd/, = (qy, —p-) andV. = (Q., —p.). Now we
define the following lines.

* L, is the line parallel to/ and containing/V.

» L isthe line parallel to/ and containing/V*.

» L™ is the line parallel to/ through(0, 0).

« L¢ is the line parallel taV through(0, 0).

* If g+ > g, thenL7 is the line parallel toV through—V_.
« If g4 < g, thenL7 is the line parallel toV through+V;.
« If g4 > g, thenL3 is the line parallel toV through+V;.

* If g+ < g, thenL] is the line parallel toN through—V._.

The lines with the(—) superscript have negative slope, and the lines with(4he
superscript have positive slope. All tike) lines are parallel to each other, and all
the(+) lines are parallel to each other. Now we define the followiagfielograms:

* Ry is the parallelogram bounded by andL; andL{ andL.
* R is the parallelogram bounded lhy andLy andLd andL3.

The parallelogranR; is the larger of the two parallelograms. It is both wider
and taller. Note that translation By carries the leftmost edge &; U R; to the
rightmost edge.

Here is the main result of this chapter.
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Theorem 19.1 (Decomposition)R; U R, contains a period of .

Figure 19.1: T'(29/69) and R1(29/69) and R»(29/69).

Figure 19.1 shows the example= 29/69. In this case,
A_ = 21/50, A; =8/19, A = A*=13/3L
Sinceq; < g-, the smallemR; lies to the right of the origin. The ratio between the
heights of the two parallelogramsds/q = 31/69. The ratio between the widths
isqy/0- = 19/50.
We would like to point out two features of this figure.

» The containment is very efficient. Notice that we canno#othe tops of the
parallelograms at all and still contain the polygonal arc.

e The arcslI' N Ry andT" N R, have approximate bilateral symmetry. This is
another indication that the decomposition is somehow ciaabrT he results
in 8§12.4 explain this near-bilateral symmetry.

The interested reader can see the same phenomena for angro#iksh odd rational
using Billiard King.



book April 3, 2009

THE DECOMPOSITION THEOREM 173

19.2 A COMPARISON

The Room Lemma has two purposes. One purpose is to showégrahh™ (p/q)
rises upO(q) units away from the baseline. The second purpose is to cotfiine
graphI'(p/q) to a small region in the plane. As we saw in the proof of Lemn3a 4.
such a confinement result is necessary if we want to use theh@rdine Lemma.
The Diophantine Lemma shows that a pair of arithmetic gragfiee in a certain
region, and we must know that the portions of the graphs efést to us actually
lie in these regions.

Figure 19.2: Two results compared.

It turns out that the Room Lemma is not a sufficiently strorguheto give us
the period copying we need in the general case. Figure 182rdtes what we
are talking about. Both parts show the regianfrom the Diophantine Lemma
corresponding to the pair of rationals/BIL < 23/65. The top also shows the
region from the Decomposition Theorem. This region liesrelytinside A. Thus,
from the top part, we conclude thEt23/65) copies the same period 6111/31).
The bottom part shows the rooR(11/31). From this figure we cannot conclude
thatI'(23/65) copies a full period of"(11/31). At the same time, the translate
R(11/31) — V(11/31) that would lie just to the left oR(11/31) also sticks out
of A. Thus, from the bottom part, we cannot conclude th&3/65) copiesany
period of"'(11/31).
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19.3 A CROSSING LEMMA

Now we begin the proof of the Decomposition Theorem. For eésgposition, we
treat the case whem. < .. The other case has essentially the same proof. Recall
thato € Z? is a low vertex if the baseline separateSom» — (0, 1).

Lemma 19.2 (Crossing)T" crosses each of L and L only once and at a low
vertex.

Proof: Figure 19.3 illustrates our proof. Letdenote the line of slope A through
the origin —i.e., the baselin& , (respectivelyX_) is the infinite strip bounded by
L and the first ceiling line above (respectively, beldw)By Theorem 1.10, there
is one infinite component&f in .. We call this componeri.. Herel'y =T is
the component of interest to us.

+
Lo

+
Ly
Figure 19.3: Applying rotational symmetry.

The pointx = (1/2)V, is the fixed point of, the rotation from Equation 12.13.

We have
1(L§) = LT, 1(ro) =ry, (L) J L. (19.1)
The last piece of notation means thét) lies (very slightly) beneath.

By the Hexagrid Theorem(, 0) is the door corresponding to the point where
', crossesL{ andalso to the pointy_ whereI'_ crossesL{. This point is
the intersection ot.{ with the edge connectingd, —1) to (—1,0). The image
y+ = 1(y-) € 1(L§) = LT is the only point where(I'_) = I'; crossed .. This
pointis less than 1 unit frorh because(L) lies beneati.. Hencel' = I', crosses
L* only once, within 1 unit ofL. SinceL] = L} & V andT is invariant under
translation byV, it suffices to prove the result for one of the lines, as we Hiave
ished. |
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19.4 MOST OF THE PARAMETERS

Let A= p/qbe an odd rational and I&' = p’/q’ be the superior predecessor. For
Theorem 4.2, all we need is the following result.

Corollary 19.3 The Decomposition Theorem holdsnifin(p’, q) is sufficiently
large.

In this section we will prove the following explicit versiari Corollary 19.3.
Lemma 19.4 The Decomposition Theorem holds as long as 3and d > 7.

We will prove Lemma 19.4 through a series of smaller resiBisthe Crossing
Lemma, we can divide a period dfinto the union of two connected arcs. One of
the these lies in what we caRy and the other lies iflR,. Each arc connects points
near the bottoms of the boxes and otherwise does not crobstimelaries. Figure
19.4 is a schematic figure. HeR is the union of the two shaded regions. Our
main goal is to show thdf N Ry C Ry.

+ + +
L L M -
0
L1
L

Figure 19.4: Dividing I'* into two arcs.

Let A = p’/q denote the superior predecessorfofLet Q = Q(A’, A). We
consider the case whel < A.

Lemma 19.5 The second coordinate of any pointin s in (0, Qq; — 1).

Proof: By convexity, it suffices to consider the verticesRif. The bottom vertices
of Ry have first coordinates 0 argl, wherea2q’ = g, + g’. This takes care
of the bottom vertices. Lail = (uy, up) be the top left vertex oR;. SinceRy
is a parallelogram, we can finish the proof by showing that (0,q" — 1). Let
y = (p' +0)/2 < g — 1. Note thatu lies on a line of slope ir{1, co) through
the origin. Since the top edge Bf has negative slope and conta{fsy), we have
Uz < y. Henceu; < y as well. O
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Lemma 19.6 Let A denote the superior predecessor of A. Suppose that Zy 1.
Thenl" N Ry C Ry.

Proof: Lety = I'"N Ry. Sincey starts out inR; (at the origin), we just need to see
thaty never crosses the top edgeRyf. The top edge oR; is contained in the line
A = L7 of slope—Athough the poinX = (0, (p'+q")/2). By the Room Lemma,
y does not cross the (nearly identical) lile= (L)’ of slope— A’ throughX.

If y crosses the top edge Bf, then there is a lattice poifitn, n) betweenl and
A’ and within 1 unit ofR;. But then

floor(Am) = floor(A'm), me (-1,9 +a9y) =(—q,Qq"). (19.2)

The second equation comes from our previous result. Ouetpsitions contradict
Lemma 17.5. O

Corollary 19.7 Suppose thall andT” agree in R. Then the Decomposition The-
orem holds for A.

Proof: Let us tracd™ N R, from left to right, starting a0, 0). By hypothesis, this
arc does not cross the top Bf until it leavesRy. Oncel’ N Ry leavesR, from the
right, it never reenters. This is a consequence of Lemma 19.2 O

By Corollary 19.7, it suffices to prove thht andI” agree inR;.

Lemma 19.8 TV N Ry andT’ N Ry have the same outermost edges.

Proof: The leftmost edge of both arcs is the edge connecting) to (1, 1). Look-
ing at the proof of Lemma 19.2, we see that the rightmost eddé& N Ry connects
V; 4+ (0,1) to V4 + (1, 0). HereV, = (q+, —p+). Applying Lemma 19.2 td”,
we see that some edgeof I'" connectsv; + (0, 1) to V| + (1, 0). But repeated
applications of case 1 or case 2 of Lemma 17.2 tell usithat V| +kV’ for some
k € Z. SinceI” is invariant under translation By’, we see thag is also an edge
of I'". i

Mismatch Principle: Lemma 19.8 has the following corollary. If andT fail to
agree inRy, then there are 2 adjacent verticed6f) R; where the two arithmetic
graphsl’ andI” do not agree. One can see this by tracing the 2 curves from left
to right, starting at the origin. Once we get the first misrhain I'’ the arcl’ has
veered off, and the next vertex & is also a mismatch.

In our analysis below, we will treat the case wha&h < A. The other case is
similar. The bottom right vertex d; lies on a line of slope i1, co) that contains
the pointV,. The pointV, has the same first coordinate as the very nearby point

v, = %*v. (19.3)
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Indeed, the 2 points differ by exactly/d. Let R, denote the slightly smaller
parallelogram whose vertices are

(0,0), u, vy, W =u+V,. (19.4)
If the Decomposition Theorem fails f@, then at least one of the adjacent vertices
of mismatch will lie inRy. (There are not 2 adjacent vertices between the nearly
identical right edges oR; andR;.)
As in the previous chapter, it suffices to make the extremautations
Gu) > —-q +2, H@) <Qq —-2=q +qy — 2. (19.5)
The Diophantine Lemma then finishes the proof.
We first need to locata. There is some such thab; = rW. Letting M be the
map from Equation 2.10, relative to the paramé&gwe have
M(v1) = MOW) = p' + 1.
Solving forr gives

p/+q/)
v = W. 19.6
1= (B (19.6)
We compute

G P+
p+q

G(W)

2

_pP+a a
pP+d9 p+q

=+ A

T (14 A2

_q/

14+ A

> (19.7)

H (@) =H () + (g+/a)H (V)
_ A+ AT
1+ A2
q/
The last inequality in each case uses the fact that & < A. Notice the great
similarity between these two calculations. One can ultatyarace this symmetry
back to the affine symmetry of the arithmetic kit¢ A) defined in Chapter 3.
The conditions in Equation 19.5 are simultaneously metyigdes
—q’ , 1 1 1
1+A/Z q +2, ((:) p/+q/§2)’ (19.9)
The equation on the right is equivalent to the one on the &#.easily see that it
holds as long ag’ > 3andq’ > 7.
In the next two sections we will make a more detailed studpeféw exceptions
to Lemma 19.3. The reader mainly interested in the Erratlit®mheorem can
stop reading here.

+ 0+
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19.5 THE EXCEPTIONAL CASES

19.5.1 Case 1

We use the notation from the previous section. We assumeaHasf\’ # 1/1 is
one of the rationals not covered by Theorem 19.3. Our argtins®s the linear
functionalsG’ andH’ associated t@\ in place of the linear functionals andH
used above. Before we begin our argument, we warn the relaale®t is not the
derivative ofG. We will denote the partial derivatives & by 6,G’ ando,G'.

Lemma 19.9 G'(v) > —q' + 2forall v € Ry.

Proof: We have to worry only about points near the top left corneRpf Such
points lie on the first period df’ to the right of the origin. Call this perigf. When
A € {3/5,3/7,5/7}, we check this result explicitly for every point gh. When
A =1/q’, we note that,G’ > 0 andoyG’' < 0. We also note that all points iR,
have positive first and second coordinates of at nfigpst 1) /2. Thus the point that
minimizesG’isv = (1, (' — 1)/2). We compute

a-3 > 0.

a+1-

The extreme case occurs whgh= 3. ]

G()+q—2=

H’ is tougher to analyze because the points of interest to usearethe top right
corner of Ry, and this corner can vary drastically with the choicefof We will
use rotational symmetry to bring the points of interest bhatk view, so to speak.
Let: be the isometric involution that swagd 0) andV,. Repeated applications of
Lemma 17.2 show that, = V| + kV’ for somed e Z. Hence: is a symmetry of
I'’. See the remark following Equation 12.14.

The infinite ara (I”) is the open component bf that lies just beneath the baseline.
One period of (I'") connectg0, —1) to (q’, —p’ — 1). Let us denote this period by
S’. Compare the proof of Lemma 19.2. The point€Rafnear the top right corner
correspond to points off’. To evaluateH’ on the points near the top right corner
of Ry, we evaluatéd’ on points off’ and then relate the results.

Lemma 19.10 For anyv € R?, we have
IH'(@) + H'((0) — a+] < 2/

Proof: SinceH’ is a linear functional, it suffices to prove the resultfoe (0, 0).
In this case, we must demonstrate tHat(V,) — q.| < 2/(q’). We have already
remarked tha¥, = V| +KkV’. Henceq, = g +kq'. From Lemma 18.1, we have
H’(kV’) = kq'. Hence the equality is equivalent to

IH'(V)) —d\| <2/q". (19.10)
The pointV | lies on the same vertical line as the paint= (q} /q")V’ and exactly
1/g’ units away. Equation 19.10 now follows from the next 3 facts.

H'(u) =d,, loyH'| < 2, U=V I=1/q". (19.11)
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The first fact comes from Lemma 18.1. The second fact is an easulus ex-
ercise. The third fact, already mentioned, is an easy eseinialgebra that uses
l9'p} — POyl =1 m
The bound
H'(0) <Qq' -2=q"+0q; -2
fails only for points very near the top right vertex Bf. Any such point has the

form:(v) for somev € B’. Thus, to establish the above bound, it suffices to prove
that

H'(») > —-q +2+2/q". (19.12)
This inequality can fail for very small choices @f. However, from the Mismatch
Principle, the inequality must fail for at least 2 verticas &/, and this does not
happen.
We check all cases witllY < 7 by hand. This leaves only = 1/q’ for

g’ > 9. Reasoning as we did in Lemma 19.9, we see that the extremeipo
v =(0,(1—0q)/2). We compute

1 2%-29 -1 2
H’(v—(— ’+2+—)=———>O. 19.13
) q q A+0a)? q ( )
The last equation is an easy exercise in calculus. This aegpbur proof of the
Decomposition Theorem for all parametésuch thatA’ £ 1/1.

19.5.2 Case 2

Now we deal with the case whelN = 1/1 is the superior predecessor Af We
have the following structure.

1 A — 2k—1

1M T k11 ¢
Herek > 1. For instance, whel = 17/21, we have 11 « 9/11 « 17/21.
Figure 19.5 show$'(17/21). In this casd N R; is the line segment connecting

(0, 0) to (=5, 5) = (—k, k). We will establish this structure in general.

e Ay =1 (19.14)

Figure 19.5: T'(17/21).
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R; is the very short and squat parallelogram on the far left sfdeéigure 19.5.
This time R; lies to the left of the origin. The right side of Figure 19.%gls a
closeup of this parallogram superimposed on the integedr grhe left side ofR;
lies in L. Repeated applications of Lemma 17.2 show thakt,k — 1) € L7.
The right side ofR lies in L{, the parallel line through the origin. The top Bf
containg(0, 1) and is parallel to the baseline.

Lety = I' N Ry. The rightmost vertex of is (0, 0), and the rightmost edge of
y connectg0, 0) to (—1, 1). Compare the proof of the Room Lemma.

Lemma 19.11 The leftmost edge of connect§—k, k) to (—k + 1, k — 1).

Proof: By Lemma 19.2, there is a unique edgef I that crosse& ;. Looking at
the proof of Lemma 19.2, we see= 1(€'), wheree’ connectq0, —1) to (-1, 0)
and: is the order 2 rotation about the point

(‘_‘21—, %) _ (‘7" %) (19.15)

From this, we conclude thatconnecty—k, k) to (—k + 1, k — 1). The leftmost
edge ofy crossed. ;. This edge must be. O

Lemma 19.12 The line segment’ connecting0, 0) to (—k, k) lies beneath .
Hencey’' N Ry C Ry.

Proof: Letting F(m,n) = Am+ n, we haveF (0, 1) = 1. HenceF(x) = 1 for
all x € Ly. On the other hand, we compute tHaf0, 0) = 0 andF(—k, k) =
2k/(2k + 1) < 1. By convexity,F(y) < 1forally € y’. O

To finish our proof, we just have to show that= y. The first and last edges
of y andy’ agree, and these edges ar@, —1), with the sign depending on which
way we orient the curves. Letj = (—j, j)forj =2,...,k—1. By Lemma 17.1,
we have

k—1 k 1 1
(Al)_:(T)<A<(m):(Al)+, k+1<1—A<E

The first equation implies the second. We compute
M (p) = (Xj, ¥}, Zj) = j(1— A,1— A, 1— A)+(0,1,0) modA. (19.17)
Equation 19.16 combines with the fact tha¢ {1, ..., k — 1} to give
Xi=zje[l-AA), Xi+Yi—z=yje L1+ A C(ALl+A).
(19.18)
We check that these inequalities always specify the €dde1). Hencey’ andy

are both line segments. Henge= y’. This takes care of the case whah=1/1.
Our proof of the Decomposition Theorem is complete.
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Chapter Twenty

Existence of Strong Sequences

In this chapter, we prove Theorem 4.2. For the sake of effagievur proof will be
essentially algebraic. However, a clear geometric pictunéerlies our construc-
tions. We discussed this geometric picture in §19.2. Theeemight wantto reread
that section before going through the proof here. Also, dasler might want to
review the proof we gave of Lemma 4.3 in §18.3. Our proof hegrilar to the
one given there.

20.1 STEP 1

Let A be any irrational parameter. Lgb,/dn} denote the superior sequence asso-
ciated toA. LetS be a monotone subsequence of the superior sequence. We will
treat the case whe$i is monotone increasing. The other case is entirely similar.
By Corollary 19.3, we can cut off finitely many terms &f leaving a sequence
for which the Decomposition Theorem always holds. This isitwie will do.
For any odd rationap/q, let R*(p/q) denote the rectangle with vertices
\Y, V+W V+W \Y
5 5 5 5 (20.1)
HereV andW are as in Equation 3.2. The parallelogr&his just as wide aR
but half as tall. Also, the bottom edge Bf is centered on the origin.

Lemma 20.1 If A; « A, and p is sufficienly large, theilr; andT'; agree in A.
Moreover,I'; andI'; agree in the g/8 neighborhood of the bottom edge 6f.R

Proof: The proof works the same way regardless of the sighiof A,. The main
pointis that2 > 1. Note tha{(A;, Ay) is admissible. We use the linear functionals
G; andH; associated td\;. Let

U -V+W _V+W
-T2 R
denote the top left and right vertices Bf, respectively. We compute
Ga(p1 + 20h)
-G =H = —-2<Qq -2 20.2
1(U) 1(w) 2p1 1 200) <O < Qo (20.2)
The same argument as in Lemma 4.3 now finishes the proof. |

Remark: We have not yet used the Decomposition Theorem.
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20.2 STEP 2

Now we are really going to use the Decomposition Theoremisasigised in §19.2.

Lemma 20.2 Suppose that A< A, and A is the superior predecessor o Alf
A has sufficiently large complexity, thé€g+<  T3.

Proof: If Q > 2, we have the same proof as in Lemma 4.3. Equation 17.15 does
not allowQ = 2. We just need to consider the c&3e< 2. By Equation 17.15, we
must have

floor(a/2 — 11) = 0. (20.3)
Sincea > 1, we must have
A1 > 1/2. (20.4)
Sincel; = (01)+/q1 andg = g+ + g—, we must have
(@)- < (d)+- (20.5)

This seemingly minor fact is crucial to our argument.

Let R(A;) denote the parallelogram from the Room Lemma. In contrast, |
R1(A;) and Rx(Az) denote the smaller parallelograms from the Decomposition
Theorem. Sincéq;)- < (0-)., we see thaR,(A;) lies to the left ofRy(A1). By
the Decomposition Theorem,

I'' N R(A1) C Re(A1) U (Re(A1) + V1) (20.6)
Figure 20.1 is a schematic picture.

u® P wy
R, W,
Rl R]_ + Vl
®

Figure 20.1: Ry(A7) andRy (A7) + V1.

The vertices shown in Figure 20.1 are
u=W, w1 ~ Wy + 11V, wr ~ Vi + ,qu. (207)

Hereu = qo/q1 < 1/2, whereAy = po/qo is the superior predecessoraf. Also,
A1 = (01)+/(a1), as in Equation 17.15.

The approximation sign means that the distance betweewthgdints is at most
1 unit. For instanceyp is the intersection of the line parallel W; and containing
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V. with the line parallel tdv; and containingV;. The pointV, is O(ql‘z) of the
point A;Vi. Hencew; is within O(ql‘z) of Wy + 11Vi1. The argument for, is
similar.

As in the proof of Lemma 4.3, we ha¥& (u) > —Q; + 2 oncep; is large. The
computations foH;(w;) and Hi(w;) are the interesting ones. Case 1 of Lemma
17.2 gives(dz2)+ > (q1)+. Hence, forp; sufficiently large, we have the following

inequalities.
2+ Hi(wy) <
(24 IVHI) + Hy(Wy) + 21Hy(Va) <
o
P1+ 01
O1+ (do)+ <
o+ (G)+=
Qas. (20.8)
Here we use the bound/ H || < 3. We have already remarked thgt), > (01)+.
We also know thatqi), > 0i/2. Hence
Qa1 = g1 + (d2)+ > (3/2). (20.9)
For p; large, we have

5+

+ ()4 <

2+ Hi(w2) <
(2+ IVHI) + Hy(Va) + i Hy(Wy) <
5+ Hi(V1) + (1/2)Hi(Wh) =

o
54+ -—0—"—<
T 2o+
(3/2)a1 <
Q0Q;. (20.10)
These arguments show thak A4(1) for all v € T1. The rest of the proof is just
like the proof of Lemma 4.3. a

20.3 STEP 3

SupposeA] < A, are two consecutive terms &iwhen we have a finite chain
Aél. =A< A -« A= A/Z, A < An, 02 > qu (2011)
The following result finishes the proof of Theorem 4.2.

Lemma 20.3 7T c TL.

Proof: We will change our notation slightly from the previous reésullVe let
Ry = R(A;) denote the parallelogram from the Room Lemma. Likewise,ate |
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Ri = R*(Ax) denote the parallelogram from Theorem 20.1. For any péogliam
Rg, let X R denote the union dR with the points withirgy /8 units from the bottom
edge ofRy. Likewise, defineX R;.

SinceA; < A,, we haveA; < A, by Lemma 17.1. We now have

Fi“ cIinNnXR crTos. (20.12)

The first containment comes from the Room Lemma and the defimit '+, The
second containment is Theorem 20.2. Theorem 20.1 gives us

'k N XR; C Tita, k=2,..,n—-1 (20.13)
Let us compard?; and Ry fork > 2.
1. The sides oRR; have lengthO(qz).

2. The slope of each side Bf is within O(ql‘z) ofthe slope ofthe corresponding
side of R¢. This comes from Lemma 17.4.

3. Each side oR; is less than half as long as the corresponding sid& ofT his
follows from the first two facts and from the fact thah2< g, < gk. Indeed,
the quantityg, — 2q; tends tooo with the complexity ofA;.

These properties give us
XR Cc XR;, k=2,..,n-1 (20.14)

Figure 20.2 is a schematic picture.

R R

Figure 20.2: Ry and R} for anyk > 2.

We already know thdfy N X Ry  I'z. Supposé’; N X Ry C I', for somek > 2.
Then

FlﬂXRlcl“kﬂXRlcl“kﬂXR:CFk+1. (20.15)
Hence, by induction],"i“ C T'n. The right endpoint of ! lies far to the right of
any pointonl';™. Hencel';* c T} O

This completes the proof of Theorem 4.2. Our proof of thetirarbits Theorem
is finished as well.
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Part 5. The Comet Theorem

In this part of the book, we prove the Comet Theorem and itsltzoies. As we did
in Part 1, we defer the proofs of many of the auxilliary resulih Part 6, we take
care of all the remaining details.

* In Chapter 21, we prove some further results about theiorfand superior
sequences. We list the basic results in the first sectionrerdgpend the rest
of the chapter proving these results.

* In Chapter 22, we prove Theorem 1.8. We also build a rougheainfod the
way the orbitO,(1/q,, —1) returns to the interval = [0, 2] x {—1}. Our
work here depends on two technical results, the Copy Thearehthe Pivot
Theorem, which we establish in Part 6.

* In Chapter 24, we prove the Comet Theorem, modulo some ieadidetails
that we handle in Part 6.

* In Chapter 24, we deduce a number of dynamical consequehttesComet
Theorem, including minimality of the set of unbounded @bit/e also define
the cusped solenoids and explain how the time-one map ofgbedesic flow
models the outer billiards dynamics.

* In Chapter 25, we analyze the structure of the Canto€adtom the Comet
Theorem. This chapter has a number of geometric resulth,asia formula
for dim(Ca) when A is a quadratic irrational.
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Chapter Twenty-One

Structure of the Inferior and Superior Sequences

21.1 THE RESULTS

Let{pn/0gn} be the inferior sequence associated to an irrational paeaies (0, 1)
and let{d,} be the sequence obtained from Equation 4.5. We{dg]Itheinferior
renormalization sequencélNe call the subsequence ff,} corresponding to the
superior terms theuperior renormalization sequence just therenormalization
sequence Referring to the inferior sequences, we hdye= 0 if and only ifn is
not a superior term. In this case, we aalininferior term So, the renormalization
sequence is created from the inferior renormalization eege simply by deleting
all the Os.

For any odd rationap/q € (0, 1), define

p* = min(p-, p+); q* = min(q-, d). (21.1)
Here p*/q* is one of the rationalp.. /g+. Itis convenientto define
Po_ 1
% O
Given the superior sequengp,/dn}, we define
Jn = | At — Pal; I =1AG - pil; (21.3)
Note that
2y =1 (21.9)

For the purpose of making a clean statement, we défine= +oc. All our results
are meant to apply to the superior sequence for indice0.

dhin < 2977, (21.5)
O2n > (5/4)"Dan, (21.6)
> didk= A < Ana (21.7)

k=n
Note that Equation 21.5 is an immediate consequence of LehTda The rest of
the chapter is devoted to proving Equations 21.6 and 21.7.
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21.2 THE GROWTH OF DENOMINATORS

Here we establish some terminology.

» Referringto Equation 17.5, we cédl,} theenhanced inferior renormalization
sequenc¢EIRS.

« We call the subsequence corresponding to the superiar@adhesnhanced
renormalization sequence

The reason for the terminology is that we can determine fiegior renormalization
sequence from the EIRS, but not vice versa.

Say that a parametdris superior toa parameted’ if the EIRS forA'’ is obtained
by inserting some 1s into the EIRS f&t For instance,/5 — 2 has EIRS

3,1,212,..,
and+/2 — 1 has EIRS sequence
3,2,2,2, ...
Hencey/2 — 1 is superior to/5 — 2.

Lemma 21.1 Suppose that A is superior td.Arhen g < g, for all n.

Proof: The EIRS determines the inferior sequence. We have= dp — 2 and
Jo = do. Then, by Lemma 17.2, eadlg,.1)+ iS @ honnegative integer linear
combination of(gn)+, and the coefficients are determined {8y}. Call this the
positivity property

Consider the operation of inserting a 1 into théh position in the EIRS foA
and recomputingA,}. Call this new sequence th&-sequence. We have

(qu1+1):‘: > (qm):l: .

By induction, and the positivity property, we have

(q;+1):i: > (qn):l:-

Now let us delete thém + 1)th term from theA*-sequence. Call the new sequence
the A’-sequence. We hawg > g, for all n. Our result now follows from induction.
O

Call A superiorif the corresponding inferior sequence has no inferior terfrhat
is, the EIRS has no 1sin it. Forinstang& — 1 is a superior parameter. If we want
to find a lower bound on the growth of denominators, it suffioesonsider only the
superior parameters. Equation 21.6 follows from inductind our next lemma.

Lemma 21.2 Suppose that A A;, Az are 3 consecutive terms in the superior se-
guence. Letd d,, d; be the corresponding terms of the renormalization sequence
Then g > (5/4)(d1 + 1)(d2 + 1)qs.
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Proof: It suffices to assume th&t is a superior parameter, so that, A,, Az are
(also) 3 consecutive terms in the inferior sequence.
First of all, the estimates
Ont1 > 2000n, On+1 > OnOn (21.8)
follow directly from the definitions. Our notation is as inhena 17.2. Now we
have 3 cases.

Case 1:Suppose that miiy, dp) > 2. Then

O3 > 4didoqa > (4/3)(dy + 1)(d2 + D)0 (21.9)
Case 2:Now suppose that; = d, = 1 and mind;, d2) > 3. Then
0z > 601 = (3/2)(d1 + 1)(d2 + 1)1 (21.10)

Case 3:Suppose finally thad; = d, = 1 andd; = o, = 2. We will deal with the
case wherA; < A,. The other case is similar. In this case, we must have

Ao > AL < A > Ag, (21.11)

by Lemma 17.2.
By case 2 of Lemma 17.2,

(Q2)- =1 + ()4, (G2)+ = (A1)+- (21.12)
By case 4 of Lemma 17.2,
()4 = 02+ (02)-, (G3)- = (q2)-- (21.13)
Hence
O3 = (G3)+ + (A3)- = Q2 + 2(Q2)— =" 02 + 201 + 2(02) . (21.14)

The starred equality comes from Lemma 17.1 siAge< A;.
SinceAg > A;, Lemma 17.2 says that

2(0)+ > (Go)+ + (G- = 1. (21.15)
Combining Equations 21.12, 21.14, and 21.15, we have
O3 = G2 + 201 + 2(G1)+ > G2 + 301 > 501 (21.16)
Hence
gz > (5/4)(d1 + D)(d + 1)qs. (21.17)
This completes our proof. ]

21.3 THE IDENTITIES

We first verify the identity in Equation 21.7. In this idegtiive sum over the superior
indices. However, notice that we get the same answer wheomesger all indices.
The pointis thatl, = 0 whenn is an inferior index. So, for our derivation, we work
with the inferior sequence. Lép,/dn} be the inferior sequence associatedMo
Define
A(n, N) = |PNGn — N Pnl, A*(n, N) = [pnOy — AN Pyl N >n.
(21.18)
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Lemma 21.3 A*(n, N) — A*(n+ 1, N) = dyA(n, N).

Proof: The quantities relevant to the case- 0 are

1 1 do—1 2dp—1
= — = A*Z A: .
Ao=1, Po=75 17 T T 20041

In this case, a simple calculation checks the formula direct

Now supposen > 1. We suppose thak,_1 < A,. The other case requires a
similar treatment. Let stand for eithep or g. There are two cases, depending on
whether the indexr has type 1 or type 4.

Case 1:Whenn has type 1, Lemma 17.2 gives
ry =)+, rr’:-q-l = ("n+1)+» My = Onln — rr?+1* (21.19)
We haveA*(n, N) = |a; — az|, where

a1 = OhPNOn — dndn Pn = dh A(N, N),

@ = PNOns1 — ON P = —A'(N+ 1 N). (21.20)

The sign foray is correct becaus@y > A,. The sign fora, is correct because, by
Lemma17.1, we havBn < (Any1)+ = Aj,1- The identity in this lemma follows
immediately.

Case 2:Whenn has type 4, Lemma 17.2 gives

ry=0n)y, Mer = (Mnt1)—, ry = dnGn — M1
HenceA*(n, N) = |a; + a;|, wherea, = —a,. The sign changes fa, because
An > (Any1)- = A, Inthis case, we get the same identity. O

Dividing the equation in Lemma 21.3 gy, we have

[AnPr — G5l — [AN p;+1 - q;+1| = dn| AN Pn — Onl. (21.21)
Taking the limit asN — oo, we get
Ap = Ang1 = Ondn. (21.22)

Summing this equation from+ 1 to oo gives the equality in Equation 21.7.
Now we will verify the inequality in Equation 21.7.

Lemma21.4 75 ., < n.

Proof: There are two cases to consider, depending on whéther Aor A, > A.

We will consider the case whel, < A. The other case requires a similar treatment.
By Lemma 17.1, we havéy, < An;1. Therefore, by Lemma 17.2 (applied to
m = n+ 1), we have(gni1)+ < (Ony1)-. Butthis means thad;, ; = (Ant1)+. By
Lemma 17.1, we have

n <A< . .
An< A< A, 21.23
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Given the above ordering, we have

An = |ACh — Pn| = AGh — Pn

and

Anir = 1AG 1 — Pryal = Prys — A
Hence

An = Anp1 = Al + i) = (Pn+ Phyo)- (21.24)
But

Oh 4+ 0hy1 =0 + (Ong1)+ = <Qn+1)— - (Qn+1)+) = (On+1)+ = (Ont1)-.
Likewise,
Pn+ Phyr = (Pnsa)-.
Combining these identities with Equation 21.24, we have
An — /lr*1+1 = A(Oh+1)- — (Pn+1)= = (On+1)-(A— (Ans1)-) > 0.
This completes the proof. |
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Chapter Twenty-Two

The Fundamental Orbit

22.1 MAIN RESULTS

We will assume thap/q = pn/dh, thenth term in a superior sequence. We call
02(1/qn, —1) thefundamental orbit Let C, denote the set from Theorem 1.8. Let

C) = Oa(1/an, —1) N1, | =[0,2] x {—1}. (22.1)

Theorem 1.8 says th&, = C/. In this chapter, we will prove Theorem 1.8 and
establish some geometric results about how the orbitsrétue,,.

After we prove Theorem 1.8, we will establish a coarse manlghdw the points
of O,(1/qyn) return toC,,. Statement 2 of the Comet Theorem is s kind of geomet-
ric limit of the Discrete Theorem, and statement 3 of the Coffeorem is the
“geometric limit” of the coarse model we build here.

Let IT,, denote the truncation of the space defined in Equation 1. Le

4: Ty — Cn (22.2)

denote the mapping that is implicit in the statement of Theofd..8. There is an
ordering onlI, such thaty () returns toy (x..), wherex, is the successor af in
the ordering. We will describe this ordering.

Here we will define two natural orderings on the sequenceesfaassociated
to pn/an- Let{d,} be the renormalization sequence.

Reverse Lexicographic Ordering: Given two finite sequences;} and {b;} of
the same length, lét be the largest index, wheeg # bx. We define{aj} <’ {b;}
if ax < by, and{bj} <’ {a} if ax > by. This ordering is known as theverse
lexicographicordering.

Twist Aut0m0~rphism: Given a sequence = {k} € Iy, we definek; = k; if
A < Ay, andki =d — ki if Aj > An. We definex = {kj}. The mapc — xisan
involution onII,,. We call this involution thewist involution

Twirl Ordering: Any ordering onIl, gives an ordering o€, via the formula
in Theorem 1.8. Now we describe the ordering that comes fharfitst return map.
Given two sequences, k» € I1,, we definex; < xp if and only if k1 <" k2. We

call the ordering determined by the twirl ordering. We think of the word twirl
as a kind of acronym fotwisted reverse lexicographidVe will give an example
below.
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Lemma 22.1 When G is equipped with the twirl order, each element gf&cept
the last returns to its immediate successor, and the lasteta of G returns to the
first.

Our last goal in this chapter is to understadg(1/q,, —1) far away froml . Let
h1(x) denote the maximum distance the forwdfebrbit of y (x) gets from the kite
vertex(0, 1) before returning ag (x,). Leth,(x) denote the number of iterates it
takes before the forwar#l-orbit of y (x) returns ag («.).

Letind(x) be the largest indeix such that the sequences correspondingand
x, differ in the kth position. Here ink) € {0, ...,n — 1}. Finally, we define
ind(x) = nif k is the last element dfl,.

Lemma 22.2 Let m= ind(x). Then
Om/2 — 4 < hi(k) < 20m + 4, ha(x) < 502,

Example: The table below encodes the example from the introduction.
Po _ 1 1 5 19 _ P3

< -—=> —= .

o 1 3 13 49 qs

The first 3 columns indicate the sequences. The 4th columaates the first co-

ordinate of 49 (x). The first point ofCs is (65/49, —1). The 5th column shows
(m) = ind(x). The last column showg,.

101 — 65 () 1
001— 5 (1) 3
111— 81 1
011 — 21 (1) 3
1 21— 97 (0 1
021 — 37 (2) 13
100 — 61 (0 1
000— 1 (1) 3
110— 77 (0 1
010 — 17 (1) 3
120— 93 1
020 — 33 (3 49

For instance, the th& orbit of 37/49 wanders between
13/2—4=5/2

and
2%134+4=30

units away before returning to 49 in less than % (13%) steps. The results in the
table are not very inspiring. A larger table would show maraneatic results.
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22.2 THE COPY AND PIVOT THEOREMS

Here we describe the technical results that we will estalifidart 6.

Relative to the parameté, we associate a sequencepairs of pointsn Z2. We
call these points thpivot points We make the construction relative to the inferior
sequence.

DefineEF = (0, 0) andV,, = (g, — pn). Define

An < An+1 - En_+l - En_, EI’T—{-l - EI::— + ngn. (22.3)
An > An+1 - En_+1 - En_ - ngn, E:+1 - EI’T’ (22.4)

We have sefA, = pn/0n. Here is an example.
1.3. 17 . 37 - 57 . 379

175720763 97 645

The inferior renormalization sequence i221, 0, 3. We compute

« Ef = Ej =(0,0).

« Ef = E =(0,0).

« EJ = EJ +1(29,-17).

e Ef = EJ +0(97, -57) = (29, —17).

« E*(379/645 = Ef = E;.

« Ef = E; —2(1,-1) = (-2,2).

« E; = Ef —2(5,-3) = (12, 8).

« E; = E; =(-128).

« E; =E; =(-128).

« E~(379/645 = E; = E; — 3(97, —57) = (303 197).

This procedure gives an inductive way to define the pivotisdior a pair of odd
rationals. We define thgivot arc PI" of T to be the arc whose endpoints dt&
andE~. It turns out that the pivot arc is well defined — this is sonegtwe will
prove simultaneously with our Copy Theorem below. This isdg thatE™ and
E~ are both vertices of. In Part 6 we prove the following result.

Theorem 22.3 (Copy) If A1 <« Az, then PI'; C T';.
Figure 22.1 illustrates the Copy Theorem. The first 3 frammeaI’ (57/97),

drawn in black andPT (57/97) drawn in gray. The last frame shows several periods
of I'(17/29).
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Figure 22.1: PT'(57/97) c T'(17/29).

Now we turn to the statement of the Pivot Theorem. Given an ratidnal
parameteA = p/q, letV be the vector from Equation 3.2. LE{V] denote the
group of integer multiples & = (q, —p). In Part 6 we prove the following result.

Theorem 22.4 (Pivot) Every low vertex of" is equivalent mod [V] to a vertex
of PI". Thatis, P contains one period’s worth of low vertices bn

The Pivot Theorem makes a dramatic statement. Another vagtiothis theorem
is to say that there are no low vertices on the complementary a PI'. Herey
is the arc just to the right dPT such thatPT" U y is one full period ofl". A glance
at Figure 22.1 will make this clear. We will prove the Pivotébinem in Part 6. We
will also prove the following easy estimate. See §26.2.

Lemma 22.5
—g < 11(E7) < m(ET) < g
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22.3 HALF OF THE RESULT

We will prove thatC,, ¢ C/,. This is almost an immediate consequence of the Copy
Theorem.
For convenience, we recall the definition@f. Let ui = |pnGi — dn Pi|-

n-1
Ch= U (Xn(k?), —1), Xn(K) = qi(l-l- ZZki,ui). (22.5)
n i=0

xell,

It is convenient to write
Vi = Sign(Acs1 — A Vi = £(0k, — Po)- (22.6)
When V1 « A, the pivot arcPT (A) contains the points
kVo, k=0,..,0d, Vo = (-1, 1). (22.7)

This is a consequence of the argument in §19.5.
In general, supposé; < A, are two parameters. Then, by construction, the
pivot arcPT', contains all points

v+ kVy ke{o,..,d}, d = floor(gz/2q1). (22.8)

Herev is any vertex ofPT';. It now follows from induction thaPT', contains all
points of the form

[y

n—

kjV;, kj € {0, ..., d;}. (22.9)

Il
o

i

Let M denote the map from Equation 2.10. Usually we tikso thatM (0, 0) =
0, but for the proof here, we adjust so that

M(0,0) = (1/qn, —1). (22.10)

(This makes no difference; see the discussion surrountdimgléfinition ofM in
§2.5.) Call a lattice poinevenif the sum of its coordinates is even. Note th?qt

is even for allj. Hence all points in Equation 22.9 are even. The images skthe
points undeMM have their second coordinate equakHt. We just have to worry
about the first coordinate. We have

3 1 1 1
M(Vj) = — 4+ 2|Aq; — pjl = — + —2|pndj — G Pjl. (22.11)
On On On

The absolute value in the equation comes from the sign clioitee definition of
V.
It now follows from the affine nature d¥l and from the definition o€,, that

Ch C Ox(1/0n, —1). (22.12)

It follows from the case = 0 of Equation 21.7 tha®, c [0, 2] x {—1}.
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22.4 THE INHERITANCE OF LOW VERTICES

The rest of Theorem 1.8 follows from the Pivot Theorem andhfighat we have
done by applying the information contained in the Pivot Tle@oto what we did
in the previous section. To make the argument work, we firetirte deal with a
tedious technical detail, which we take care of in this secti

Let A; « A, be two odd rationals. As usual, we have

d; = floor(gz2/2q1). (22.13)
Leto; be a vertex on the pivot afel';. Define
02 = v1 + KV, ke{0,..,di}. (22.14)

Here we mean to choose some arbitdaryrhe argument we give will work for any
choice. Notice that, dsranges over all possibilities, we are considering exahgy t
same vertices as in §22.3. Now we want to take a close looleaethertices. Here
is the main result of this section.

Lemma 22.6 v; is low with respect to Aiff v, is low with respect to A

Proof: There are two casesto consider, depending on whéther A, or A, < A;.
We will consider the former case. The latter case has esdlgritie same treatment.
In our case, we havé; = V;. Let Eji be the pivot points fof";. Say that a vertex
is highif it is not low.

We will first suppose that; is low with respect toA; and thato, is high with
respect toA,. This will lead to a contradiction. We writg = (m;j, nj). LetM; be
the fundamental map from Equation 2.10. Singés low ando; is high, we have

1 1
2AIM; +2n1+ — = Mi(v1) <2— —,
qu (o]

1 1
2Aomp + 2np + — = Ma(v2) > 2+ —.
02 02

Rearranging terms,

Z(Em2 + nz) _ 2(Eml + nl) > 2 (22.15)
0z 1 1

Plugging in the relations, = m; + kaz andn,; = n; — kp; and simplifying, we
have

(M + kay) (P20s — Pad2) . 1 (22.16)
0102 O1
SinceA; « A, andA; < Ay, we have
Poth — Pad2 = 2. (22.17)

Hence
my + kop > gp/2. (22.18)



book April 3, 2009

THE FUNDAMENTAL ORBIT 199
Combining Equations 22.3 and 22.18, we have
EF (A2) = Ef (A1) + chay >* my + Koy > Gp/2 >* Ef (A).

This is a contradiction. The first starred inequality contegtthe Pivot Theorem
and the fact that < d;. The second starred inequality comes from Corollary 22.5.
Now we will suppose that; is high with respect té\; ando; is low with respect
to A,. This also leads to a contradiction. L denote the first coordinate of the

fundamental map relative to the paramefgr adjusted so that1,(0, 0) = 1/q;.
That is,

Mi(m,n) = 2Aim+ 2n + (1/q1). (22.19)

Sinceo; is high, we have the following dichotomy.
1 1 3
Mi() > 2+ —, Mi(®) > 2+ — = Mi() >2+ —. (22.20)
O (o] (o f]
We will consider these two cases in turn.

Case 1:If My(v1) = 2+ 1/qs, then
Mi(mg, Ny — 1) = 1/0p = My (0, 0).
But then
(M, N1 —1) = jVp

for some integej. Butthen|m;| > ;. Sincen; € PT'y, this contradicts Corollary
22.5. Hence

01 = (09 1)9 U2 = kvl + (Os 1)
If v, is low, then
0= 2k(A101 — P1) < 2k(Ax01 — p1) = M2(v2) — M2(0, 1) < 0.

This is a contradiction. The first inequality comes frém < A,.

Case 2:If M1(v1) > 2+ 3/q, then the same reasoning as in Equations 22.15—
22.17 (but with signs reversed) leads to

mp + kql < —3C]2. (2221)

But then

—% < " <*mg <mg+ kg < —30p.
2 2
The starred inequality comes from Corollary 22.5. Again \&eeha contradiction,

this time by a wide margin. |
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22.5 THE OTHER HALF OF THE RESULT

Now we finish the proof of Theorem 1.8.

We revisit the construction in §22.3 and show that actu@ly= C/,. Let A,
denote the set of low vertices &T,. By the Pivot Theorem, every low vertex on
PI', is equivalent to a point oA, modZ [V,].

Lemma 22.7 For any n> 0, we have

th

Ansr = J(An +kVh).
k=0

Proof: Induction. Fom = 0 we have
E; = (—do, dp), Ef = (0, 0).

In this case, the right hand side of the equation precisedgrifges the set of points
on the line segment joining the pivot points. The case- 0 therefore follows
directly from the Pivot Theorem.

Let Ay, denote the right hand side of the main equation. Sinces invariant
under translation by, every vertex ofA| , is low with respect toA,. Hence, by
Lemma 22.6, every vertex af;,  , is low with respect toA,, ;. Combining this fact
with Equation 22.8, we see that

Apyy C Anga (22.22)
By Lemma 22.6 again, everye An;1 is also low with respect té\,. Hence
v =0 +kV, kez (22.23)

for somev’ € A,. If k & {0, ..., dn}, theno lies either to the left of the left pivot
point of ', 1 or to the right of the right pivot point dff,, ;. Hencek € {0, ..., dn}.
This proves that

Anj1 C A,y (22.24)

Combining the two facts completes the induction step. O

We proved Lemma 22.7 with respect to the inferior sequenamveiter, notice
that, ifd, = 1, thenA,,1 = A,. Thus we get precisely the same result for
consecutive terms in the superior sequence. We have shawn thT',, is low if
and only ifo € A, modZ [V]. But then

02(1/Gn, —1) N 1 = M(Ap), | =[0,2] x {—1}. (22.25)

Here M is the fundamental map. Recognizing as the set from Equation 22.9,
we get precisely the equality in Theorem 1.8.

There is one last detail. One might worry thdt maps some points ok, to
points on [Q 2] x {1} (rather than to [02] x {—1}). However, all points im\, have
even parity. Hence this does not happen.

This completes the proof of Theorem 1.8.
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22.6 THE COMBINATORIAL MODEL

Here we prove Lemmas 22.1 and 22.2.

22.6.1 Combinatorics of the Return Map
Let X, denote the union of all points in Equation 22.9. We have
M(Z,) = Ch. (22.26)

The ordering ornx,, determines the ordering of the return dynamic€to We set
o = {(0, 0)} for convenience. We can determine the orderingZ@n; from the
ordering onX,, and the sign ofA ;1 — A,. WhenA, < A,.1, we can write the
relation

Zn + kVn < Zn + (k + 1)Vn, k == O, ceey (dn - 1) (22.27)

to denote that each point in the left hand set precedes eacthipsohe right hand
set. Within each set, the ordering does not change. When A, 1, we can write
the relation

Zn - (k+1)Vn < Zn _kVn, k=0,..., (dn_ 1) (22.28)

Lemma 22.1 follows from these facts and induction.

22.6.2 Geometry of the Return Map

Let g, denote the arc oPT',, chosen so thaPT', U S, is one period ofPT,,. Let
L, be the line of slope- A, through the origin.

Lemma 22.8 No point of 5, lies more than g vertical units away from },, and
some point offy, lies at least @,/4 vertical units away from ;.

Proof: By the Room Lemmgim C R(Am). The upper bound follows immediately
from this containment. For the lower bound, recall from theoR Lemma that
PT'm crosses the centerline of R(An) once, and this crossing point lies at least
(Pm + Om)/4 > qm/4 vertical units fromL,. By Lemma 22.5 and symmetry, the
left endpoint off, lies to the left ofL and the right endpoint gf, lies to the right

of L. Hencepn, contains the crossing point we have mentioned. For an aliigen
argument, we note that no point on the pivot arc crossesribeghrallel to the floor
and ceiling ofR(An) and halfway between them, whereas the crossing point lies
above this midline. a

Notice that the lineL, replaces the liné,, in the next lemma.
Lemma 22.9 Letm < nand g, > 10. Then some point ¢, lies atleastg,/4—1

vertical units from L,. Moreover, no point of, lies more than g + 1 vertical units
away from L.
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Proof: Some poinb of gy, is at leasty, vertical units fromL,, by the previous
result. From Lemma 17.4, we have

|Am — An| < 2/(g3). (22.29)

On the other hand, by the Room Lemma and by construcBai, is contained in
two consecutive translates &(An), one of which isR(An) itself. HencePT'y,
lies entirely inside the baB of radius 4}, about the origin. By Equation 22.29, the
Hausdorff distance between the seqmednsn B andL, N B is less than 1 once
m > 10. By construction, the vertical line segment starting ahd dropping down
Om — 1 units is disjoint fromL,, N B. But this segment is disjoint frorh, — B as
well. Hencev is at leasigm/2 — 1 vertical units fromL,. The upper bound has a
similar proof. |

Lemma 22.10 Sy, has length at mosig?.

Proof: S, is contained in one period &I',. Hence it suffices to bound the length
of any one period oPT',. By the Room Lemma, one such period is contained in
R(Am). We compute easily that the areaRfAr) is much less thandg,. Hence
there are fewer thang, vertices inR(Am). Hence the length of one period B,

is less than §?,. m

Suppose now that andx, are two consecutive points &f,. By this we mean
that there is a portion oPT, connectinge to x, when it is oriented from left to
right.

We want to understand the arc &T, that joinsx andx,. Suppose that
ind(x) = m. It follows from induction and from the Copy Theorem thatrihe
is some translatiof such thafT (x) and T (x,.) are the endpoints of the af,.
The arc joiningec to x,. has the same length #s,, and this length is less tham.
This gives us the estimate fbg.

Now we deal withh;. We check the result by hand fgr < 10. So, suppose
thatqg, > 10. All the verticese, k., T (x), andT (k) lie within 1 vertical unit of
the baselind.,,. We know that the vertical distance from some poinggfto L, is
at leasty,/2 — 1. Hence the vertical distance from some poinflaif,) to L, is
at leastyy,/2 — 2. Similarly, the vertical distance from any point 8f to L, is at
mostqm + 2. If two points inZ? have vertical distance, then the images of these
points under the fundamental mafy, have horizontal distanced2 In short, the
fundamental map doubles the relevant distances. This ffees gs the estimate for
h;.

This completes the proof of Lemma 22.2. O

Remark: We have tried to give fairly precise estimates in our argusdiut actu-
ally we do not use these estimates for any purpose.
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22.7 THE EVEN CASE

Here we discuss Theorem 1.8 in the even case. For each ei@mrat#; < (0, 1),
there is a unigque odd ration&, such that (in terms of Equation 4.8 = (Ay)+
andqg, < 2q;. In Lemma 27.2, we will show thdt; (a closed polygon) contains a
copy of PT',, and all low vertices of'; lie on this arc. From this fact, we see that

O(1/a1, —1) = My(Z9), (22.30)

just as in the odd case. Hel; is the fundamental map defined relative to the
paramete;, and X, is the set of low vertices oRT';.

Note thatX; = X,, where X, is the set of low vertices o®T',. The only
difference between the two sd; (X;) andM,(X,) is the difference in the maps
Mz and M,. Now we explain the precise form of Theorem 1.8 that thiscttne
entails.

Switching notation, leA be an even rational. One of the two rationAls from
Equation 4.1 is odd, and we call this ratiosll We can find the initial part of a
superior sequendix} such thath) = A,_;. We setA = A, even thoughA does
not belong to this sequence. Referring to Theorem 1.8, waelHfj exactly as in
the odd case but for one detail. In casg 2 q, we simply ignore thath factor of
IT,,. Thatis, we treat’ as an inferior term. Once changed in this way, Theorem 1.8
holds in the even case and has a proof that follows the oddvearskfor word.

Here we give an example. L&t = 12/31. ThenA, = 19/49, exactly is in the
introduction. We have = 3, and the sequence is

Po _ 11 5 12 _ P3
Qo 1'3°13°31 g3
All terms are superior, so this is also the superior sequeibe renormalization

sequenceis,?, 1. Theu sequenceis 1%, 1. The first coordinates of the 12 points
of O,(1/49) N | are given by

Lo 2190 + Bky + 1K) + 1
U uu TR

ko=0 ki1=0 k;=0 31

Writing these numbers in a suggestive way, the union abovksaaut to
1

ﬁx(l 3 11 13 21 23 39 41 49 51 59 p1



book April 3, 2009



book April 3, 2009

Chapter Twenty-Three

The Comet Theorem

23.1 STATEMENT 1

We fix an irrational parameteA € (0,1). Let {A,} be the superior sequence
approximatingA. Let T, be the arithmetic graph corresponding@ We say that
a vertexp of fn is D-low if » is within D vertical units of the baseline ﬁn.

Note that the low vertices considered in the previous chigptel1-low vertices.
These vertices play a special role in our arguments. Theafimnedital magM from
Equation 2.10 maps the 1-low vertices into the interval

J=(0,2) x {—1,1}. (23.1)
In Part 6 we prove the following result.

Theorem 23.1 (Low Vertex) Fix Np. There are constants ;Nand N with the
following property. Ifo, is an Ny-low vertex contained in a component of,
having diameter at least f\'then there is an arc of , that has length at most N
and connects, to al-low vertex. The constants;ldnd N, depend only on A and
No.

Now we will deduce statement 1 of the Comet Theorem. Lookirigjgure 1.2,

we see that
I=1U@)W), (23.2)

wherey’ is the outer billiards map. Hence it suffices to prove statereof the
Comet Theorem with in place ofl. Sincey = (y’)?, it suffices to prove the
result withJ in place ofl andy in place ofy’. This is what we will do.

Fix N > 0. The constant®p, Ny, ... depend only orA and N. Recall that
E = Ry x {—1, 1} and that¥ is the first return map t&. Recall also thal, is
the union of the unbounded special orbits.

Corollary 23.2 If £ e ZNnUax and|&]| < N then®k(&) e J for somgk| < No.

Proof: The arithmetic grapifn tracks the orbits of the special intervals defined
in 82.2. For eaclm we choose some special intentalwhose closure contairis
Typically the choice is unique, but whéries in the boundary of a special interval,
there are two choices and we pick one arbitrarily.

Let v, be the vertex of corresponding td,. From Equation 2.10 we see that
v is No-low, whereNg = (N/2) + 1. Letf, be the component ﬁn that contains
vn. By the Continuity Principle in §2.7,

diam(8,) — oo. (23.3)
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By Equation 23.3, the diameter 8f exceeds\; for n large.

The Low Vertex Theorem says that there is someggrof f,, having length at
mostN,, that connects,, to a 1-low vertex.

By the Continuity Principle, the firstl, iterates oV, are defined od for n large.
Interpretingp;, dynamically we see that there is a sequefiaé such that

PhE) e J, Ikn| < Np. (23.4)

By the Pidgeonhole Principle, sorkappears infinitely often in the sequerjkg.
Applying the Continuity Principle to this subsequence, we thatP¥(¢) € J. O

Remark: Referring to the proof we just gave, one might worry that sarhthe
points involved actually lie in the boundary df However, the boundary points
of J do not have well defined orbits and all the points we consitldcehave well
defined orbits. Hence this problem does not occur.

Corollary 23.3 If £ e ENUaxand||&] < N, thenyX(&) e J for somek| < Ns.

Proof: By Corollary 23.2, there is sonma € (—N_, N2) such that?™(¢) € J. We
will consider the case whem > 0. The proof in the other case is essentially the
same. Letp = ¢ and inductively define

& =Y(¢-), i=1...m (23.5)

Examining the proof of the Pinwheel Lemma, we see that tleseme constari;
such that

IEI < N, j=0,...m. (23.6)

Again examining the proof of the Pinwheel Lemma, we see tfettare constants
Ny, ..., N such that

& =y (&), nj € (0, Ny). (23.7)
SettingNs = N> N4 we see thatyX (&) e J for somelk| < N. O

Corollary 23.4 If ¢ e Up and |||l < N, thenyX(¢) e J for somek| < Ns.

Proof: Examining the proof of the Pinwheel Lemma, we see that thesoime
constantNg, somelm| < Ng, and som& € E such that

&=y™Q. i€ < Ne. (23.8)

Applying Corollary 23.3 withNg in place of N, we havey"(¢) € J for some
In| < Ny. Therefora//k(() e Jforsomek| < Ng. Here we have ség = Ng+ Ny7.
O

Corollary 23.4 is identical to statement 1 of the Comet Tkagrexcept that it
usesy in place ofy” andJ in place ofl. This completes the proof.
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23.2 THE CANTOR SET

Before we prove the remaining statements of the Comet Thewre first need to
resolve the technical point that the €&t is actually well defined. For convenience,
we repeat the definition.

Ca=J (X(K)a —1), X() =D 2ki|AG — pil. (23.9)

kell i=0

Lemma 23.5 The infinite sums in Equation 23.9 converge. Henge<Owell de-
fined.

Proof: Combining Equation 21.5 with the boundOk, < d,, we see that thath
term in the sum definin (x) is at most ;. Given that 2 < g1 for all k, we
get

2g; < 27", (23.10)

The sequence defining(x) decays exponentially and hence converges. O

For the purposes of this section, we equip the product spaegth the lexico-
graphic ordering and the product topology. For instanag, i 1 for all n, thenII
is just the space of binary sequences. The lexicographés tnehts these sequences
as binary expansions of real numbers and then orders theisuat urhe general
case is similar.

Lemma 23.6 The map XII — Cp is a homeomorphism that maps the lexico-
graphic order to the linear order. Hence ds a Cantor set.

Proof: We first show that the ma} is injective. In fact, we will show thaX is
order preserving. lk = {ki} < ¥’ = {k{} in the lexicographic ordering, then there
is some smallest indem such thak; = ki for all indicesi =0, ..., (m — 1) and
km < ki, LetAm = |Agm — pml, as in Equation 21.5. Then

X(k') = X () = 22m— D 20ik = Am — Ay > 0 (23.11)
k=m+1

by Equation 21.7.

The mapX: IT — [0, 2] is continuous with respect to the topologydrbecause
thenth term in the sum definini is always less than2+1. We also know thaX
is injective. HenceX is bijective onto its image. Any continuous bijection from a
compact space to a Hausdorff topological space is a homegirison. m]

Remark: In Chapter 25 we will have much more to say about the geomé@ao
For instanceC always has length 0.
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23.3 APRECURSOR OF THE COMET THEOREM

In this section we present two auxilliary results that camelid prove almost all the
remaining statements of the Comet Theorem.
Let Ca be the Cantor set considered in the previous section. Define

Chr=Ca—(2Z[A] x {-1}). (23.12)
One can view our next result as a precursor of the Comet Theore

Theorem 23.7 (Comet Precursor)Let Ua denote the set of unbounded special
orbits relative to an irrational A< (0, 1).

1. Cj C Ua.

2. Thefirst return mapa: C,, — Cj is defined precisely on’C— ¢(—1). The
mapg¢ ! conjugatepa to the restriction of the odometer d@a.

3. For¢ € C), — ¢(—1), the orbit portion between and pa(¢) has excursion
distance in

d—l
[— —4,2d7  + zo}
2
and length in

d2 g1
[5 - 100d—2 + 10&1-2}.

Here d= d(—1, ¢1(¢)).

Remarks:

(i) The constants in item 3 are not optimal; some tedious efgary arguments
would improve them.

(i) Sinced~! > 1, the estimates in item 3 imply the less precise estimatésein

Comet Theorem — once we establish t8§t= C,.

(iif) As we remarked following the Comet Theorem, the onlynsbarp bound in

item 3 is the length upper bound. For instance, our proosilj, fwhich establishes

a kind of coarse self-similarity structure, would give atbebound forA = v/5—2

if carefully examined. We conjecture thaf3 is the best bound that works for all
parameters at once.

To relate Theorem 23.7 to the Comet Theorem, we prove theviol double
identity.

Lemma23.8UaN | =Ci =Ca— (2Z[A] x {—1}).

Statements 2 and 3 of the Comet Theorem follow from this tesid Lemma 23.7.
Lemma 23.8 also contains the first claim in statement 4 of @& Theorem. At
the end of the chapter, we will prove the second claim madéiemsent 4 of the
Comet Theorem.
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23.4 CONVERGENCE OF THE FUNDAMENTAL ORBIT

Let{pn/0n} denote the superior sequence associatéd e use the notation from
the previous chapter. Hefg, denotes the corresponding arithmetic graph and

n-1

1
Co=J (Xat), -1), Xalk) = -+ > 2[AG — pil. (23.13)
rxelly n i=0
We have already proved that
Ch C O2(1/pn, —1). (23.14)

Let x e II be some infinite sequence. Lgt € 1, be the truncated sequence.
Let

on = (Xn(xn), —1), o= (X(x),-1) (23.15)

Here is our basic convergence result.

Lemma 23.90, —» o ash— oo.

Proof: Fori < n, let 7, denote theéth term in the sum foX,,(x,). Let z, be the
corresponding term in the sum fir(x). By Lemma 17.1, the sign A — A; is the
same as the sign &, — A;. Therefore

|tn — Ti,n| =
2K|A — Anlan < 207t <
27+ (23.16)

Therefore

lo —onl =

|X () = X(xn)| =

o0
|tn — Ti,n| +Zfi <

1
i=0 i=n

n-1 0
2> 242> 27 <
i=0 i=n

2n + 427", (23.17)

n—

This completes the proof. ]

The uniformity of convergence gives us the following imnedicorollary.

Corollary 23.10 C, is the Hausdorff limit ofC,,}.
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23.5 AN ESTIMATE FOR THE RETURN MAP

Let {k;} be a pointin the sequence spdteWe call{k;} firstif k; = 0 for alli, and
lastif k; = d; for alli. The mapp,: 1o — Cpa is @ homeomorphism. Using,
we transfer the notions difst andlast to points ofCa.

It turns out that the first and last points©f are the special points mentioned in
connection with the Comet Theorem. If these orbits are vedihe:d, then it turns out
thatthe last pointleave&3, under the forward dynamics and never returns. Likewise,
the first point ofC leaves under the backward dynamics and never returns. (We
prove these statements later on.) Here we will estimateghe@of how the nonlast
points ofC return toCa under the forward direction of the dynamics. The idea is
to essentially take the geometric limit of the result fromrma 22.2.

Let ¢ e C), denote a point that is not last. Letdenote the corresponding se-
guence inll5. Say that two sequences Ih areequivalentif they have the same
infinite tail end. We can define the reverse lexicographieoah any equivalence
class. Likewise, we can extend the twirl order to any eqeiveé class. In particu-
lar, we extend the twirl order to the equivalence clasg,dhe sequence currently
of interest to us.

Remark: These orders on equivalence classes cannot be defined omtifee e
space; points in different equivalence classes are ofteaamparable.

Sincex is not last, we can find some smallest index= m(¢) wherekn, < dj.
In other wordsm is the smallest index such thadiffers from the last sequence in
themth spot.

The successor, of « is obtained by incrementinky, by 1 and settind; = 0
foralli < m. This notion of successor is compatible with the twirl oidgron the
finite truncationdI,. Define

= (X(ep), =1), @+ = Xkn)s, —1). (23.18)

Lemma 23.11 Let; e C/, be a point that is not last. Let m m(¢). The forward
¥ orbit of ¢ returns to Gy as ¢y in at most5g? steps. This portion of the orbit
wanders betweenyf2 — 2 units and2qgn, + 2 units away from0, —1).

Proof: By Lemma 2.2, the orbit of is well defined. Referring to the notation in
Lemma 22.2, we get in@d,) = m for n large enough. Hence the forwaig, orbit
of ¢ returns to(¢n)+ after at most 2 steps, moving away frorf®, —1) by at least
Om/2 — 2 units and at mostd, + 2 steps. Heren is independent ofi. SinceX

is continuous, we havg,)+ — ¢+ asn — oo. The Contintuity Principle implies
that the forward¥ orbit of ¢ returns ag’, after at most §2 steps, moving away
from (0, —1) at leasigm/2 — 2 units and at most@, + 2 steps. O

There is an entirely analogous result for the backward netogp. This result
holds for all but the first point.
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23.6 PROOF OF THE COMET PRECURSOR THEOREM

23.6.1 Statement 1

Here we prove statement 1 of Theorem 23.7. We say that a seejodl 5 is
equivalent-to-firstf it differs from the first sequence in only a finite number of
positions. We call a sequenegquivalent-to-lasif it differs from the last sequence
in a finite number of positions. As in the previous sectiontraasfer these notions
toCa. Itisimmediate from the definitions that no sequenda jis both equivalent-
to-first and equivalent-to-last.

Let¢ be a pointinC), thatis not equivalent-to-last. We will show that the fordiar
orbit of ¢ is unbounded. Lah = m(x) be as in the proof of Lemma 23.11. Lemma
22.2 says that the portion of the orbit betwegesnd¢, wanders at leas},/5 from
the origin. Since we can achieve any initial sequence wenliteiterated successors
of x, we can find iterated successaf<f x such thain(x’) is as large as we like.
But this shows that the forward orbit gfis unbounded. Here we are using the fact
that limm_ o0 m = oo. This shows that has an unbounded forward orbit.

Essentially the same argument works for the backward ofpivimts that are not
equivalent-to-first. This establishes statement 1.

23.6.2 Statement 2

The successor map dh, is defined except on the last sequenad I1 5. Referring
to the homeomorphisgy given in Equation 1.8, we have

$1(=1) =x.

Thus the pointp2(x) € Ca corresponding ta is precisely¢(—1). By Lemma
23.11, the return mapa: C, — C/, is defined orC), — ¢(—1).

The mapg; conjugates the odometer map 8, to the successor map dha.
Combining this fact with Lemma 23.11, we see tigat’ conjugatespa to the
restriction of the odometer map @n.

It remains to understand what happens to the forward orbit-efg (—1) in the
case wherx e C/,. The following result completes the proof of statement 2.

Lemma 23.121f x € C),, then the forward orbit of x does not return tg,C

Proof: Suppose that the forward orbit ®freturns toC/, after N steps. Since outer
billiards is a piecewise isometry, there is some open naighdodU of x such
that every point ofC,, N U returns toC/, in at mostN steps. But there is some
uniformly smallm such that every point € C,, — U differs from the last sequence
x at or before thenth spot. Lemma 23.11 says that such points retur@jon a
uniformly bounded number of steps. In short, all pointqfreturn toC/, in a
uniformly bounded number of steps. But then all orbit€jnare bounded. This is
a contradiction. |
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23.6.3 Statement 3

Let; € C,. Let O, denote the portion of the forward outer billiards orbit;of
betweery andpa(¢). We mean to use the original outer billiards majhere. Let
m be such that

d(¢~(), =) =gy, ™. (23.19)

By definition¢~1(¢) and—1 disagree by /D41, but then they agree i@/ Dy for
k =1, ...,m. In the case whem = 0, the pointsp~*(;) and—1 already disagree
in Z/D;. Letx e I1 denote the sequence corresponding.to

Finding the Index: Letind(x) be asin §22.1. Let be the sequence corresponding
top(—1). Thenlisthe last sequencein the twirl order. The sequeneesll agree

in positionsk = 0, ..., m — 1 but then disagree in position. Hencem is the first
index wherec disagrees with the last sequence in the twirl order. But thandx
disagree in positions 0.., mand agree in positiokfor k > m. Hence indx) = m.

Excursion Distance Bounds:Lemma 23.11 tells us that thi-orbit of ¢ between
¢ andpa(¢) wanders betweeg,/2 — 4 and 2), + 4 units from the origin. Here
we are interested in the full outer billiard3;. Since the¥-orbit of ¢ between;
andp, is a subset 00;, the lower bound follows from Lemma 23.11.

The upper bound follows from a simple geometric analysishef Pinwheel
Lemma. Starting at a point d& that isR units from the origin, they-orbit remains
within 2R + 8 units of the origin before returning t8. Essentially, they-orbit
follows an octagon once around the kite before returninghasvn in Figure 7.3.
The constant of 10 amply takes care of the small deviatiams this path that arise
in the proof of the Pinwheel Lemma. Singé always acts as the reflection in a
vertex that is within 1 unit of the origin, we see that the enti’-orbit of interest
to us is at most R + 12 units from the origin. Hence the portion of the orbit of
interest wanders at most@, + 4) + 12 = 2qy, + 20 units from the origin.

Orbit Length Bounds: The¥-orbit of ¢ between: andpa(¢) has length at most
5g2. Examining the proof of the Pinwheel Lemma, we see that apoil& thatisR
units from the origin returns t& in less than 1R iterates. Given thaR = 2q,+ 2,
the orbitO, is at most 2@y, + 20 times as long as the correspondigrbit. This
gives the upper bound.

Now we prove the lower bound. Some point in tHeorbit of ¢ betweery and
pa(¢) lies at leastn/2 — 4 vertical units from the origin. Consecutive iterates in
the W-orbit have vertical distance at most 4 units apart. Heneeetlare at least
Om/8— 1 points in the? -orbit that are at leas},/4 horizontal units from the origin.
Inspecting the Pinwheel Lemma, we see that the length aof tharbit between two
such points is at leastn/4. HenceO; has length at leasf, /32 — gm/4.

This completes the proof of statement 3.
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23.7 THE DOUBLE IDENTITY

In this section we will prove Lemma 23.8. Our proof of thisukselies on the
following technical theorem.

Theorem 23.13 (Period)For anye > 0, there is an N> 0 with the following
property. If¢ € | is more thane units from G, then the period of is at most N.
The constant N depends only oand A.

We will prove the Period Theorem in Part 6. Here is a coroltarhis result.

Corollary 23.14 UpN | C Ca.

Proof: The constantd;, N, ... depend only or andA.

We will suppose that 5 contains a point ¢ Ca and derive a contradiction. By
compactness, there is some- 0 such that is at least 8 from any point ofCa.
SinceCp is the geometric limit o€, we see that there is somg such thah > N
implies that; is at least 2 from C,.

Let{¢n} € | be a sequence of points convergingtdMe can choose these points
so that the orbit of;, relative to A, is well defined. There is a constaNp such
thatn > N, implies thatz, is at leask from C,,. But then, by the Period Theorem,
there is somé\; such that the period @f, is at mostNs.

On the other hand, by the Continuity Principle in §2.7, thigharetic graph
I' (¢, An) converges to the arithmetic graptic, A). In particular, the period of
I' (¢, An) tends toco. This is a contradiction. Hengecannot exist. O

Now we state a useful principle that will help with the rendegnof the proof of
Lemma 23.8.

Odometer Principle: Let I1a be the sequence space from §1.7. Say that two
sequences ifil 5 are equivalent if they have the same infinite tail ends. Gihen
nature of the odometer map, we have the following usefubjpie. Any two equiv-
alent sequences are in the same orbit of the odometer mapghiSaheOdometer
Principle. We will use this principle several times in our proofs.

Lemma 23.15 No point of G — C’; has a well defined orbit.

Proof: Let {d,} be the renormalization sequence, as above. Call a sequence i
I1 A equivalent-to-trivialif it either differs from the 0 sequence by a finite number
of terms or it differs from the sequendd;} by a finite number of terms. The
homeomorphisng, bijects the equivalent-to-trivial points ifia to Ca — Ch.

Suppose first that the superior sequence@ not eventually monotone. Refer-
ring to 823.6 for definitions, in this case an equivalentrioial sequence is neither
equivalent-to-first nor equivalent-to-last.

Suppose e Ca — C% has a well defined orbit. Letbe the equivalent-to-trivial
sequence correspondingéo By Lemma 23.11 and the analog for the backward
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orbit, both directions of the orbit af return infinitely often toCa — Cﬁ. If x is
eventually 0, then by the Odometer Principteis in the same sequence orbit as
the 0 sequencey. But the point inCp corresponding tag is exactly the vertex
(0, —1). This vertex does not have a well defined orbit. This is a @alittion. Ifx

is such thak; = d; for largei, then by the Odometer Principkejs in the same orbit
as the sequendgl;}. By Equation 21.5, the corresponding poiniGn is (2, —1).
One can easily check that the orbit(@ —1) is not defined after the second iterate.
Again we have a contradiction.

Now suppose the superior sequence is eventually monotoreewilMreat the
case wherA — A, is eventually positive. In this caspA,} is eventually monotone
increasing. Suppose thats equivalentto the 0-sequence. We can iterate backward
a finite number of times untit returns as the first point @,. Hence, without loss
of generality, we can assume thats the first sequence il 5. But now we can
iterate forward indefinitely, and we will reach every equevd-to-zero sequence by
the Odometer Principle. Eventually, we reach the 0 sequamdget the same con-
tradiction as above. ¥ is such thak; = d; for largei, we run the same argument
backward. O

Corollary 23.16 UaN' | C C&.

Proof: Corollary 23.14 says thaiia N | c Ca. Since all orbits olU are well
defined, Lemma 23.15 implies that

Uan(Ca—Ch) =0.

Our result follows immediately. O

Lemma 23.17 No point of G has a first coordinate i2Z [ A].

Proof: Let{A,} bethe superior sequence approximattnyVe assume that, < A
infinitely often. The other case has the same treatment. Gaephat

a=(2MA + 2N, -1) € Ci. (23.20)
By Equation 21.7, the s@@J is invariant under the map
x, =1 - (2—x,-1).

Indeed, the twist automorphism Bfinduces this map 06,. From this symmetry,
we can assume thad > 0.

Let PT'kx denote the pivot arc. Suppose, for the sake of contradidtiat(M, N)
is a vertex ofPT'y for somek. Then 2AM + 2N is a finite sum of terms

i = |2A0; — pjl, (23.21)

by Theorem 1.8. But such points all lie@x — C%. This contradiction shows that
(M, N) is not a vertex ofPT for anyk.
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©.0) (M.N)

- "o |

Figure 23.1: One arc traps another.

Let PT'y denote the portion dPT that moves rightward frort0, 0). We define
I« similarly. From the definition of the pivot points, the lehgtf P tends toco
with k. Hence{I';'} and{PT}/} have the same Hausdorff limit. We can choése
large enough so th&®T; contains a low vertexM’, N’) to the right of(M, N).
So,PT{ connectg0, 0) to (M, N) and skips right ove¢M, N). See Figure 23.1.

Sincea e C#%, we can find a sequence of poifits,} € Ci — Z [A] such that the
first coordinate of, — a is positive. Lett, = an — a. Note that

i €2Z[A]. (23.22)
Letf((n, A) be the whole arithmetic graph corresponding{oLet
yn=T(Cn. A) (23.23)
be the component containiri§, 0). By the Rigidity Lemma, the sequences
{T'(¢ns An)}, {T'n}

have the same Hausdorff limit. Hen&'; c y, oncen is large. In particular,
some arc ofy, connectq0, 0) to (M’, N) and skips ovefM, N). Call this the
barrier arc.

Sincea, — ¢n = a € 2Z [A], there is another componefit C f((n) that tracks
the orbit ofa,. One of the vertices g8, is exactly(M, N). The componeng,, is
unbounded in both directions because all defined orbi&imre unbounded. On
the other handg, is trapped beneath the barrier arc. It cannot escape owtreith
end, and it cannot intersect the barrier arc, by the Embedtireorem. But then
Sn cannot be unbounded in either direction. This is a conttafic O

Now we observe 3 facts.
« Corollary 23.16 says that, N 1 c C&.
 Lemma 23.17 shows th&ti c C,.
» Theorem 23.7 shows th@t, c UaNI.
Putting these facts together gives Equation 23.8.

Remark: Lemma 23.17 is a purely number-theoretic statement andtdadiave
a number-theoretic proof. We do not know one, however.
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23.8 STATEMENT 4

We have already established the first part of statement 4eo€thmet Theorem.
Now we prove the second part.

By statements 1 and 2 of the Comet Theorem, it suffices to dengiairs of
points inC#. It follows immediately from Equation 2.1 that two points©f lie
on the same orbit only if their first coordinates differ by deneent of Z [ A]. Our
goal is to prove the converse.

Lemma 23.18 All but at mos® orbits in C}; are erratic.

Proof: By Theorem 23.7,Lemma23.11, and the backward analog of La&#11.1,

all orbits in C% are erratic except those corresponding to the eqivalefitsiose-
guences and the equivalent-to-last sequences. By the QeoRrénciple, all the
points inC#% corresponding to equivalent-to-first sequences lie on dneesorbit.
Likewise, all the points irfC4 corresponding to equivalent-to-last sequences lie on
the same orbit. These two orbits are the only ones that chiofaé erratic. O

Lemma 23.19 Suppose that two points infChave first coordinates that differ by
2Z [A]. Suppose also that at least one of the points has an erraltit.ofhen the
two points lie on the same orbit.

Proof: One direction follows immediately from Equation 2.1. Foe ttonverse,
suppose that the two points have first coordinates thatrdiffe2Z [ A]. The first
coordinates of the points do not lie iZ2A], by Lemma 23.17. Hence one and the
same arithmetic graph contains components andy, that, respectively, track the
two orbits.

Since both orbits are dense @f, we know that both are erratic in at least one
direction. Suppose first that is erratic in both directions. Since is erratic in
one direction, we can find a low vertexof y; that is not a vertex of,. Sincey, is
erratic in both directions, we can find verticeg andw; of y; lying to the left and
to the right ofo, respectively. But then the arc ¢f starting ab is trapped beneath
the arc ofy, connectingw; to w,. This contradicts the Embedding Theorem. In
short,T is not big enough to contain both components. O

It remains only to deal with the case when both points lie doiteithat are only
erratic in only one direction..

Lemma 23.20 Suppose that two points inChave first coordinates that differ by
2Z [ A]. Suppose also that neither point lies on an erratic orbitefithe two points
lie on the same orbit.

Proof: Leta e C% (respectively,3) be the unique point such that the forward
(respectively, backward) first return mapQ§ ata (respectivelyf) does not exist.
There are exactly 2 one-sided erratic orbitsis one orbit, angs is on the other.
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It suffices to prove that — g ¢ 2Z[A] x {0}. We will suppose the contrary and
derive a contradiction. Suppose that # = (2Am+ 2n, 0) for some(m, n) € Z2.

o is the last point in the twirl order, anglis the first point. Interms of sequences,
o corresponds to the sequeridg and/ corresponds to the sequer{&g. Let{a;}
be a sequence of points @} converging toz, chosen so that the corresponding
orbit is erratic. Define

Bi=aj+ (B —a). (23.24)
Then
aj — B = (2Am+2n,0). (23.25)

By the case we have already consideygdies in the same orbit as; .

For j large, the sequence corresponding fanatches the terms of the sequence
for o for many terms. Likewise, the sequence corresponding; tmatches the
terms of the sequence f@rfor many terms. Hence these two sequences disagree
for many terms. Given that the return dynamic€pis conjugate to the odometer
map on the sequence space, we have

N;
2AM+2n = 71(aj —ﬁj)=Zaji/1i, laji| < di. (23.26)
i=0

HereN; — oo asj — oo, andz denotes projection onto the first coordinate.
Let M be the map from Equation 2.10. We have

NI
M(m, n) = D" b; M(V), Ibji| < di. (23.27)
i=0

Hereb;i = +a;;, depending on the sign ok — A. SinceA is irrational, M is
injective. Therefore, settiny = N; for ease of notation, we have

N N-1
(m,n) = > bjiVi = byiV + > bji Vi. (23.28)
i=0 i=0
Looking at the second coordinates, we see that

N-1
On — ZdiQi <
i—0

However, it follows fairly easily from Equation 21.6 thattkeft hand side tends to
oo asN; — oo. This contradiction finishes the proof. O

N-1

bnign — ijiQi‘ =n|. (23.29)
i—0
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Chapter Twenty-Four

Dynamical Consequences

24.1 MINIMALITY

Here we prove Theorem 1.3. Statement 3 of this Theorem iswcwed in the Comet
Theorem. We just have to prove statements 1 and 2.

Recall from the introduction that a s6tc R? is locally homogeneoui$ every
two points ofShave arbitrarily small neighborhoods that are translagiguivalent.
Note that the points themselves need not be in the samegesitiithin these sets.

Statements 1 and 2 of Theorem 1.3 say, respectively,Uhais dynamically
minimal and locally homogeneous. Statement 3 of TheorenislaB immediate
consequence of the Comet Theorem.

Proof of Statement 1: Since every orbit irlJ o intersectsC%, it suffices to prove
that every point oC% lies on an orbit that is forward denselin,, backward dense
in U, or both.

Let¢ e C? be the point. By the Comet Theorem, the orbitaé forward dense
in C%, backward dense i6%, or both. Assume thatlies on an orbit that is forward
dense inC%. The case of backward-dense orbits requires a similambesat

Let 8 € Ua be some other point. Some poiate C# lies on the orbit off.
Hence(y')*(a) = f for somek. Herey' is the outer billiards map. Buiy/)¥ is a
piecewise isometry. Hendey')X maps small intervals centeredaisometrically
to small intervals centered At The forward orbit of enters any interval about
infinitely often. Hence the forward orbit gfenters every interval abopgtinfinitely
often. a

Proof of Statement 2: For anyp € U, there is some integ&rsuch that
(w)(p) € Ch.

Here y’ is the outer billiards map. BupX is a local isometry. Hence there are
arbitrarily small neighborhoods gf that are isometric to neighborhoods of points
in C&. For this reason, it suffices to prove t@f is locally homogeneous. This is
a purely geometric problem.

Let {dk} denote the renormalization sequence. TheGebreaks intody + 1
isometric copies of a smaller Cantor set. Each of these brie&dd; + 1 isometric
copies of still smaller Cantor sets. And so on. From this wethat bothC, and
C#% are locally homogeneous. |
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24.2 TREE INTERPRETATION OF THE DYNAMICS

Let A be an irrational kite parameter. We can illustrate the redynamics to
C?% using infinite trees. The main point here is that the dynarsic®njugate to
an odometer. The conjugacy is given by the igagga — Ca from the Comet
Theorem. Our figures encode the structure gfraphically.

We think of C as the ends of a treEa. We labelTa according to the sequence
of signs{ A — An}. SinceA — A is negative, we label the level 1 vertices 0, dy
from right to left. Each level 1 vertex hali downward vertices. We label all
these vertices from left to right iA — A; > 0 and from right to left ifA — Az is
negative. And so on. This idea of switching left and rightading to the sign of
A — A corresponds precisely to our method of identification in&uns 1.8 and
1.9. Figure 24.1 shows the example for the renormalizatguencégl, 3, 2} and
the sign sequence, +, —.

210 210 210 210 210 210 210 210
Figure 24.1: Tree labelling.

We have the return map
pa:Ch—¢(=1) = Ch — ¢(-1),

and this map is conjugate to the restriction of the odomeateE Q. Accordingly,

we can exteng to all of C even though the extension no longer describes outer
billiards dynamics on the extra points. Nonetheless, itisvenient to have this
extension.

To see whap does, we write this code for a given end. We write the code
“backward” so that the topmost level of the tree correspaadise rightmost digit,
and so on. So, the sequences trail off to the left. For the etemwe add 1,
carrying to the right. For instance, we have

(...000) — (...001) — (...010), (...031) — (...100

Every time many of the initial digits in the odometer turn gube corresponding
orbit makes a large excursion before it returns. We will falie this below.
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24.3 PROPER RETURN MODELS AND CUSPED SOLENOIDS

24.3.1 Proper Models

Here we will describe the sense in which the Comet Theoreswallis to combina-
torially model the dynamics od 4, the set of unbounded special orbits. The results
in this section are really just a repackaging of some of theestents of the Comet
Theorem.

Let X be an unbounded metric space andleX — X be a bijection. We assume
that f2 moves points by a small amount. That is, there is a univematantC
such that

d(x, f2(x)) < C, VX e X. (24.1)
The example we have in mind, of course, is the outer billiandp
I/I/Z Ua — Ua. (242)

The square map moves points by at most 4 units.

Say that a compact subs€§ c X is aproper sectiorfor f if for every N there
is someN’ such thatl(x, Xo) < N implies thatf¥(x) e X for somelk| < N’. In
particular, every orbit off intersectsXy. This condition is just the abstract version
of statement 1 of the Comet Theorem. Informally, all the @rbead either directly
toward Xg or directly away fromX.

Let fp: Xo — Xp bethefirstreturn map. Thisis a slight abuse of notationbeea
fo might not be defined on all points &f;. Some points might exiXy and never
return. We define two functions

e, &: Xo — Ry Uoo. (24.3)

The functione; () is the maximum distance the forward orbitofiets away from
Xo before returning a$o(x). The functione,(x) is the length of this same portion
of the orbit. If f is not defined ox, then obviousl,(x) = co. The proper section
condition guarantees thef(x) = oo as well.

The condition thatX is a proper section guarantees thatande, are proper
functions of each other. Thatis{i,} isa sequence of points Ky, thene;(x) — oo
if and only if e;(x) — oo. This observation includes the statement Hax) = oo
iff e&2(x) = oo iff fg is not defined ornxg. For the purpose of getting a rough
qualitative picture of the orbits, we consider just the fimte;. We sete = e; and
call e theexcursion function

Suppose now that’: X’ — X' is another bijection anj is a proper section.
Let €: X; — R + Uoo denote the excursion function for this system. We say
that(X, Xo, f) is properly equivalento (X', X, f’) if there is a homeomorphism
¢: X — X’ such that

* ¢ conjugatesfy to f{.
» € o ¢ ande are proper functions of each other ¥g.

These conditions guarantee tlgatarries the points wherg, is not defined to the
points wheref{ is not defined.
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The notion of proper equivalence turns outto be a little toarsy for our purposes.
We say that X, Xo, f)and(X’, X, f’) areessentially properly equivaleift$ has
all the above properties but is defined only on the complemgatfinite number
of orbits of Xo. In this case, the inverse map has the same property: It will b
well defined on all but a finite number of orbits ¥, In other words, an essential
proper equivalence is a proper equivalence, provided tleafinst delete a finite
number of orbits from the spaces. We a@l, X, f) anessentially proper model
for (X', Xg, ).

24.3.2 The Cusped Solenoid

Statement 1 of the Comet Theorem says @is a proper section for the map in
Equation 24.2. Now we can describe the proper models forighle {U, C, w').
Statements 2 and 3 in particular describe the excursiorifumep to a bi-Lipschitz
constant. Here we convert this information into a concreseastially proper model
for this dymamics.

Let Z 4 denote the metric Abelian group from the Comet Theorem. Bave-
nience, we recall the definition of the metddiere.d(x, y) = qn‘_ll, wheren is the
smallest index such thatJand [y] disagree irZ /D,,. Here{pn/dn} is the superior
sequence approximatirdy

We denote the odometer map8n by fo. Thatis, fo(x) = x+ 1. Topologically,
thesolenoidbased orZ 4 is defined as the mapping cylinder

Sa=Zax[0,1]/ ~, X,1) ~ (x+1,0). (24.4)
This is a compact metric space.
We now modify this space a bit. First of all, we remove the poin
(-1,1/2)

from S a. This deleted point, the cusp, lies halfway betwéet, 0) and(0, 0). We
now change the metric on the space by declaring the lengltedfdgment between
(x, 0) and(x, 1) to be
1
d(x, —1)
Metrically, we simply rescale the length element on eacériratl by the appropriate
amounts. We call the resulting spacg, thecusped solenoibased orA.

24.3.3 The Main Results
We definef:Ca — Ca to be the map such that

t
to = (x g =5)

From the way we have scaled the distandespaps each point by 1 unit. Indeed,
some readers will recogniZeas the time-one map of the geodesic flonCgn The
original setZ 4 is a proper section for the map, and the return map is pregcigel
Put another wayf is a suspension flow ovdr. Note thatf also depends oA, but
we suppress this from our notation.

(24.5)
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Theorem 24.1 (Ca, Za, f) is an essentially proper model f@U a, Ci‘\, w').

Proof: This is just a repackaging (and weakening) of statementsd23aof the
Comet Theorem. O

Remarks:

(i) The model forgets the linear ordering @f that comes from its inclusion ih,
but one can recover this from the discussion in §24.2.

(i) In a certain sense, the tripl€, Za, ) provides abi-Lipschitz modefor the
nature of the unboundedness of the orbitslin However, it would be misleading
to call the model an actual bi-Lipschitz model for the dynesndnU, because
we are not saying much about what happens to the orbits imtheystems after
they leave their proper section. For instance, the excutsioes could be wildly
different from each other even though they are proper fonestdf each other.

The following result contains statements 1 and 2 of Theorgm 1

Theorem 24.2 The time-one map of the geodesic flow on any cusped solemaégse
as an essentially proper model for the dynamics of the spaciaounded orbits
relative to uncountably many different parameters.

Proof: Up to a proper change of the excursion function, the modeddépon only
the renormalization sequence, and there are uncountalply pasameters realizing
any renormalization sequence. ]

24.3.4 Equivalence and Universality

To each parameteA, we associate the renormalization sequefizé. We then
associate the sequend®,}, where

n-1
Dn =[] +D. (24.6)
i=0

We call A and A’ broadly equivaleniff for each m there is some such that
D dividesD;, and Dy, dividesD,,. Each broad equivalence class has uncountably
many members.

Lemma 24.3 If A and A are broadly equivalent, then there is a homeomorphism
from Z 5 to Z 5 that conjugates one odometer to the other.

Proof: Each element of 5 is a compatible sequen¢a,} with a,, € Z/Dy,. Using
the divisibility relation, this element determines a cspending sequencgy,}.
Hereay, is the image o, under the factor mag/Dn, — Z/D;,,, wheren is such
that Dy, dividesD,. One can easily check that this map is well defined and deter-
mines the desired homeomorphism. |
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Theorem 24.4 If A and B are broadly equivalent, thenthere is an essent@thper
equivalence betweetUa, C#, y,) and (Ug, C4, wg). In particular, the return
maps to G, and Gz are essentially conjugate.

Proof: The homeomorphism fron€ 5 to Zg maps—1 to —1. By construc-
tion, this homeomorphism sets up a proper equivalence leeta, Za, fa) and
(Cg, Zg, fg). This result now follows from Theorem 24.1. O

One might wonder about the nature of the topological eqeiet between the
return maps t€% andC%. One canreconstructthe conjugacy fromthe tree labellings
given in §24.2. The conjugacy is well defined for all point<ipf andCg, but we
typically have to ignore the countable sets of points on Whie relevant return
maps are not defined. This accounts for the precise statefietheorem above.

Let Z denote the inverse limit over all finite cyclic groups. ThggRa—> x+1is
defined onZ. This dynamical system is called thaiversal odometerSometimes
Z is called theprofinite completiorof Z.

We call A universalif every k € N divides someD, in the sequence. 1A
is universal, then there is a group isomorphism fr@mto Z A that respects the
odometer maps. In short, whekis universal,Z 5 is the universal odometer. See
[H, 85] for a proof of this fact — stated in slightly differenttes — and for a detailed
discussion of the universal odometer.

Lemma 24.5 Almost every parameter is universal.

Proof: A sufficient condition for a parameter to be universal is thadry integer ap-
pears in the renormalization sequence. We can expressctithdda certain number
appears in the renormalization sequence as a statemeiat ¢eaain combination
appears in the continued fraction expansiorfof Geometrically, as one drops a
geodesic down fromo to A, the appearance of a certain pattern of geodesics in the
Farey graph forces a certain number in the renormalizagguence. As is well
known, the continued fraction expansion for almost evember in(0, 1) contains
every finite string of digits. i

Statement 3 of Theorem 1.4 is contained in the followingltesu

Theorem 24.6 For almost every Ae (0, 1), the triple (Ua, C4, y) is properly
modelled by the time-one map of the geodesic flow on the sah@rsped solenoid.

Proof: This resultis an immediate consequence of the previouft szsiTheorem
24.1. O

Remark: One might wonder if there is a concrete parameter that eshibis
universal behavior. It seems that the paraméter e — 2 has the following inferior

sequence.
1 5 51 719

1(—7eﬁem---, M2 = @n+ 10)rps1 +rp, n=>0.

One can easily check that this sequence leads to the urlieels@eter. Thus the
fractional part ofe has universal behavior.
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24.4 SOME OTHER EQUIVALENCE RELATIONS

Call A andB narrowly equivalentf they have the same renormalization sequence
and if the sign ofA — A; is the same as the sign Bf— B; for all j. Here{A;} and
{B;} are the superior sequences approximatendB, respectively. Referring to
Equation 1.9, the definition cﬁ‘j relative to the narrowly equivalent parameters is
the same for every index. Each narrow equivalence clasisumtable.

Theorem 24.7 If A and B are narrowly equivalent, then there is an ordergeeving
homeomorphism from | to itself that conjugates the returp @ Cy to the return
map on G. This map is a proper equivalence fraiia, C4, w) to (Ug, C4, wp).

Proof: The two space$l, andIlg are exactly the same, and the extended twirl
orders on the (equivalence classes) of these spaces aerbe $hus the successor
maps on the two spaces are identical. The mapg¢; o ¢2‘1 is a homeomorphism
from Ca to Cg that carriesC’ andC% and conjugates one return dynamics to the
other. By constructior) preserves the linear ordering bpnand we can extento

the gaps o — Ca in the obvious way. By construction, this map carigeg—1)

to ¢g(—1) and is continuous. Hence it is a proper equivalence. m|

Thefirst renormalizatiorof the odometer map — X + 1 on the inverse system
...>Z/D3—>Z/Dy —> Z/D; (24.7)

is theD1th power of the map. This correspondsto the map x+ 1 ontheinverse
system

...>Z/Dy— Z/D)y— Z/Dj, D/, = Dpy1/D1. (24.8)

As in the Comet Theorem, eadb, divides D1 for all n, so the construction
makes sense. In terms of the symbolic dynamics on the sequsgacell, the
renormalization consists of the first return map to the sabsp

I = {x  I| ko = O}. (24.9)

In terms of the dynamics 0@ 4, the first renormalization is the first return map
to the Cantor subset correspondingid Thesecond renormalizatiois the first
renormalization of the first renormalization. And so on.

Let I' denote thg2, oo, co)-triangle group from the Comet Theorem. Given
the construction of the inferior sequence, the enhancearmeadization sequences
for two I'-equivalent parameters have the same tail ends. Thus tlemtss of the
renormalization sequences are the same, and the tail etts sifjn sequences are
the same. This gives us the following result.

Corollary 24.8 Suppose that A and B are equivalent unfigr Then some renor-
malization of the return map to ‘Cis conjugate to some renormalization of the
return map to G. The conjugacy is given by an order-preserving homeomerphi

Remark: The homeomorphism mentioned in the last corollary is a sirpilCom-
pare Statement 2 of Theorem 1.5 and see §25.3 for more details



book April 3, 2009



book April 3, 2009

Chapter Twenty-Five

Geometric Consequences

25.1 PERIODIC ORBITS

Here we prove statement 1 of Theorem 1.5.

Lemma 25.1 U, has lengtlD.

Proof: SinceU, is locally homogeneous, it suffices to prove tEathas length 0.
Let A, = |Ath — pnl, @s in Equation 21.5. We define

Gn= > 2idk. (25.1)
k=n+1
Then
Cac > (In + X(K)). (25.2)
xell,

Here I, is the interval with endpoint), 1) and (G, 1). In other words,Ca is
contained inD,, translates of an interval of length,. We just need to prove that
DG, — 0. It suffices to prove this whamis even. By Equation 21.6,

Dn < € "gn, e =/5/4. (25.3)
By Equation 21.5 we have
Gn<2 > gt<2g,t > 27F <2g7t (25.4)
k=n+1 k=1
Here we have used the trivial bound tigg/g, < 2"~™ whenm > n. Therefore
DnGn < 2¢7". (25.5)
This completes the proof. |

Theorem 25.2 Any defined orbit in - Cp is periodic. There is a uniform bound
on the period depending only on the distance from the poi{so

Proof: The Comet Theorem combines with statement 2 of Theorem Ipiote
that any defined orbit ih — Cx is periodic. The period bound comes from taking a
limit of the Period Theorem as — oo in the rational approximating sequence. In
other words, if this result were false, then we could corttatie Period Theorem
using the Continuity Principle. ]

Combining these results, we have statement 1 of TheoremAlrBost every
point of R x Zyq4q lies on a periodic orbit.
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25.2 ATRIANGLE GROUP

Let H2 denote the upper half-plane model of the hyperbolic planet IL c
Isom(H?) denote the?2, oo, co)-reflection triangle group generated by reflections

in the sides of the geodesic triangle with verti¢@sl, i). Figure 25.1 shows this
triangle. SeeBe] for details.

H2

0 1

Figure 25.1: The geodesic triangle with verticég, 1, i).
I is the largest subgroup of Isdi?) with the following 3 properties.
1. T preserves the Farey graph.
2. T permutes the odd rationals and also the even rationals.

3. Every elemenT e I' acts onRR U oo via an equation of the form
ax+b

TX) = ——,

) cx+d

On the upper half-pland, acts either as a linear fractional transformation or

as the composition of a linear fractional transformatiothwiomplex conju-
gation. This depends on the signaad — bc.

lad — be| = 1. (25.6)

These properties guarantee that elements afe well adapted to the construction
of the inferior and superior sequences. See 817.1.

Remark: It seems worthwhile to mention the connection betw&eand other
familiar groups.I" contains the ideal triangle group generated by reflectiotisa
sides of the ideal geodesic triangle with verti¢@sl, co). The ideal triangle group
in turn containgPT',, wherel'; ¢ SLy(2) is thelevel 2 congruence subgroepn-
sisting of matrices congruent to the identity mod 2. Hémeans that we take these
matrices modt1. Finally, I is commensurableith the modular grou’ SL,(2).
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25.3 MODULARITY

Here we will prove statement 2 of Theorem 1.5. Lgtand 1, be the quantities
associated to parametefsand A, as in Equation 1.10

Lemma 25.3 Let T e T be such that TA) = A’. Then there is some integer m
such that

/ j‘/ /
di = dicem, —ikk = [T/ (A)Y?
+m

provided that k is sufficiently large.

Proof: HereT’(A) = (cA+ d)~2 whenT is as in Equation 25.6. Given our

construction of the inferior sequence, and the first two prigs of ", we have

T (Arm) = Ay for somem and all sufficiently largé. Henced; = di;m for these

choices ok andm. We compute

A/=aA+b, T<E)=ap+bq.
cA+d q cp+dg

An exercise in modular arithmetic shows that the fractiontanright is in lowest
terms. Hence

M= 1A — il (25.7)

Pk = @0k+m + bPeim, Ok = Clktm + dPcem. (25.8)
Combining the last two equations, we have

(@aA+b)(Cqem + dperm) — (CA+ d) (@Grm + BPeim)

Ao = cA+d
(@d — bo)(AGktm — Prtm) Alktm — Prt+m Aktm 1
= = = = dkam| T/ (A) Y2,
cA+d cA+d cA+a Ml (A
This completes the proof. ]
Recall thatC 4 is defined by the formula
Ca=J (X)), X() =D 2K, % =|Ag - pil. (25.9)
rxell i=0

If AandA’ areT-equivalent, as above, then we have the obvious map
> Kmiidmii = kA (25.10)
i=ko i=ko

By the previous result, this map is well definekifis large enough. Also by the
previous result, this map is a similarity. Hen€& and C% are locally similar.
HenceUa andU p are locally similar.
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25.4 HAUSDORFF DIMENSION

In this section, we review some basic properties of the Hawisdimension. See
[F] for more details.

We will work with sets iInR x Zo,qq and especially sets in our favorite interval
I =[0, 2]x{—1}. Givenaninterval,let|J| denoteitslength. Give8 C R x Zy4q
and some& > 0, we define

1(S,s,0) =inf > | 5[ (25.11)

The infimum is taken over all countable covers®by intervals{J,} such that
diam(Jn) < J. Next, we define

u(S,9) = lim u(S,s,9) e [0, oc] . (25.12)

This limit exists because(S, s, d) is a monotone function @f. Note thafu (S, 1) <
oo becausé has finite total length. Finally,

dim(S) = inf{s| u(S,s) < oo}. (25.13)

The number dingS) is called theHausdorff dimensionf S.

Given an explicit family of covers, as we have constructetiéproof of Lemma
25.1, it is easy for us to compute upper bounds on the Hadsdiorénsion. Here
we recall a method for getting lower bounds on the Hausdarfédsion. LetS C |
be acompact set. We say thfatl — R is ap-densityrelative toSif f is monotone
nondecreasing and constant on the complementary intarf/8land

Cla—b|” > f(b)— f(a) (25.14)

for someC > 0 and all intervalsd, b] c | such thata — b is sufficiently small.

Lemma 25.4 If S admits gp-density, themim(S) > p.

Proof: This is essentially the Mass Distribution Principle 4.2 ) p. 55]. The
function f is the integral of the mass distribution described in cotinaavith this
principle. O

In computing the functioni(A) = dim(U,), we would prefer to work with the
setsCa. The following lemma justifies this.

Lemma 25.5 U, and Cy and C”“A all have the same dimension.

Proof: SinceCa — C% is countable, we have di@a) = dim(C%). SinceUa, is
locally homogeneous difll5) = dim(Ua N J) for any intervalJ about a pointin
Ua. In particular, dinfU ) = dim(C%). O
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25.5 QUADRATIC IRRATIONAL PARAMETERS

25.5.1 Self Similarity

First, we prove statement 3 of Theorem 1.5.
A Cantor setis commonly calleslf-similarif it is a finite union of similar copies
of itself.

Lemma 25.6 Suppose that & (0, 1) is a quadratic irrational. Then G is a finite
disjoint union of self-similar Cantor sets.

Proof: A has an eventually periodic continued fraction expansicendeA is the
fixed point of some infinite-order elemente SLy(R), acting by linear fractional
transformations. But some power ©flies in the groud". Hence, without loss of
generality, we can také e I'. But then the map from Equation 2.9 carries one
clopen subset, of Cx to a larger clopen subs¥i. (Hereclopenmeans simultane-
ously closed and open.) Looking at Equation 2.9 and recgtlie definition ofCa
from Equation 1.11, we see th@j is a finite disjoint union of translates bf, and

V1 is a finite disjoint union of translates ¥%. HenceV, is a finite disjoint union of
similar copies of itself. Henc€, is a finite union of translates &f;, each of which

is a self-similar Cantor set. |

A self-similar Cantor set has the property that every painit ihas arbitrarily
small neighborhoods that are also self-similar Cantor stetement 2 of Theorem
1.3 says that any point &fa has a neighborhood that is isometric to a neighborhood
in C%. Shrinking this neighborhood appropriately, we get a stfiar trimmed
Cantor set surrounding the pointlin. This proves statement 3 of Theorem 1.5.

25.5.2 Dimension Formula

Now we present a dimension formula in the quadratic irrati@ase. Actually, the
formula is slightly more general. Leék € (0, 1) be irrational. Let{p,/qn} be the
associated superior sequence andidgt be the renormalization sequence. We call
Atame if

1. gns1 < Caq, for some constart that is independent af.

2. The following limits exist.

D(A) = lim 'Og(ﬂ,

n— oo n

Q(A) = lim '09’%.

There are uncountably many tame parameters. In partieutanave the follow-
ing result.

Lemma 25.7 Quadratic irrational parameters are tame.

Proof: Let A be a quadratic irrational parameter. From the work in 82&&,
see that the renormalization sequefig is eventually periodic. But this implies
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that the limitD(A) exists. At the same time, we have integersl, n such that
Ok+n = CGk + d for all sufficiently largek. This easily implies tha®Q(A) exists and
thatgy1/0« is uniformly bounded. O

Lemma 25.8 Suppose A is a tame parameter. £pt/q.} be the associated supe-
rior sequence. Theh, € [Cy, Cy] qn‘l for positive constants £ Cs.

Proof: For tame parameters, the renormalization sequédgeis bounded. We
have

An = GhlA— Anl < 2d7g7t < Cog,

by Lemma17.4. For the lower bound, notefirstthat; < 4., < 4n, by Equation
21.7. By the triangle inequality,

[A— Anl + A= Anpt| = [An— Anpal >

OnOnt1
Hence
200 > An+ Any1 = On|A = Anl + Ong1| A — Anyal
> qn(|A — Anl+ A= An+1|) > 207Y > 2G5
This gives the lower bound. |

Here is the main result for this section.

Theorem 25.9 If A is a tame parameter then(A) = D(A)/Q(A).

Proof: Let C, be the covering we constructed in the proof of Lemma 25.1. The
intervals inCp, are pairwise disjoint and have the same length. Each irtef\,
contains(d, + 1) evenly and maximally spaced intervalsthf, ;.

We first use these covers to get an upper bound on(dign There areD,
intervals inCy, all having lengthG,. Choose any > 0. Forn large,

Dy € (exp(n(D _ e)), exp(n(D +e))). (25.15)
We have
Gn = 2451 € [24n41, 2n] € [C107}1, Cogrt] € [Cs, Col @rh,  (25.16)
by the preceding lemma. Hence

Gn € (exp( —nQ+ e)), exp( —nQ - e))). (25.17)

Settings = (D + €)/(Q — ¢€) and lettingn — oo, we haveu(Ua, s) < 1. Hence
dim(U,) < s. Bute is arbitrary. Hence difu,) < D/Q.

For the lower bound, we spt= (D —¢)/(Q + ¢) and construct a-density. Let
X', denote the partition of [AL] into D, equally sized intervals. Going from left to
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right, we map the th interval ofC, into the jth interval of ',. We map the gaps
between consecutive intervals @f to the obvious points common to consecutive
intervals ofX',. The mapq f,} form a uniformly continuous family, and the limit
f:1 — [0, 1] exists. By constructionf is monotone nondecreasing and constant
on the components df — Ua.

Consider &, b] c |. By Equation 25.16, the sequen®,,/ G441} is uniformly
bounded. Hence we can assume without loss of generalityahat| = G, for
somen. By construction §, b] intersects at most 2 consecutive intervalCaf
Hencef (b) — f(a) < 2D; 1. Hence

2la— bl = 2G. >

2D, >
f(b) — f(a). (25.18)
This shows thaff is ap-density relative tdJa. Hence dinfU,) > p. Again, ¢ is
arbitrary, so dinflUs) > D/Q. ]

Example 1: Let A = /5 — 2 = ¢3, the Penrose kite parameter. Herés the
golden ratio. The inferior sequence faris

1 1 1 3 5 13 21 55 89

17375 1321755 89 2337 377
The superior sequence obeys the recurrence relgtiogh= 4r,.1 + rn, wherer
stands for eithep or q. The inferior renormalization sequence j©11, 0, .... The
renormalization sequence is1l 1, .... HenceD = log(2). From the recurrence

relation, we comput€ = log(~/5 + 2). Hence
log(2) log(2)
)= logv512  10g@)
Example 2: Let A = +/2 — 1. The inferior sequence fak is
1 1 3 7

1€C3C7¢C< 2 = 241 + I

All terms are superior. From the recurrence relation, wel@d) = log(2) and
Q(A) = log(+/2 + 1). The inferior sequence for4 Ais
1 3 17 99 5
i%gﬁz—gﬁﬁg%, a2 =0hp1 — Iy
All terms are superior. From the recurrence relation, weehagl — A) = log(3)
andQ(1 — A) = 2log(v/2 + 1). Hence
log(2) , ul— A) = log(3) _
log(+/2 + 1) 2log(v2 + 1)
In particular,u(A) # u(1— A). The hyperbolicisometrg — 1 —Zis a symmetry
of the Farey graph that does not belong to the grBufyhe calculation shows that
the dimension function does not in general have this additisymmetry.

u(A) =



book April 3, 2009

234 CHAPTER 25

25.6 THE DIMENSION FUNCTION

Here we prove statement 4 of Theorem 1.5.

TheBorel ¢ -algebraof subsets oR" is the smallest collection that contains the
open sets and is closed under complementation and countaibles. ABorel set
is a member of thig-algebra. A functionf:R" — R is Borel-measurablé the
set{x| f(x) > a}is a Borel set for ala € R.

Lemma 25.10 Let Sc [0, 1]? be a Borel subset. Leta3lenote the intersection of
S with the linely = A}. Suppose Sis compact for all A. Let §A) = dim(Sa).
Then f is a Borel-measurable function[6f 1].

Proof: This is a special case dffM , Theorem 6.1]. O

Recall thatu(A) = dim(U ) the Hausdorff dimension of the set of unbounded
special orbits.

Lemma 25.11 The function u is Borel-measurable.

Proof: WhenA = p/q, we letCa = O2(J) N |. HereJ is the interval of length
2/qin | whose left endpoint ig0, 1). ThusCa is just a thickened version of part
of the fundamental orbit. Having stated this definition, veéirmeC as in Equation
1.13. By constructionC is compact for allA € [0, 1]. In order to apply Lemma
25.10, we just have to show th@tis a Borel set.

In the proof of Lemma 25.1 we produced a coverihgof Ca by intervals all
having the same length. One can extend this definition tcdtieral case in a fairly
obvious way. LeC{’ denote the union of these intervals. 1@ be the corre-
sponding union, withﬁ{” replacingCp in Equation 1.13. The sizes and positions
of the intervals irCf{‘) vary with A in a piecewise continuous way. Hencé&" is a
Borel set. Henc€ = NC™ is a Borel set. O

Lemma 25.12 The function u is almost everywhere constant.

Proof: The functioru is aTI'-invariant Borel-measurable function on fl]. We can
extendu by the action of” so that the extended functighhas the same properties
on all of R U co. As is well known,I" actsergodicallyon R U co. See BKS]. But
then any invariant Borel-measurable function is almostyavbere constant. This
applies tad. Henceu is almost everywhere equal to some constant ]

Let
S=[0,1]-Q. (25.19)
Now we want to see thai maps every open subset 8fonto [0, 1]. Sinceu
is I'-invariant and thd-orbits of S are dense in [01], it suffices to prove that
u(S) = [0, 1]. We will prove this below.
SaythatA e (0, 1) issuperiorif all the terms in the inferior sequence are superior.
Let D = D(A) be as in the dimension formula above.
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Lemma 25.13If A is tame and superior, then(&) > D/(D + log 2).

Proof: Referring to the inferior sequenéen/q,} and the inferior renormalization
sequencéd,}, we always have

Ont+1 < 2(dh + 1)qn.

This bound directly applies to the superior sequence whiersuperior. By induc-
tion,

On < 2Dp.
HenceQ < D + log 2. The bound follows immediately. o

Lemma 25.14 Let A be a superior parameter whose renormalization seceight
diverges tox. If dny1/d, grows subexponentially,(é) = 1.

Proof: The same argument as in Lemma 25.8 shows that
Jn > (haG) ™", (25.20)
where{h,} grows subexponentially. From Equation 21.7, we get
Gn = 24}, > 24n > 2(hagn) 2. (25.21)
Therefore

log(Dn)
n—oo log(Gph)

log(Dn)
m ————
~ nooo Iog(hnqn)

n—oco l0g(ahn)

logn)  _ 4
~ n=eo log(Dn) +10g(2)

The starred equality comes from the subexponential grofvth .oThe same con-
struction as in Theorem 25.9 shows théf) > 1. Henceu(A) = 1. o

(25.22)

Lemma 25.15 There exists A S such that gA) = 0.

Proof: We takeA so that the inferior renormalization sequence consisissdnof
0s and 1s. Our argument for the upper bound in Theorem 2563 gpA) = O if
the number of Os between each pair of 1s grows at a fast enatggh r m]

Now we come to the main result.
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Lemma 25.16 u(S) = [0, 1].

Proof: Inlight of the results above, it sufficesto prae 1) c u(S). Letx € (0, 1).
We will consider only parameters having an odd enhancedanfeenormalization
sequence. Such parameters are determined by their inferiormalization se-
guences.

Let A(M, N) denote the parameter with inferior renormalization seqa&l) Oy
repeating. Here @ denotesM consecutive 0s. These parameters are all quadratic
irrational and hence tame. By Lemma 25.13, we ha#(0, N)) > x for N large.
Moreover, for fixedN, we haveu(A(M, N)) —» 0 asM — oo. Hence we can
chooseM andN such that

U(AM + 1, N)) < x < u(A(M, N)). (25.23)

(If we have equality on either side, we are finished, so we sanrae strict inequal-
ity.) We fix this pair(M, N) for the rest of the proof.

For any binary sequence,= {ex} we let A(e) be the parameter with inferior
renormalization sequence

Na 0M+€17 Na OM+62) Na 0M+€3a
By construction,
D(A(¢)) = D = log(N) (25.24)

independent o¢ andM. Consider the sequen¢ey} of denominators of superior
terms corresponding tA(¢). By Equation 25.23, we have

log o, logan
— < T >

xD, xD,

respectively, for the 0-sequence and for the 1-sequence,ois large. Inserting
an additional O into the inferior renormalization sequehas the effect of at most
doubling the terms in the denominator sequence. (Comparprbof of Lemma
21.1.) Therefore we can choose the firderms ofe such that

log(@) _, | 1092
n - n

xD

>

providedn is large. Passing to a subsequence and taking a limit, welzaosee
so thatQ(A(e)) = x D. But thenA(e) is tame andi(A(e)) = x. O

We have already shown that the functioiis almost everywhere constant. Let
r e [0, 1] be arbitrary. We have just shown that!(r) is nonempty. Buu is
invariant under thé2, co, co)-triangle group. Hence~1(r) is dense inS. This
finishes the proof of statement 4 of Theorem 1.5.
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Part 6. More Structure Theorems

In this part of the book, we will prove all the results left ofeom Part 5. The
material in this part is probably the most difficult, so it seeworthwhile to point
out that one can stop reading early and still take away pagsalts.

« In Chapter 26, we prove the Copy Theorem from §22.2. Knovjirsg the
Copy Theorem, we can conclude ti@ff c Ua. Thatis, the timmed Cantor
set from the Comet Theoremdsntainedin the union of special unbounded
orbits. All the dynamical results 0@% — e.g., the essential conjugacy to the
odometer — follow just from the Copy Theorem. This might béce mesult
for the reader interested mainly in the existence and natticenbounded
orbits.

 In Chapter 27, we define what we mean by the pivot arc reladhan even
rational kite parameter. Along the way we will prove anothersion of the
Diophantine Lemma from §18.2. This lemma works for pairsdsf mationals,
and the result here works for pairs of Farey-related rat&yrdther even or
odd. This whole chapter is a prelude to the last 4 chapters.

* In Chapter 28, we prove the Pivot Theorem from §22.2. ThetPiheorem
works in both the even and odd cases, and is proved in an indugty
that requires both cases. From the Pivot Theorem and the Topgrem
combined, we have Theorem 1.8.

 In Chapter 29, we prove the Period Theorem. Combining theyGtveorem,
the Pivot Theorem, and the Period Theorem, we provelhat | = C’;. In
other words, we completely characterize the set of unbadindsits inside
the special intervall from the Comet Theorem.

* In Chapter 30, we prove a technical result, the Hovering toeywhich rules
out the existence of certain pathological components oatiilemetic graph.
We use the Hovering Lemma as a step in the proof of the Low ¥@itteorem.

 In Chapter 31, we prove the Low Vertex Theorem. This is tichitécal result
we needed for statement 1 of the Comet Theorem. Statemerih& Gomet
Theorem is the result that gives us the minimality and homeg of U a.
So, one needs to read all the way to the end to obtain the gébhadtural
results forU a.
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Chapter Twenty-Six

Proof of the Copy Theorem

26.1 A FORMULA FOR THE PIVOT POINTS

Let Abe an odd rational. LeA_ be as in Equation4.1. L& = (g-, —p-). Here
we give a formula for the pivot point&* associated t@\. Recall that these points
are the endpoints of the pivot arc, the subject of the Copyofidra.

Lemma 26.1 The following are true.
e Ifg. <qgy,thenE"+E~ = -V_+(0,1).
e Ifgy <g_,thenEr+ E~ =V, +(0,1).

Proof: We will establish this result inductively. Suppose firsttth4l <« A. Then
2k -1

_ - . o
A= E =Ckk. E'=00, V= (k, —k + 1).

A=—, g-=k—-1<k=q,.
The result works in this case.
In general, we have
A=A2, Ao%Al(—Az.

There are 4 cases, depending on Lemma 17.2. Here the index=isl. We will
consider case 1. The other cases are similar. By case 1, veddnay < (d1)-.
Hence, by induction,

EY + Ef = (Vo)1 + (0, D).
SinceA; < Ay, we have
E, = Ef, EJ = Ef + diVa.
Therefore
EJ + E; = (V) +diVi+ (0, 1) = (Vo)4 + (0, 1).

The last equality comes from case 1 of Lemma 17.2. As we resdaaiter stating
Lemma 17.2, this result works for both numerators and denatois.) In case 1,
we have(qy), < (g2)-, so the result holds. ]

Recall thatR; = Ri1(A) andR, = Ry(A) are the two parallelograms from the
Decomposition Theorem. See Chapter 19.
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Lemma 26.2 E~ lies to the left of R, and E' lies to the right of R.

Proof: Let z; denote the projection to the first coordinate. One of theobott
vertices ofR; is (0, 0). We will consider the case when the left bottom vertex is
(0,0). In all cases one can easily check from the definitions#héE~) < —1.
HenceE ™ lies to the left ofRy.

Consider the right side. We hage < g- in our case. By case 2 of Lemma 26.1
and the result for the left hand side, we have

1 (EY) > ma(Vy) + 1.

But V, lies on the line extending the bottom right edgeRaf exactly 1/q vertical
units beneath the bottom edge Rf. This right edge has a slope greater than 1.
Finally, the line connectiny, to z;(E™) has a nonpositive slope becaust is a
low vertex lying to the right ol/,.. From all this geometry, we see th&} lies to
the right of R;. O

Figure 26.1 illustrates this result for the parametefS3 The smaller of the two
parallelograms i} in this case. The pivot arc starts out on the far left and elgen
about to the bottom middle of the figure.

Figure 26.1: PT'(13/57) and Ry(13/57) and R,(13/57).

Note that the pivot arc is symmetrically situated with redpge R;. This always
happens, as we shall see later on.
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26.2 A DETAIL FROM PART 5

While we are in the neighborhood, we will clear up a detaihirBart 5, namely,
the proof of Lemma 22.5. For convenience, we repeat thenstatehere. In this
statementE™ and E~ are the pivot points relative to the odd rational parameter

A=p/q.

Lemma 26.3
q

—g <m(E7) < m(EY) < 5.
Proof: We will prove this result inductively. Suppose that
A]_ — Az,

and the result is true foA;. We consider the case whéqy < A,. The case when
A; > A, requires the same treatment. Whgn< A,, we have

Ef =E;,

so certainly the bound holds fé; .
For the(+) case, we have

71(EF) = m1(E}) + duay dh = floor(zq—;l). (26.1)
There are two cases to consider.
Case 1:Suppose that; = floor(gz/qp) is odd. In this case
(2d1 + Do < o, = oy < - — -
The first equation implies the second. Hence, by induction,

i (E}) < %Jr q2;q2 < q_22.

Case 2: Suppose thad; is even. Then we have case 2 of Lemma 17.2 applied
to the indexm = 1. This is to say that

(@)- < (Q)+- (26.2)
From the formula above, the first coordinatefsf + EJ is negative. Hence
|7 (ET)| > |z (EF)I.

This fact finishes the proof. |
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26.3 PRELIMINARIES

As preparation for the main argument of our proof, we provess easy results in
this section and also set up some notation.

The pivot points are well defined vertices, but so far, we dokmow that the
pivot arc is well defined. That is, we do not know tHat and E* are actually
vertices of. These points might be vertices of some other componeht af/e
will prove the well definedness result along with the prooftef Copy Theorem.

To start things off, we prove that the pivot arcs are well defim the simplest
cases.

Lemma 26.4 If 1/1 « A, then the pivot arc is well defined relative to A.

Proof: Here
2k —1
=—. 26.3
2k+1 ( )
In 819.5, we showed that the line segment connegting) to (—k, k) is contained
in the arithmetic graph. So, the pivot arc is well defined. O

Notation: Here we introduce some notation that we will use repeateslyi Let
A; be an odd rational. For each integir > 1, there is a unique odd rational
Az = Az(d1) such thathA; « A, and

oL = floor(%).
a1

Thus the numbers\, (1), A2(2), ... give the complete list of odd rationals having
A; as an inferior predecessor. Lemma 17.2 describes how toraoh8,(d;). For
instance, ifA; = 1/3 then

1 3 5
Az(l) = ga A2(3) = Ea A2(5) = 1_7a

We have listed the numbers this way to show the pattern better

3 5
A==, Al =13

Lemma 26.5 Let Eji be the pivot points associated to the parameter Phere is
an arc Pl'1(61) c T'1 whose endpoints are;Eand Ef .

Proof: Suppose thaf\; < A;. When A, < A; the proof is similar. Then, by
Equation 22.3, we have

E, = Ef, E; = Ef +diVy, Vi = (G, —P1).

Hered, is as in Equation 4.5 and Lemma 17.2. Bytis invariant under translation
by Vi. HenceE2i is a vertex ofl";. O
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26.4 THE GOOD PARAMETER LEMMA

Call A; agood parameteif
PI'y c As(l ). (264)

Here A1(1) is the region from the Diophantine Lemma defined relativéntogair
(A1, A2(1)). We calll thebase interval We will give a formula below. Here is the
main result in this section.

Lemma 26.6 (Good Parameter)If A; is good and A « A,, then the Copy The-
orem holds for the paifA;z, Ay).

We will prove this result in a case-by-case way. That is, wik tnaat the pair
(A1, A2(k)) for k = 1,3,5,... andk = 2,4,6,.... The case whek = 1 is
pretty easy. The cases whikn= 2 andk = 3 are the critical cases, and they have
essentially the same proof. The remaining cases are easherest of this section,
we assume thaA is good.

Our proof will use the Mismatch Principle established in fiea19. For conve-
nience, we repeat it here.

Mismatch Principle: Let I' andT" be two arithmetic graphs. [f” andT fail
to agree inRy, then there are two adjacent verticed6f) R; where the two arith-
metic graphd” andI” do not agree.

26.4.1 An Easy Case

Here we show that the Copy Theorem holdsAqrand A(1). Note that
Pri(1) = PTy. (26.5)

The pivot points do not change in this cadeX = Eéc. So, if Ay is good, then
the Diophantine Lemma immediately implies thaf1(1) = PT'; C I',. But then
there is an arc of ; that connectE; to Eg, the two endpoints oPT'1(1). This
shows that this pivot arc foh; is well defined as a subarc 6 A2) and moreover
that his pivot arc is a subarc o%.

Before we leave this section, we establish some notatioe tasked below. Let
Ao be such that the sequence

A() — A]_ — Az(l)

is part of the inferior sequence. Liebe the base interval, as above. We will consider
the case wheml\g < A;. The other case is similar. In the case at hand, the base
interval is given by

l=[-m+2qa+ @+ —2]=[-0+2 q+ (@) —2]. (26.6)

The first equality is Lemma 17.8. The second equality is casElEmma 17.2,
with d; = 0.
For later purposes, we write

I = [liett, lrignt] - (26.7)



book April 3, 2009

244 CHAPTER 26
26.4.2 The Critical Odd Case

Now we show that the Copy Theorem holds #8y and A,(3). The basic idea is

to build from the easy case we have already handled. We agasider the case

whenAgy < A; for ease of exposition. The other case is essentially the s&nom

Lemma 17.2, we know tha; < Ax(3), just as we knew above thal; < Ax(1).
We define

Ay = Ax(D), A = Ax(3). (26.8)

We attach &(x) to objects associated t45. Let | be the base interval. Ldt*
denote the interval corresponding to the &g, A3). By Lemma 17.2, we have
(95)+ = 01 + (g1)+. Hence, by Lemma 17.8 and by definition,

1* = [lieft, lright + O] - (26.9)
Lemma 26.7
PTy(3) = PT1 Uy U (Pl"l + vl), y € (Ro+ V). (26.10)

That is, PI'1(3) is obtained from F'1(1) by concatenating one period bf to the
right.

Proof: Let R; = R;j(Ay), as in the Decomposition Theorem f8§. As in Lemma
26.2, we know thafR; lies to the right of the origin andR; to the left. This is
becausdq;). < (gi)- in the case we are considering. By Lemma 26.2, the arc
PI'; completely crosseR;. The left endpoint lies ifR;, and the right endpoint lies

in Ry + V4, the translate oR; that lies on the other side &;. By symmetry, one
endpoint ofPT'1 (1) entersR; + V; from the left, and one endpoint &T1 (1) + V1
entersR; + Vi from the right. The ar¢ joins two points already ifR; + V3. This

arc cannot cross out d®, + V1, by Lemma 19.2. O
u‘ .W
Pr1(1)

R, d\:o/Rl\ RV /\/b

Figure 26.2: Decomposition ofPT'1(3).

Now that we have brokeRT1(3) into three pieces, as shown in Figure 26.2, we
have three pieces to consider. The left piece is is easy.

Pric Ay(l)c Ar(1) = PIyCT(AY. (26.11)

The first containmentis the definition of goodness. By thephantine Lemma, the
first equation implies the second.
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The right piece is also easy. Any € PI'y + Vi has the formv + Vi, where
v € PI';. By Lemma 18.1, we have

G1(v*) = G1(v) + 01, Hi(v™) = Hi(v) + qs.
Hencev € Ay(l) implieso* € A(1*). Therefore
PI'y + Vi C Al(l*) - PI'y + Vi C F(A;) (2612)

The middle piece is harder.

Lemma 26.8 y c I'(A).

Proof: We will use the same argument that we used in §19.4. SinceR,, we
just have to show that the verticesRf belong to the seA1(1*) U Ax(1*). Thisis
a calculation just like the one in §19.4.

Now for the calculation. Leti andw, respectively, be the upper left and upper
right vertices ofR, + Vi. We have

(@u)+

1
Here the vectors are asin Equation 3.2, as usual. The appatinn is good to within
1/q9:. To avoid approximations, we consider the very slightlgi@t parallelogram
R, 4+ V;. The vertices are

Vo)™, =W+

u~ W, + Vi, w =W + V1. (26.13)

V1, w = Vi, + Wi. (2614)

Each vertex of the new parallelogram is withifgl of the corresponding old paral-
lelogram. Using the Mismatch Principle, it suffices to dodhkulation inR; + V;.
Here is the calculation.

Ga(0) — (—)
= (201 + 4) — Hi(w)
_ 9
=0+ (Q)+ it > 2. (26.15)

These bounds hold for all but a few exceptional parametsiig, llemma 19.4. The
remaining few cases can be treated using exactly the sarke &% in §19.5. O

Now we have shown th&I'1(3) c I',, as desired.

26.4.3 The Rest of the Odd Cases

We will consider the case wheih = 5. The cases = 7,9, 11, ... have the same
treatment.

In the case at hand®T'1(5) is obtained by concatenating 2 periodsigfto the
right of PT'1(1). We have decomposition of the form

PI1(5) = PI3(1) Uy U (PTa(1) +2W), y C (Ro+ Vi) U (Ry+ 2Vy).
(26.16)

Herey is contained in a parallelogram that is twice as long as ic#se) = 3. The
calculations are exactly the sameinthis case. The key jsahtl * = [a, b + 2q1].
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26.4.4 The Even Cases

Once we take care of the critical even case, we will treateéheaining even cases
just as we treated the remaining odd cases. We will show liea€bpy Theorem
holds for A; and A>(2). As in the odd case, we assume that < A;. The other
case is entirely similar.

Our proof here is about the same asin §26.4.2. We will justatd the highlights.
The same argument as in §26.4.2 gives the decomposition

Pri(2) = (PFl(l) - vl) Uy UPT1(D), y C Ra. (26.17)

The same arguments as in §26.4.2 take care of the left artgragtes ofPT'1(2),
as shown in Figure 26.3. Now we repeat the analysis for thellmigrcy . Com-
bining case 4 of Lemma 17.2 with Lemma 17.8, we have

1" = [~t— (- +2,01— 2] (26.18)
We have
u~ %Vl + Wy, w = Wh. (2619)
1
Again, the approximation holds up tgd;.
LI. ’W
PI1(1)
/\ '
(5\ R]_*Vl RZ 'A/k)

Figure 26.3: Decomposition oPT'1(2).

To avoid approximations, we use the modified parallelogRarwith vertices

—(Q1)—Vl’ G —(0h)-
1 01
Again, this is justified by the Mismatch Principle. The fallimg estimate combines
with the Diophantine Lemma to show thatc T'>(A%).

G1(0) = (=q1 — (a)-)

Vi + W, (0,0, w=W;. (2620)

=0; — H(w)
=01 — H(w)
01

This calculation takes care of the same parameters as in belmM, and then the
same tricks as in §19.5 take care of the exceptional cases.
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26.5 THE END OF THE PROOF

The Good Parameter Lemma reduces our job to showing that @dyragional
parameter is good. We will give an inductive argument.

Lemma 26.9 If 1/1 « A, then Ais good.

Proof: We write 1/1 « A « A. In this case, Lemma 17.2 tells us that

/1> A> A (26.22)
(The first inequality is obvious.) We have
2k—1 ~ 4k-3 _
"%+l O T&ker =k

By Lemma 17.8, we have
| =[-9—0-+2,9-2] =[-3k+1,2k—1]

The left vertex ofPT; is u = (—k, k), and the right vertex is = (0,0). We
compute

Gu)=-k—1>-3k+1, H(w)=0< 2k —1.

The extreme case occurs whieg= 1. O

Lemma 26.10 A= p/qisgoodifg< 20orif p = 1.

Proof: We check the casg < 20 by hand. Ifp = 1, the pivot arc is just the
edge connecting—1, 1) to (0, 0), whereas the intervdl contains |-q, q], a huge
interval. This case is obvious. |

Now we establish the inductive step. Suppose that— A, and thatA; is good.
Having eliminated the few exceptional cases by the resav@pbthe argument in
the previous section shows thHat’, c A1(l1). Herel; is the interval based on the
constaniQ (A, Az). This is the Diophantine constant defined in §17.4 relative t
the pair(Az, Az). To finish the proof of the Copy Theorem, we just have to eithbl
the following equation.

P, C Ax(ly), (26.23)

wherel; is the different interval based on the pdis « Ag, with 6(Az, Az) = 1.
Here we establish two basic facts.

Lemma 26.111; c Iy, and either endpoint ofilis more thanl unit from the
corresponding endpoint of
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Proof: By Lemma 17.8, applied to both parameters, we have
lhc[-+3q-3]c[-2-20—-2]C .

This completes the proof. i

Let G; and H; be the linear functionals associatedAg in the Diophantine
Lemma. See §18.1.

Lemma 26.12 |G1(v) — G2(v)| < 1and|Hi(v) — Ha(v)| < Lforo € Ay(lq).

Proof: From Lemma 17.8 and a bit of geometry, we get the bound

(m,n) € Ay(l) = max(iml, |n|) < g (26.24)
Looking at Equation 18.2, we see that
1-A -2
6mm=(1ra174) ™M =(GuGa-mn,
1+4A—- A2 2-2A
H = . = (Hy, Hy) - . (26.25
(m, n) ( 11 A2 ,(1+A)2) (m,n) = (Hy, Hp) - (m,n).  ( )
A bit of calculus shows that
10AGj| < 2, |oaH1| < 6, [oaH2| < 2. (26.26)
SinceA; « A,, we have
2
AL — Ag| = —. (26.27)
0102
Putting everything together, and using basic calculus, meesat the bound
|G1(v) — G2(v)l, [H1(v) — Ha(v)| < 16/cq < 1, (26.28)
at least forg; > 16. O

We have already remarked, during the proof of the Decomipasitheorem, that
no lattice point lies between the bottom®$(1,) and the bottom oA (l2). Hence
Fi(v) > 0iff Fo(v) > 0. The two lemmas now show that (11) c Ax(l2). This
was our final goal, from Equation 26.23.

This completes the proof of the Copy Theorem.
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Pivot Arcs in the Even Case

27.1 MAIN RESULTS

Given two rationalsA; = p1/q; andA; = p2/qz, we introduce the notation
Al A = P12z — 1Pzl =1, Q1 < Q2. (27.1)

In this case, we say th&; and A, areFarey-related We sometimes callA;, Az)
a Farey pair.
We have the notions dfarey additionandFarey subtractionrespectively.

_|_ —_
A Ay = AT P2 Ao A =P (27.2)
01+ 09 02— th
Note thatA; = A, implies thatA; = (A1 @ Ay) and thatA; is Farey-related to

A © AL

Lemma 27.1 Let A be an even rational. Then there is a unique odd rational A
such that A = A; and2q; > @p. In this case, we write A= A,.

Proof: Equation 4.1 works for both even and odd rationals. WAgIs even, ex-
actly one of the rational6A;) . is also even. Call this ration&{}. ThenA; = A;.
We defineA, = A; @ A]. If B, were another candidate, thBao A’ would be the
relevant choice ofA;).. HenceB, = A,. O

Let A be an odd rational. Then eithéx. = Aor A, = AwhenA s an
odd rational. IfA_ &= A, then we writeA, < A. The relationship implies that
20, < q. Likewise we writeA_ < Awhen 2J- < g. Here is an example: Let
A =3/7. Then

A, =1/2 < 3/7, A_=2/53/7.

So far we have defined pivot points and arcs for odd parametiens we define
them for even parameters. We have

E* (A1) = E*(Ay), AL = A (27.3)

This makes sense because we have already defined the pints jpdihe odd case.
We still need to prove that these vertices lielon We will do this below.

Assuming that the pivot point&;" are vertices of';, we definePT; to be the
lower arc ofl'; that connect€ to Ef. Sincel'; is a polygon in the even case,
it makes sense to speak of the lower arc. Figure 27.1 showsanpe. Here
PT1 = PTI',. We will show that this always happens.
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Figure 27.1: I'(16/39), in black, overlayd"(25/61), in gray.

In this chapter we prove the following results.
Lemma 27.2 Let A, = A,. Then Ay is well defined and P, = PT'».
Lemma 27.3 (Structure) The following are true.
1. IfA_ < A, then E(A) = ET(AL).
2. If AL & A then E(A) = E"(A)).
3. IfA_ < A thenE(A)+V = E~(A_) + kV_ for some ke Z.
4. If A, & A, then EF(A) — V = E*(A}) + kV, for some ke Z.

The Structure Lemma is of crucial importance in our proofthefPivot Theorem
and the Period Theorem. Here we illustrate its meaning asdritbe a bit of the
connection to the Pivot Theorem. Figure 27.2 shows slightlye than one period
of I'(25/61), in black. This black arc overlay3(9/22) on the left and
I'(9/22) +2V(9/22)
on the right. Call these two gray components the eggs. Here
9/22 < 25/61.
The points
E*(25/61), E~(25/61) + V(25/61)
are the left and right endpoints, respectively, of the bigticé bump ofl’(25/61).
Call this black arc the bump. The content of the Structure ib@nfin this case) is

that the endpoints of the bump are simultaneously pivottpain the eggs. The
reader can draw many figures like this using Billiard King.
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0

S

Figure 27.2: T'(25/61) overlays several componentsiof9/22).

The content of the Pivot Theorem for Z&L is that the bump has no low vertices
except its endpoints. Note that the ends of the bump copgpiefthe eggs. If we
understand the behavior of the eggs — meaning how they rigg faem the baseline
—then we understand the behavior of the ends of the bump. Kigahat the bump
behaves nicely near its endpoints gets our proof off thempi@o to speak.

The eggs are based on a simpler rational, and this suggestanive approach
to the Pivot Theorem: In this way, the behavior of the aritiograph for a simpler
rational gives us information about what happens for a morepticated rational.
This is (some of) the strategy for our proof of the Pivot Theor In the first section
of the next chapter, we will present a long and somewhatimébdiscussion about
the remainder of the strategy.

Remarks:

(i) In 827.5 below we will describe the precise relationsh@iween the two pivot
arcs in the cases of interest to us. After reading the ddsmmipthe reader will
perhaps be able to see this connection as illustrated inéih6.

(i) Notice in Figure 27.2 that the gray curves lie complgtabove the black one ex-
cept for the edges where they coincide. There is nothinginieory that explains
such a clean kind of relationship, but it always seems to.h@lkere is a similar
phenomenon for pairs of even rationals. See Figure 1.5.

(i) The Structure Lemma has a crisp result that is easigogled computationally
for individual cases. However, as the reader will see, ooofis rather tedious and
we wish we had a better one.
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27.2 ANOTHER DIOPHANTINE LEMMA

Here we prove a copying lemma that helps with Lemma 27.2. €sultworks for
Farey pairs. Let\1(1) andA,(l) be the sets defined exactly as in the Diophantine
Lemma. See §18.2. The result we prove here is actually mdreatahan our
original result. However, the original result better sditeur more elementary
purposes.

Lemma 27.4 Suppose that A A,.
LIfA < Agletl =[-01+ 2,02 — 2]
2. 1f AL > Agyletl =[—g+ 2,01 — 2].

Thenl'; andT> agree onA1(1) U Ax(l).

Proof: We will consider the case whefy; < A,. The other case requires a very
similar treatment. In the proof of the Diophantine Lemma wedionly the oddness
of the rationals in Lemma 17.5. Once we prove the analog efrésult in the even
setting, the rest of the proof works verbatim.

Recall that an integex is goodif

[Asu] = [Azp] . (27.4)

Here [] denotes the floor function. The analog of Lemma 17 thésstatement
that an intege is good provided that: € (—qz, g2). We will give a geometric
proof. LetL (respectivelyl ») denote the line segment of slop&\; (respectively,
— Ap) joining the two points whose first coordinates arg; andqg,. If we have a
counterexample to our claim, then there is a lattice pemtn) lying betweenL ;
andL,.

If m < 0, we consider the triangl€ with vertices(0, 0) and—V; and(m, n).
HereV; = (g1, —p1). The vertical distance between the left endpoint& pand
L, is 1/g. By the base-times-height formula for triangles,

aredT) < q1/(2qe) < 1/2. (27.5)

But this contradicts the fact that2 is a lower bound for the area of a lattice triangle.
If m > 0, we consider the triangl€ with vertices(0, 0) andV; and(m, n). The
lattice point(m, n) is closer to the line containing; than is the right endpoint of
L,, namely,(gz, — p2). Hence

aredT) < aredT’), (27.6)
whereT’ is the triangle with vertice€0, 0) andV; andV,. But
areqT) =1/2 (27.7)

becausé); andA; are Farey-related. We have the same contradiction as irr¢lhe fi
case. O
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27.3 COPYING THE PIVOT ARC

Here we prove Lemma 27.2. As we did for the Decomposition Térmowe will
first establish the result for most parameters. Then we valttthe exceptional
cases.

Suppose tha®\; = A,. To show thatPT'; is well defined, we just have to
showPT'; c I';. This result simultaneously shows thHaf'; = PTI'; because the
endpoints of these two arcs are the same by definition.

In the case at hand, we have = (Ay)_. To simplify the notation, we write
A = A,. ThenA; = A_. By Lemma 27.4, it suffices to prove that

PT c A(J), J=[-9-+2,q-2]. (27.8)
We have actually already proved this, but it takes sometdffamecognize the fact.
Let A” « Adenote the inferior predecessorAf Sinceq- > g, we have

A=A_SA,. (27.9)
In the previous chapter, when we proved the Copy Theoremgstedkshed
P c A'(J), J=[-d+2qd+0q,-2], (27.10)

as long ag’ > 3 andq’ > 7. HereA’ is defined relative to the linear functionals
G’ andH’, which are defined relative t&’. The right endpoint in Equation 27.10
comes from Lemma 17.8. The pointis that the calculation imir& 26.8 gives the
same bounds as the calculation for Lemma 19.4.

Now we observe that

d=0-—0y <0 (27.11)
and
d+0 <@-—-0)+0=0- <q. (27.12)
These calculations show that c J. Usually J is much larger.

The regionA (J) is computed relative to the paramet&r whereas the region
A’(J") is computed relative to the paramef€r The same argument as in Lemma
26.12 shows that

A(J) c A'(T) (27.13)
except wherg < 20. We check the cases whgn< 20 by hand, using Billiard
King.

The distance between the left endpointlofind the left endpointad isq- —q'.
The same is true for the right endpoints. As longjas- g’ > 2, the argument in
the proof of Lemma 19.4 shows thBT" c A(J). The pointis that Equation 19.9
is replaced by

_q’
1+ A
which is always true. Wheg- = q’' + 1, we must havep = 1. In this case, the
pivot points areE_ = (—1, 1) andE, = (0, 0). This case is trivially true.

> —q, (27.14)

Remark: The reader might wonder why we have so much slack in the (sgaihy)
tightest possible situation. The slack comes from the faat, in Lemma 26.8, the
arcy is well inside the parallelogramR,. For the sake of robustness, we mention
that any small size af- — ¢’ leads to a similar proof.
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27.4 PROOF OF THE STRUCTURE LEMMA

We will consider the case whefa. <« A. The other case is similar. L& be the
odd rational such thad_ = B. ThenPT'(A_) = PT'(B), by definition.

Lemma 27.5 The Structure Lemma holds whiml < A.

Proof: In this case

2k —1 k-1 2k — 3
ThenPT (A) is the line segment connectif@, 0) to (—k, k), andPT'(B) is the line
segment connectin@®, 0) to (—k + 1, k — 1). O

In all other cases, we haw « A, whereA’ # 1/1. Asin Lemma 17.2, let
6 =04(A, A) = floor(q'/q).

Lemma 27.6 If o = 1, then the Structure Theorem holds.

Proof: If 6(A’, A) = 1, thend(A’, A) = 0. If d(A’, A) = 0, thenPT = PI” by
the Copy Theorem and the definition of pivot arcs. At the same,twe can apply
Lemma 17.2 to the paiA, = A’ andAn1 = A. Sinced(A', A) = 1, we must
have Case 1 or Case 3. But we also hAve< A,. Hence we have Case 3. But
then A_ = A_. Hence we can replace the p&ik_, A) by the pair(A_, A’), and
the result follows by induction on the size of the denominafoA. O

Lemma 27.7 Suppose thai = 2. Then A= B.

Proof: B is characterized by the property that andB are Farey-related, and
20- > denominatofB) > q_.

We will show thatA’” has this same property. Note thitandA_ are Farey-related.
The equations

/

29’ <q, q=0;+0d-, qd=0y—0-
lead to
39- > g+ == 20- > @+ —9-) =0

This establishes the first property féf. The fact that = 2 gives 3’ > ¢. This
leads to

a4+ > 29, = q=0d+—09->0-.
This is the second property fé. i
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Lemma 27.8 Suppos@ > 3. Then A « B.

Proof: There is some even ration@lsuch that
B=A_oC. (27.16)

The denominator o€ is smaller than the denominator 8f. because of the fact
that A_ = B. The inferior predecessor & is A_ © C. At the same time,

A=A 6A_. (27.17)

So, we are trying to show tha&, © A_ = A_ © C. This is the same as showing
that

C=D=A_¢A_cA,. (27.18)
SinceA, andA_ are Farey-related) and A_ are Farey-related. We claim that
20— — g = denominator (0, g-). (27.19)

The upper bound comes from the fact that> g_. The lower bound comes from
the fact thafj, < 2g-. To see this last equation, note that

q=0+0-, q9 =0 -0, 30’ <aq.
But C is the only even rational that is Farey relatedXo and satisfies equation
27.19. Henc&€ = D. O

As we have already proved, the case= 1 is handled by induction on the
denominator ofA. The case = 2 gives

PI_ = PI".

In this case, the Structure Lemma follows from the definitibthe pivot points.
Whend > 3, the rationalA’ is a common inferior predecessorAfandB. Since
A=A ®A_andA_ < A, we haveA’ > A,. HenceA' > A.

Lemma27.9 A’ > B.

Proof: Lemma 27.8 gives
A=A_o6C, A =AadA, A=A A, B=A_@C. (27.20)
This gives
A6B=A6C=ApA_6C=AqA.
Hence
A=BoAQA. (27.21)

SinceA; = A@ A_andA_ < A, we haveA’ > A,. HenceA > A. By
Equation 27.21A lies betweemA” andB. HenceB < A < A'. HenceA’ > B. In
short,A’ > AandA’ > B. |
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Finally, from the definition of pivot points, we have*(A) = E*(B). This
establishes statement 1. Statement 2 has a similar proof.
Now for statement 3. By Lemma 26.1,

E*(A)+E(A) = -A_+(0,1), E*(B)+ E™(B) = —B, + (0, 1),
SinceE*(A) = E*(B), we have
ET(B)—E"(A)=A_-B,=V(©O) (27.22)
HereV (C) is, as in Equation 3.2, defined relative@o We now have

E-(A)+V —E~(AL)
=E"(A)—E~(B)+V

=-V(C)+ V(A

—V(AL @A) - V(AL 8 A)

=2V(A_) e Z(V.). (27.23)

This completes the proof of statement 3. The proof of staterhés similar.

An Even Version: Now that we have established the Structure Lemma, we prove
a variant. For each even ration& < (0, 1) that is not of the form Aqp, there is
another even rationaly = p1/q; € (0, 1) such thaty; < gz andA; - A,.

Lemma 27.10 The Structure Lemma holds for the pék;, A).

Proof: We will deduce this new version of the Structure Lemma froendhginal
version we have just finished proving.
Consider statement 1. Let

Az = A1 & As. (27.24)
Then
Al (=S A3, Az ': A3 (2725)

Note thatE; = Ej by definition. Also,Ef = EJ, by the Structure Lemma.
HenceE; = EJ. This proves statement 1 for the pé#k,, Az). Statement 2 has
the same kind of proof.

Consider statement 3. We hak§ = E; and

E; —E; +VseZVy. (27.26)
On the other hand
V3 =V, + Vi, o E; —E] +Vo e ZVy. (27.27)

The first equation implies the second. Bef = E;. This completes the proof of
statement 3. Statement 4 has the same kind of proof. O
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27.5 THE DECREMENT OF A PIVOT ARC

Here we work out the precise relationship between the pirast i the Structure
Lemma. One can see the structure we describe here in Figure 1.

Let Abe an odd rational and Ié{ be the superior predecessorAafBy the Copy
Theorem,PT" contains at least one period bf starting from either end. Let’ be
one period ofl”’ starting from the right endpoint d&I". We defineDPT by the
following formula.

PI' = DPT %y'. (27.28)
The operation on the right hand side of the equation is theatenation of arcs.
We callDPT thedecremenbf PT.

The arcDPT is a pivot arc relative to a different parameter. (See the nex
lemma.)DPT is obtained fromPT by deleting one period df’. Now we present
anaddendunto the Structure Lemma.

Lemma 27.111f B & A, then A" (B) = DPT' (A), up to translation.

Proof: We will consider the case whefli. < A. The other case, whefy, < A,
has essentially the same proof. We reexamine Lemmas 27.Z7a8d In Lemma
27.7, we have

PT_ = PT".
However, in this case(A, A') = 2, and from the definition of pivot points, we see
thatPT is obtained fronPT” by concatenating a single periodiof. This gives us

what we want.
In Lemma 27.8, we have Equation 27.21, which implies

denominatofA) = denominato(B) + 2q/. (27.29)

But this implies thatl (A’, A) = d(A’, B) + 1. Applying the Copy Theorem to both
pairs, we see tha@®T is obtained fromPT” by concatenatind(A, B) + 1 periods
of T” wherePT'_ is obtained fromPT" by contatenatingl(A’, B) periods ofl".
This gives us the desired relationship. o

27.6 AN EVEN VERSION OF THE COPY THEOREM

Let A, be an even rational. We writd, = Ag @ A, whereAg is odd andA; is
even.

Lemma 27.12 PT; C T.

Proof: We havePT'; = PT'(A3), whereA; is the odd rational such tha, = As.
Since A; — A, and bothA; and A, are even, we havéd; = A; @ A,. At the
same time, we hav8y = A, © A;. HenceAq < Asz. But now we can apply the
Copy Theoremto the paii, Az) to concludethaPT'z c Ty. ButPI's = PT,. O
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Chapter Twenty-Eight

Proof of the Pivot Theorem

28.1 AN EXCEPTIONAL CASE

We first prove the Pivot Theorem fér = 1/q. This case does not fit the pattern we
discuss below.

Let I' be the arithmetic graph associatedAo= 1/q and letPT" denote the
pivot arc. In all casesRT" contains the vertice®, 0) and(—1, 1). These vertices
correspond to the two points

(%,—1), (2— é _1). (28.1)

These two points are the midpoints of the special intervals

2 2
I = (o, a) x {—1}, I = (2— o 2) x {—1}. (28.2)

By special intervalwe mean intervals in the sense of §2.2. Recall from thaisect
that these special intervals are permuted by the outeatailimap.
The special intervals in Equation 28.2 appear at either €nd o

| =[0,2] x {—1}. (28.3)

ForanyA < 1/2, the phase portraitin Figure 2.5 (repeated here for caexen)
shows that the interval

I3 =(2A,2-2A) x {-1} (28.4)
returns to itself under one iterate % WhenA = 1/q, we have
I —l3= 11U l>,. (28.5)

But then the orbit of; intersectd only in I; U I,. Hence the only low vertices on
I' are equivalent t@0, 0) and(—1, 1) modulo translation by = (—q, 1). This
establishes the Pivot Theorem far= 1/q.

(0,1) K (2,1)
Y 43,03 K 2,1/2

Figure 28.1: Low-vertex phase portrait. (Repeat of Figure 2.5.)
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28.2 DISCUSSION OF THE PROOF

Now we consider the general case of the Pivot Theorem. Wenailtonsider the
odd case until the last section of the chapter. At the end, iv@xplain the minor
differences in the even case.

Figure 28.2: Components of (25/61) andT'(9/22).

The top of Figure 28.2 shows one periodlg®5/61) and the bottom shows an
enhanced version of Figure 27.2. The light-gray regionsregeggs we discussed
in connection with Figure 27.2. These are componeniy(6f22). The dark-gray
components lie underneath the bump. (See below for a forefalition.) There is
one large dark-gray component and 4 small ones. These daykegmponents, it
turns out, belong to both (25/61) andT (9/22).
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For any odd rational; # 1/q,, we haveA; < Ay, whereA; € (0,1) is an
even rational. What we mean is that and A, are Farey-related andj2 < g,. See
§27.1 for details. We will argue by induction, assuming tiat Pivot Theorem is
true for A;.

Now we introduce some notation.

» Thebumpis the arcy of I' connectingPT to eitherPT" +V or PI' — V. We
write H (I'). Whether we take to lie on the left or the right depends on the
rationals involved. In any cas@I" U y is one period of".

« A low componenof I'; is a component that contains a low vertex.
* A major low componemnf T1is alow component that is a translatelaf

We call the other low components bf minor components

« Theeggsare the two major components bf that contain the endpoints of
the bump. The Structure Lemma guarantees that these comis@me major.

Figure 28.3 shows an abstract and slightly generalizedorersf Figure 28.2.
We will base the discussion on Figure 28.3, but we will useiFé28.2 as a reality
check. The numbered regions are major components offhe small dark-gray
regions are minor componentsbf. The regions labelled 0 and 4 are the eggs, as
discussed above. The black arc is the bump. Lemma 27.4 gileegearegionA
wherel'; andT; agree.A is white.

Figure 28.3: Cartoon view of the proof.

We want to determine that the bump has no low vertices exoejisfendpoints.
By the Structure Lemma, the endpoints of the bump are alspaénts of the pivot
arcs ofCy andC,4. By induction, the only low vertices @&, andC, are contained
in the pivot arcs. These pivot arcs are on the other sideseoétitipoints we are
considering. Hence there are no low vertices on the blachsleng as it coincides
with eitherCq or Cy.

There is one subtle point to our argument. When we reféoverticesof the
black arc, the vertices are low with respect to the paramfeteHowever, when we
refer to low vertices o€y andCy, the vertices are low with respect fg. We will
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discuss this subtle point in the next section. What saves tigt the two notions
of low coincide, because of the way in whiéh approximated\,.

So, either end of the black arc starts out well: Itrises awamyithe baseline. This
is exactly the situation we discussed in the last chapteoimection with Figure
27.2. Once the bump gets off the ground, what could go wrong&w&r: One of
the ends could dip back down intoand (at the boundary) merge with a component
of T';. In other words, some componentﬁf would have to stick out of\.

We will analyze the various possibilities in turn. We disfirish 3 basic cases.

The End Major Components: These are the components labell@éd and C;

in Figure 28.3. In Figure 28.2, the single large componettiésonly end major
component. These components seem to give us the most tlmeddase they come
closest to sticking out oAA. In fact, we cannot show that these components are
contained inA even though experimentally we can see that this is true. Mexyve
Lemma 2.6 comes to the rescue. The low vertices on these c@nfmohave odd
parity, and the low vertices on the bump have even parity. Wiesee that this
implies that the bump cannot merge with andCs. The parity argument steps in
where geometry fails.

The Middle Major Components: This is the component labelled, in Figure
28.3. In Figure 28.2 there are no middle major components thaugh the large
dark-gray component there sits in the middle in some obvimmse. In general,
there aren 4+ 1 major components and— 1 middle major components. The middle
major components are much farther insiie We will show that the other major
components are contained entirely insitle

Minor Components: These are the remaining small dark-gray components in
Figure 28.3. The Barrier Theorem from Chapter 14 handlesetheThe black
horizontal line in Figure 28.3 represents the barrier winiciminor component can
cross. Equipped with the Barrier Theorem, we will be ablehtovsthat all minor
components lie im.. The barrier line keeps them from sticking out.

This takes care of all the potential problems. Since the bcammot merge with
any of the small dark-gray components, it just skips ovenghig and has no low
vertices except for its endpoints. As with the proof of the®maposition Theorem,
the estimates we make are true by a wide margin wheis large. However, when
A is small, the estimates are close and we need to considdatuhéan in a case-
by-case way. We hope that this dealing with small cases datestiscure the basic
ideas in the proof.

Remark: As we remarked above, it seems tﬁatcopies all the low components
of T, that lie between the two endpoints of the bump. In light of twua said in
the case-by-case analysis, we will show that this is truegqeerhaps for the end
major components. Our methods are not quite good enought these as well.
This deficiency in our methods causes our proofs to be morghcated in a few
places.



book April 3, 2009

PROOF OF THE PIVOT THEOREM 263

28.3 CONFINING THE BUMP

We continue with the notation from the previous section. &ase of exposition,
we assume thaf\; < A,. The other case is similar. For ease of notation, we set
A = A,. Until the end of this section, we consider oy We write one period
of I'asPI' U y. HerePT is the pivot arc, ang is the bump considered in the
previous section.

Let W be the vector from Equation 3.2. L8be the infinite strip whose left edge
is the line through(0, 0) parallel toW and whose right edge is the line through
and parallel toN. HereV, = (q+, —ps+), andp. /g, is as in Equation 4.1. Figure
28.4 is a schematic picture.

S

Figure 28.4: The stripS contains the bump.

Lemma 28.1 y does not cross the lines bounding S.

Proof: The lines ofS are precisely the extensions of the sidefRgfthe larger of
the two parallelograms from the Decomposition Theorem. WenkthatT" crosses
these lines only once. These are the black dots shown iné28w. The thick
arc representg. By Lemma 26.2 and symmetry, both endpointgabelong to
R;. These are the white dots in Figure 28.4. The endpoingsaxfcur between the
crossing points. Since there are no other crossings,R,. Hencey c S.

Now we can clear up the subtlety mentioned in the previouisec We set
S = S, the strip defined relative to the odd ratiorgl.

Lemma 28.2 A vertex in S is low with respect to, Af it is low with respect to A
Hence a vertex af is low with respect to Aiff it is low with respect to A

Proof: LetL; denote the baseline with respeci#tp. The conclusion of this lemma
is equivalent to the statement that there does not exisiee@oint betweeh.; NS
andL, N S. This is a consequence of our proof of Lemma 27.4. o
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28.4 ATOPOLOGICAL PROPERTY OF PIVOT ARCS

Let A be a rational kite parameter, either even or odd. REtdenote the pivot arc
of I' = I'(A). The two endpoints oPT are low vertices. Here we prove a basic
structural result abolRT .

Lemma 28.3 PT contains no low vertex to the right of its right endpoint. dukise,
PTI contains no low vertex to the left of its left endpoint.

Proof: We will prove the first statement. The second statement leesstime proof.
We argus as in the proof of Lemma 2.6. Note thaight-travels at0, 0). Hence
PT right-travels at its right endpoint. Suppose thalPT" contains a low vertex
to the right ofp. Then some arg of PI" connecty to o. Sincel right-travels at
p, some argy of I' — PT" enters into the region betweenands and beneatls.
But y cannot escape from this region, by the Embedding Theorem pdmt here
is thaty cannot squeeze beneath a low vertex because the only edyétmv a low
vertex are also below the baseline. Figure 28.5 shows thattih.

P O

Figure 28.5: PT creates a pocket.

In the odd case we have an immediate contradiction. In the ease, we see that
there must be a loop containing bgitands . This loop must be a closed polygon
and a subset oPT". SincePT is also a closed (and embedded) polygon, the loop
must equaPT". But by definition,PT lies belowI’ — PT". From Figure 28.4, we
see thaPT (which containg?) in fact lies above — PT" (which containg ). This
is a contradiction. |
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28.5 COROLLARIES OF THE BARRIER THEOREM

Here we derive a few corollaries of the Barrier Theorem. Seapfer 14 for the
statement. Let y be the line throughO0, 0) and parallel to the vectdw, from
Equation 3.2. Referring to our proof of statement 2 of the &tgid TheoremL g
is the wall line we considered in detail.

In this section we will suppose thatis an even rational parameter. [et= T (A)
be the corresponding arithmetic graph.

Corollary 28.4 A minor component of’ cannot cross b.

Proof: Our line is one of the lines in the Hexagrid Theorem. By the &tgid
Theorem, on" crosses this line beneath the barrier, and the crossing ta&ee
at (0, 0). By definition,I" is a major component. m|

We are trying to construct a parallelogram that bounds theomiomponents.
The baseline contains the bottom edge. The barrier cortaétep edge. The line
in Corollary 28.4 contains the left edge. Now we supply tlghtiedge. Actually,
there are many choices for this right edge.

Lemma 28.5 Let V, = (q+, —p,). Let L be the line parallel to § and containing
the point \/. + kV for some ke Z. A minor component cannot cross L.

Proof: SinceT is invariant under translation by, it suffices to prove this result
for k = 0. LetL be the line throughv/, parallel toLo. Our result follows from
Corollary 28.4 and the rotational symmetry we establishegili2.3.

Let A be the barrier. Consider the symmetdefined in §12.3. The two lines
and:(A) are equally spaced above and below the baseline up to aroéabmost
1/9. Suppose that some minor compongntosses the line. Then the component
1(B) crosses the ling(L). But:(L) is the line from Lemma 28.4. Inspecting the
hexagrid, we see thafL) contains the doof0, 0), but no other door between the
baseline and(A). Indeed, the doors above and below the baseline are just abou
evenly spaced fror(D, 0) going in either direction. See Figure 3.2, a representative
figure. (In this figure, we are talking about the long axis efkite, and0, 0) is the
bottom tip of the kite.)

The component’ of T that crosses(L) near(0, 0) is the same size d& Hence
this component crosses througih). Hence:(y’) is a major component. Hence
B #1(y"). Hencei(f) # y. Hencer(B) does not cross(L). Hencep does not
crossL. ]

Now that we have found some parallelograms that completaifirce the minor
components, we will embed this picture, so to speak, in oooipof the Pivot
Theorem. This requires us to juggle two parameters at once.
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28.6 THE MINOR COMPONENTS

28.6.1 The Minor Box

In our proof of the Pivot Theorem, we have two paramefars= A,. As above, we
focus our attention on the case whgn < A,. The other case involves a completely
parallel discussion. See §30.3 for a brief discussion obther case.

Lemma 28.5 applies to vectors defined in term#\gf but ultimately we would
like to make a statement about the paramdter So, we would like to translate
the information in Lemma 28.5 into a statement about sonsslthat are defined
(partly) in terms ofA;. Let (V;) be as in §28.3. Then Lemma 28.5 applies to the
vectors of the form

(V)4 + kVi. (28.6)

However, we are also interested in the veciéy) ., .

Lemma 28.6 Suppose that A < A,. Then, there is some integer k such that
(V2)+ = (V)4 + kV1.

Proof: We setA = A,. ThenA_ = A;. Let A_, denote the parameter that relates
to A_ inthe same way thak, relatestoA. Thatis,A_, > A_are Farey-related and
A_, has a smaller denominator th&n. We want to prove tha, = V_, + kV_

for somek. The rationalsA_, and A_ are Farey-related. Therefore so are the
parameters

A, ALOA @ BA. (28.7)

Here we are doing Farey addition. Conversely, if any raligXias Farey-related to
A_ and has a larger denominator, th&he A_ is also Farey-related tA_. Thus
the rationals in Equation 28.7 account for all the ratiofgiwith the properties just
mentioned. ButA, is one such rational. Hend®, has the form given in Equation
28.7. This completes the proof. O

Let R denote the parallelogram defined by the following lines.
* The baseline relative td;.
* The barrier forA;.
* The line parallel tdNV; through(0, 0).
* The line parallel toV; through(V2), .

Then any minor component with one vertexRstays completely irR. This is a
consequence of the Barrier Theorem, its corollaries, aadkttnma in this section.
Modulo a tiny adjustment in the slopes, the left and rightesdgf R are contained
in the left and right edges of the stripconsidered in §28.3. We caR the minor
box.



book April 3, 2009

PROOF OF THE PIVOT THEOREM 267

28.6.2 Trapping the Minor Components

We continue withA; & A,, as above, anéd\; < A,. Define

A= As(1) U Ax(l), I =[-q+2,0—-2]. (28.8)
Here A is as in Lemma 27.4, the second Diophantine lemma.R.be the minor
box.

Lemma 28.7 Let C Iy be any component that is contained in R. Tifea To.

Proof: Our proof follows the same strategy as in the Decompositibacfem.
We will work with the functionalsG; and H; defined relative toA;. We want to
showR c A and apply Lemma 27.4. To avoid a messy calculation, we use the
Mismatch Principle from Chapter 19. We repleRéy the nearby parallelograi
with vertices
(0,0, AW, (V2)4, (V2)+ + AW, (28.9)
The constant has the following definition. The top left vertex Bflies on the line
through(0, 0) and parallel tow;, as discussed above. Hence this vertex has the
form ZW;. We compute
M1(AW1) = p; +0; < p1+ G = Ma(W). (28.10)
Hencel < 1. HereA; is the rational that appears in the Barrier Theorem. The
point here is that the barrier contains the pgiit(p; + d;)/2).
Let u andw be the top left and top right vertices B respectively. As usual, it
suffices to show that the quantities
Gi(u)— (-1 +2) >0, (qz — 2) — Hi(w) > 0. (28.11)
By affine symmetry (or a calculation, as we do), these quastidre equal. We
compute
Gull) — (~qu+2) = g — 1~
P14+ 01
By Lemma 28.6, we have
M)+ +Vi=Mo)s + (Vo) =Vs = Vo —w = Vp — AWy
The first equation implies the second. Hence

(02 — 2) — Hi(w)

-2 (28.12)

=—-24+ Hi(V2 — w)
——2+ Hy(V1 — AW)
q?
—0y— 2 _2 28.13
et (28.13)

Sincel < 1, the quantities in Equation 28.11 are nonnegative as leng & 3
andq; > 7. Thisis exactly the same estimate as in Lemma 19.3. When 2, we
see that L
Thusl ~ 1/2, and we get massive savings. Whgn> 2 andq; < 7, we check
the cases by hand using the same trick as in §19.5.

Whenp; = 1, the grapi’; has no minor components, as we saw in §28.1J
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28.7 THE MIDDLE MAJOR COMPONENTS

We keep the parametefg < A, asabove, witth; < A,. We have already defined
the pivot points of";. We define the pivot points of the translatés= 'y + kV;
in the obvious way, by translation.

By the Structure Lemma, there is some compori@&mivhose left pivot point is
E, + Vo, the right endpoint of the bump. The componedgs..., Cy are exactly
as in §28.2. By Lemma 2.6, the ind&is even. More generally;; contains low
vertices of even parity if and only if is even.

Asin 8§28.2, we are interested in bounding the comporents., Cx_». Actually,
we care only about the even components, but the bound wotkdlggvell for the
odd components betweé andCy_,. If k = 2, as in Figure 28.2, this section is
vacuous.

By the Hexagrid Theoren@ is contained in the parallelograRy with vertices

-V, —V1 + 2W,, Vi + 2W,, Vi. (28.14)
This means that; is contained in the translated parallelogram
Ri =Ro+ jVi (28.15)

We choosg € {2, ...,k — 2}.
Here we describe some featuresRyf as well as a method for symmetrizing it.

1. The bottom edge dR; is contained in the line througl®, 0) and is parallel
to V,—i.e., the baseline— as usual.

2. The top edge oR; is contained in the line through/? and is parallel td/;.
These lines are independentjof

3. The left edge oR; is parallel to, and to the right of, the line parallel tow,;
and containing/;. Whenj = 2, the left edge oR; is contained imA.

4. The same argumentas in Lemma 28.5 showsGhées to the left of the line
through(V,) . — V1 and parallel tdV;. Referring to the symmetieyin Lemma
28.5, this is the lin@(A). In brief, if C; crosses(A), then:(Cj) crossesh,
and this contradicts the Hexagrid Theorem, applied bel@btseline. So,
1(A) is the fourth line bounding the symmetrized parallelog@am

Let Rbe the parallelogram defined by the 4 lines above. By con&ny€; c R
forj € {2, ...., k — 2}. We call R themajor box

Lemma 28.8 Let f C I'y be any component df, that is contained in R. Then
p c I

Proof: The proofis exactly the same. Letandw denote the top left and top right
vertices ofR. we have the same symmetry as in the previous bound, and setve j
have to comput&,(u) > —q; + 2. We compute

203
Gi(u) — (w2 +2) =201 — -2 28.16
(W) — (G2 +2) =20 it 0 ( )
This time we always get a positive number, though in smaés#ss pretty closed
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28.8 EVEN IMPLIES ODD

Having assembled all the necessary technical ingredieatspw formalize the dis-
cussion we gave in §28.2. We will present an inductive prétie Pivot Theorem.
This section contains half the proof, and the next sectiontaions the other half.
Again, we assume tha&; < A,. Let P(A) be the statement that the Pivot Theorem
is true forA.

Lemma 28.9 Let Ay & Ay. Then RA;) implies A(A).

Our proof follows the format of the discussion in §28.2. ASRB.3, we define
thecomplementary arg, c T to be the arc to the right d?T", such thatPT, U v,
is one period of",. The endpoints of, are

ES, E; + Va. (28.17)

Herey; is the bump in §28.2.

We say that @poileris a low vertex ofy, that is not an endpoint gf,. The Pivot
Theorem is equivalent to the statement that there are ntespoi

Let L(y2) denote the left endpoint of,. Likewise, letR(y,) denote the right
endpoint ofy,.

Lemma 28.10 Any spoiler lies between(lz) and Ry2).

Proof: We will show that any spoiler lies to the right af(y,). The statement that
any spoiler lies to the left oR(y;) is similar. By Lemma 28.1, all spoilers lie in
the stripS. But PI'; crosses the left boundary 8. Any low vertices inS to the
left of L(y,) lie either onPT ', or beneath it. By the Embedding Theorenmgannot
contain these vertices. |

Recall thatA is the region from Lemma 27.4. This is the white triangle igufe
28.3.

Lemma 28.11 A contains all the spoilers.

Proof: We will work with the linear functional&, andH, defined relative toA,.
Thus we are really showing that the smaller &gtl) contains all the spoilers.

Leto» = (m,n) be a spoiler. It suffices to prove th&(v) > —qo + 2 and
H>(») < g2 — 2. We havem > 1. Sincevo is a low vertex, we hava < 0. We
compute thab,G, < 0. Hence

1- A
Ga(v) = Ga(M, 0) = m7— A

>0>—th+ 2

This takes care ob..

Letw =v —V, = (r,s). By Lemma 18.1, it suffices to show thidt(w) < —2.
We computedyH > 0. Sincew lies at most one vertical unit above the line of slope
— A, through the origin, we have

Ha(w) < Ha(w), w = (r, —Axx +1). (28.18)
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We compute
) 2(1-A)
H =r+—"<r4+2 28.19
2(11)) + (1+ A2)2 <r+ ( )

This shows thaH (w) < —2 as long as < —4. By Lemma 2.6, we have+ s
even. We just have to rule o2, 2) and(—3, 1) as spoilers.
Case 1:If A; < 1/2,then(—2, 2) is not a low vertex. IfA; > 1/2, then

2k—-1

i e A

ky1 o T
for somek > 2. In this caseE; has first coordinate less than or equat®. But
thenr < —3. This rules out—2, 2).
Case 2:We compute that

A> = Hx(-3,1) <-2

Ol =

When A < 1/9, we use the phase portrait in §2.6 to check fhais trivial at
(—=3,1). This rules ou{—3, 1). O

Let v be a spoiler. By the previous result, there is some compgheht; that
hasv as a vertex.

Lemma 28.12 g is not a subset of >.

Proof: Suppose that c T’». Note thatg is a closed polygon. Recall thas is the
bump. Supposedly;, and share the vertex. Let us start ab and tracey, in
some direction. If the conclusion of this lemma is false, esain simultanously
on y, and g until we loop around and return t@. This is becausg is a closed
polygon. This contradicts the fact thgt never visits the same vertex twice. O

Here is the end of the argumeiftcannot be a minor component, given the bound
in §28.6.2. Nextp ¢ {C,, ..., Ck_2}, given the bounds in §28.7. Next,

B & {C1, Ck-1}, (28.20)

by Lemma 2.6. Nextp # Coy: By induction, all the low vertices o€ lie on
PCy. By Lemma 28.3, these low vertices all lie to the left of theik. Likewise,

S # Ck. We have exhausted all the possibilitigscannot exist. Hence there is no
spoiler. Thereford®(A;) holds.

We have shown thaP(A;) implies P(Ay) whenA; & A; andA; is even and
A; is even. We have given the proof under the assumptionAhat A,, but the
other case is essentially the same. See 830.3. It remaiasisider the case when
both A; and A, are even.
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28.9 EVEN IMPLIES EVEN

28.9.1 A Decomposition Result

As a prelude to tackling the even case in the induction argiinvee revisit the
construction in §28.3, but for even parameters. Nawand A, are both even
parameters, witl; = A,. We setA = A, and consider just objects relative £0
We define the strifs exactly as in §28.3. For any sgt let 5 denote the translate
£+ V. We define

y =@UpHNS, B=T—Pr. (28.21)
In Figure 28.6, the arg is the union of 2 thick arcs In Figure 28.6.

S
XV S X

barrier

B r+V

0 VA

Figure 28.6: The even version of .

Lemma 28.13 y consists of two connected arcs. Any low verteX' of PT is
translation-equivalent to a low vertex pf

Proof: By the Hexagrid Theoren' crossesS only once. The door oig_ lies
above the barrier line. Hence the crossing occurs abovedthigbline. Likewise,
1(T'+V) crossesS_ only once. The relevantdoor lies below the image of the barri
line under. Here: is as in the proof of Lemma 28.1. But th&mn+ V crossessg
only once, and the crossing occurs above the barrier linencéte consists of 2
connected arcs.

ThelineSy—V is parallel toS_ and lies to the left of . By symmetry[" crosses
Sk —V only once, and the crossing takes place above the barrgertiy the Barrier
Theorem, the gray arc df betweenS andSg — V lies above the barrier line and
hence has no low vertices. Finally, any vertex'ef PI" not translation-equivalent
to a vertex ofy lies on the gray arc of betweenS andSg — V. |
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28.9.2 The Induction Argument

Let A; = A, be a pair of even rationals as in 827.4. This pair exists ag &m
A, # 1/0p. Referring to the terminology in Lemma 28.9, we prove théofaing
result in this section.

Lemma 28.14 Let Ay & A,. Then RA;) implies P(Ap).

We have already taken care of the base case in the inductierzase when
A =1/q. Lemmas 28.14 and 28.9 then imply the Pivot Theorem by indoctThe
proofis essentially the same as in the odd case, once weatahétbasic structural
results hold. The result in §27.4 gives us the even/evenores the Structure
Lemma.

We considerthe case whén < A,. The othercaseis similar. We define spoilers
just as in the odd case. We just need to show that the,adtefined in the previous
section has no spoilers. The same argument as in the oddhuass that a spoiler
must lie betweerh (y2) andR(y2), the left and right endpoints, respectively.

Let A be the region of agreement betwelépand 1“2, as above. The formulas
are exactly the same. Here is the even version of Lemma 28.11.

Lemma 28.15 A contains all the spoilers.

Proof: The general argument in Lemma 28.11 works exactly the samee fteis
only at the end, when we consider the verti®s-2) and(3, —1), that we use the
fact thatA; is odd. Here we consider these special cases again. The angfon
(—3, 1) does not use the parity &,. We have to consider just-2, 2).

If A, < 1/2,then(—2, 2) is not a low vertex. We do not need to treat the ex-
tremely trivial case whei\, = 1/2. WhenA, > 1/2, we haveA; > 1/2 as well.
The pointis that no edge of the Farey graph crosses iy 2) to (1/2, 1). Hence
Az = A1 ® Ay > 1/2 as well. But, by definition, the pivot points relative £
are the same as féks. Thisis as in 827.4. Hence the same argument as in Lemma
28.11 now rules ouf2, —2). O

Essentially the same argument as in the odd case now shoys ttantains no
spoilers.
The Pivot Theorem now follows from induction. This compéetiee proof.
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Proof of the Period Theorem

29.1 INHERITANCE OF PIVOT ARCS

Let A be some rational parameter. For each polygonal low comgghehI'(A),
we define the pivot arB s to be the lower arc gf that joins the two low vertices that
are farthest apart. We shywer arcbecause all the components are closed polygons,
and hence two arcs join the pivot points in all cases. WA&an even rational and
S = T, this definition coincides with the definition &I", by the Pivot Theorem.
In general, we say that a pivot arc bfis a pivot arc of some low componentbf
We call a pivot arc of’ minor if it is not a translate ofT.

For each rational if0, 1), we are going to define add predecessand areven
predecessarAside from a few trivial cases, the predecessors exist emdhtionals
in (0, 1). The odd predecessor #fwill be denoted byA’, and we will use a single
arrow, as inA’ < A. The even predecessorAfwill be denoted byA”, and we will
use the notatiod” < A. This notation should be compatible with our previous
similar notation.

1. WhenAis odd,A’ is as in the inferior sequence.

2. WhenAis odd,A” is as in the Structure Lemma and Lemma 28.9.
3. WhenAis even,A’ is as in the Barrier Theorem.

4. WhenAis even,A” is as in Lemma 28.14.

It is worthwhile to mention another characterization ofsh@umbers.

A even = A=A A" (29.1)
A odd = A=ApA @A (29.2)
Just to cement the idea, we give an example.
3 7 2 7 3 5 2 5

717 5517 712 5T 12
Here is our main technical tool for the Period Theorem.

Lemma 29.1 (Inheritance) Let A be any rational. Suppose that
A« A A<= A

Then, every minor pivot arg of T is either a minor pivot arc ofl” or a pivot arc
of I'”. The set of low vertices ¢fis the same when considered either in A or in the
relevant predecessor.
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We first prove the odd case, and then we prove the even casg@rddfas almost
the same in both cases.

Proof in the Odd Case: Recall thatPT" U y is one period ofl’. There are 2
kinds of minor components df.

1. Pivot arcs that lie underneaft.

2. Pivot arcs that lie underneath

We can push harder on Lemma 27.2. Sifde lies in the setA, from Lemma
27.4, so does every low componenfiofinderneattPT. To see this, recall that our
proof involved showing thalPT" c A. But if a point of PT" lies in A, then so does
the entire line segment connecting this point to the basektence all components
of T beneattPT also belong ta\. Hence the low components biying underneath
PT coincide with the low components df lying underneattPI”. This takes care
of the first case.

Consider the second case. Our proof of Lemma 28.9 shows \that eninor
component off” lying inside A (A”, A) is contained inl. We showed the same
result for every major component except the ones we labélleahdC,_;. Note
thatthe pivotarcs are subject to the Barrier Theorem. Bh#ié two crossings from
the Barrier theorem occur on the upper arcs rather than guithearcs. Hence the
pivot arcs behave exactly like the minor components. Hemegitot arcs o€; and
Ck-1 are copied b)f even though the upper arcs might not be. By Lemma 28.11,
every low vertex ofl lying underneatly lies on the pivot arcs of the components
we have just considered. This takes care of the second case.

There is only one detail we need to take care of. A vertex ofkihd we are
considering is low relative t&\' or A” if and only if it is low with respect toA.
This follows from the basic property &. See the geometric proof of Lemma 27.4.
Thus every low component f of the kind we have considered is also low relative
to I’ or T, whichever is relevant. Likewise, the converse holds. m

Proof in the Even Case:The minor pivot arcs of are of two kinds, those that lie
underneatlPT and those that do not. By the same argument as in the odd base, t
pivot arcs of the first kind are all minor pivot arcs BtA*), whereA* is such that
Aa A*. ButthenA* = A@ A”. HenceA” & A*. AtthesametimeA’ = AS A”.
HenceA' « A*. Applying the odd case of the Inheritance Lemma to the triple
(A*, A', A”), we see that every pivot arc &f beneathPT is a pivot arc of either

T orT”. Thistakes care of the first case. The second case is jushélarld casel

Remark: Implicitin the definitions ofpredecessois the idea of dree of rationals.
Each rational has 2 ancestors who are simpler in some senise.Inferitance
Lemma esplains how the traits — here meaning the pivot ardsthecarithmetic
graph for a complicated parameter are inherited from thestncs.
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29.2 FREEZING NUMBERS

Every rational parameter has an odd and an even predec&tading with (say)

an odd rationalA, we can iterate the construction and produce a tree of simple
rationals. IfB lies on this tree, we writ® < A. Here is an immediate corollary of
the Inheritance Lemma.

Corollary 29.2 Every minor pivot arc of ['(A) is a pivot arc of I'(B) for some
even B such that B< A.

Let A be an odd rational. Lef be a minor component df (A). We define
F (B, A) to be the smallest denominator of a ratiomal< A such thatPg is a
pivot arc off(B). We call F (8, A) thefreezing numbeof . Our terminology
has the following meaning. As we move through the tree obratis, from simple
to complicated, various features of the correspondingligapange, but at various
states certain features freeze. The freezing number of @aoemt marks the point
when the component becomes a permanent feature.

Lemma 29.3 The¥-period of a minor componeiftis at most

20s?, s=F(8, A).

Proof: This is an immediate consequence of the Hexagrid Theoreiedp the
rational B = r/s such thatp is a component ofl'(B). The Hexagrid Theorem
confinesp to a parallelogram of area less thars20 o

Letx € | correspond to a point not dd(A,). We let
F(x,n) = F(fx, An),

whereg, is the component df,, corresponding ta. We say that growing sequence
is a sequencgxy} such that

F(Xn, n) — oo. (29.3)

Recall thatC, is the Cantor set from the Comet Theorem.

Lemma 29.4 Suppose every growing sequence accumulatesonri@en the Pe-
riod Theorem is true for A.

Proof: If the Period Theorem is false, then we can find a sequenceiofsia,}

in G, such that the distance fror to C, is uniformly bounded away from 0 and
yet the period ok tends taco. But then Lemma 29.3 shows thiad,} is a growing
sequence. By constructiofx,} does not have a limit point oG . o
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29.3 THE END OF THE PROOF

Let { Ay} be the odd sequence of rationals above. For @agke can form the tree
of predecessors, as above. Suppose we choose some pragtienfor(n) such that
Bm < An is some even rational in the tree fay.

Lemma 29.5 limp— o Bm = A.

Proof: We consider the situation in the hyperbolic plane relativihe Farey trian-
gulation. See §17.1 for definitions. We consider the por@oof the Farey graph
consisting of edges having both endpoints in[p We direct each edge i@ so
that it points from the endpoint of smaller denominator ®é¢ndpoint of larger de-
nominator. The two endpoints never have the same denomjsatthe definition
makes sense. Say that tsplacemenbf a directed path irG is the maximum
distance between a vertex of the path and its initial vertex.

Given ane > 0, there are only finitely many vertices @ that are the initial
points of directed paths having displacement greater ¢haris follows from the
nesting properties of the half-disks bounded by the edg&s iand from the fact
that there are only finitely many edges@having a diameter greater than

Given the nature of the tree of predecessors, there is aelitpath inG connect-
ing By to A,. The displacement of this path tends to Onas> oo becausg Bn}
is an infinite list of rationals with only finitely many repeas. Also, the distance
from A, to Atends to 0. Hence the distance fr@nq to A tends to 0 by the triangle
inequality. |

Now we bring in an idea from the Rigidity Lemma. See §2.7. {Bt} be
any sequence of even rationals converging to the irratipaameteA. Then the
Rigidity Lemma implies that the limits

lim T(Am), lim T'(Bm) (29.4)
m—oo m— oo
agree. In other words, longer and longer portion§ 6An,) look like longer and
longer pictures of (By,). This is all we need to know from the Rigidity Lemma.

Now let My, o be the fundamental map associatedit@ This map is defined in
Equation 2.10. In the proof of Theorem 1.6, we showed that

Ca= n!im Mm.A(Z(Am)). (29.5)
— 00
The limit takes place in the Hausdorff topology. HeX€An) is the set of low
vertices onl'y,. Given Equation 29.4, we get the analogous result
Ca= nIim Mm.s (X (Bm)). (29.6)
— 00
Let us generalize this result. For eavhsuppose there is some> m. We also
have
m— oo
The reason is that the mapt, o andM, g converge to each other on any compact

subsetoR?, and compact pieces of the limitin Equation 29.4 determingsiasingly
dense subsets @fa.
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Lemma 29.6 Suppose thaE, c T (Ay) is a translate ofs,, consisting entirely of
low vertices. Then

m— oo

Proof: We have some vectdt, such that
Zh = Z(An) + Un. (29.8)
SinceMp, 4 is affine, we have
Mn,a(Zn) = Mn,aZ (Am) + Am. (29.9)

Now we get to the moment of truth. Sin8gBy,,) consists entirely of low vertices,
we have

MA,n(X) € [0> 2]

for all x € £(Bm). SinceX, consists entirely of low vertices, we hata »(x) +
An € [0, 2] as well. Putting = Ma n(X), we have

t, t+ Am €[0,2]. (29.10)

This last equation puts constraints bg.

By the case whem = 0 of Equation 21.7, the s&, contains both 0 and 2.
Therefore, oncen is large, we can choose € X (By) such that = Man(X) is
very close to 0. But this forces

liminf Ay, > 0.

At the same time, we can choassuch thaMa m(X) is very close to 2. This shows
that

limsupinm < 0.
In short,A, = O. O

We just have to tie the discussion above together with thematf a growing
sequence. Suppose that} is a growing sequence. L#t denote the component
of T, corresponding to,. There is a proper functiom = m, such that the pivot
arc Pg, is a translate of the major pivot aRel'(By,). Here{By} is a sequence
of even rationals that satisfies the hypotheses of Lemma 2826ce{B,} — A.
Hence the application of the Rigidity Lemma above applies.

Every low vertex onPg, is a translate of a low vertex oRT'(By). By the
Inheritance Lemma, every low vertex &, relative toBy, is also low with respect
to A,. Thus we have exactly the situation described in Lemma 29.6.

Let X, denote the set of low vertices &B,. ThenX, is a translate of the set
¥ (Bm) of low vertices onPT'(Bpy), as in the lemma above. Since

Xn (S MA’n(Zn), (2911)

we see that the Hausdorff distance fr¢x) to C tends to 0 as (andm) tend to
Q.
This completes the proof of the Period Theorem.
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29.4 A USEFUL RESULT

While we are in the neighborhood, we establish a technisalteslated by Lemma
29.5 that we will use in the next chapter.

Let{B,} be any sequence of rationals that converges tRecall from §29.2 that
any rational parametds has a tred (B) of predecessors. We can consid€B,,)
for each parameteB, in the sequence.

Lemma 29.7 Let N be any integer. Then there are only finitely many ratisima
the union

UT®n
n=1

having complexity less than N.

Proof: We will argue as in the proof of Lemma 29.5. Supp@se: r/sis a rational

in the treeT (B,,) such that is small ands andn are large. Then the directed Farey
path connectin@ to B, has tiny displacement anB,, — A| is small. HencgC — A|

is small. Also,C is near 0. Hencé\ is near 0. This is a contradiction onsand

n are large enough. Hence there is some funcfipdepending on the sequence,
such thas < f(r). Hence the union contains only finitely many rationals hgan
numerator less thaN. Our result follows from this fact. O
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Hovering Components

30.1 THE MAIN RESULT

Let A € (0, 1) be a rational parameter. We say that Z2 is D-low if the baseline
of I'(A) separates fromov — (0, D). HereD € Z. We have the usual convention
that the baseline is the line of slopeA through the point0, —¢), wheree is an
infinitesimally small positive number. Thy®, 0) is 1-low. Previously, we were
interested in 1-low vertices, which we callkxv.

Let 8 be a component of (A). We call 8 a hovering componerif it has no
1-low vertices. More specifically, we cala D-hovering componertf T'(A) if A
has no 1-low vertices and jf contains aD-low vertex. The goal of this chapter is
to prove the following result.

Lemma 30.1 (Hovering) Let{ A,} be the superior sequence approximating A. Fix
D. Then there is a constant’Wvith the following property. If n is sufficiently large,
thenT, has no D-hovering components having diameter greater tharHere D

is independent of n.

Now we start the proof of the Hovering Lemma. For each rati@ave form
a tree of depth 2 by considering the 2 predecessoB afid their 2 predecessors.
We define the complexity oB to be the minimum value of all the numerators of
the rationals involved in this list of 7 rationals. In the eashen some of these
predecessors are not defined, we set the complexity to 0.

Lemma 30.2 Fix D. Let A be any rational with predecessors And A. Let

S be a D-hovering component of (A). Assuming that Ahas sufficiently high
complexity$ is either a translate of a D-hovering componentﬁj‘ or a translate
of a D-hovering component df;.

Proof of the Hovering Lemma: Applying the Hovering Lemma recursively, we
see thap is the translate of ®-hovering component d/f(Bn), whereB, belongs
to the tree of predecessorsAf and has uniformly bounded complexity. But then,
by Lemma 29.7, the sequen{®,} has only finitely many different terms. Hence
S is the translate of one of finitely many different polygons. m|

The rest of the chapter is devoted to proving Lemma 30.2.
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30.2 TRAPS

Let A be a rational parameter. As usull(A) is invariant under translation by
Z[V]. HereV = (g, —p). We say that anajor componenof T(A) is one that is
translation-equivalent tb (A).

Let X c R? be a solid parallelogram. We cafl a capif the the following hold.

» The only components df that cros$)X are major components.

* If y is a major component that crosseX, theny N X is a finite union of
connected arcs, each of which contains a 1-low vertex.

Remark: The second item requires a bit of interpretation. When we fak X,
we might cut an edge off right in the middle. We always add tiieefdge to this
intersection. Thus N X could stick out a tiny bit fromX, and the low vertex in
guestion could be just outside ¥f This small annoyance causes no trouble.

Let Ap andA; be the predecessors 8. We take
Ao — Az, Al = A2 (301)

so thatAq is odd andA; is even. Folj = 0, 1, letA; denote the region of agreement
betweerfj andT',, as in the Diophantine lemma. Between the Diophantine Lemma
and Lemma 27.4, we cover all cases.

We say that a paifXo, X1) of parallelograms is ®-trap for A; if the following
axioms hold.

1. X; CAj.
2. X is a cap relative ta\;.

3. Any vertex inX; is 1-low with respect toA; iff this vertex is 1-low with
respect toA,.

4. Any D-low vertex relative toA; is translation-equivalent, mad[V-], to a
pointin Xo U Xj.

Lemma 30.3 Fix D. If A, has sufficiently high complexity, then there is a D-trap
for A,.

Before we prove this result, we use it to prove Lemma 30.2.

Proof of Lemma 30.2: Let 8, be aD-hovering component of,. Letv € S
be aD-low vertex. By axiom 4, we can translate so thdies in eitherXy or X;.
Suppose without loss of generality that Xo. Since translation by multiples of
V, preserves the baseline fbg, we see that is D-low with respect toA;.

Axiom 3 says that a vertex iXg is 1-low with respect td, iff it is 1-low with
respect toA,. But clearly this implies that a vertex X is k-low with respect to
Ay iff it is k-low with respect toA;. So, when we use the terkalow, it applies
equally well relative toAg and A,.
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Let B be the component oF ; that contains. Suppose first thaty crosses Xo.
Thenpy is a major component. Sino& is a cap relative td\, the component of
Po N Rthat containg also contains a low vertex. So, tracifigfrom o, we take a
path

y C Xo C Ao (30.2)
whose endpoint is a low vertex My. The second containment is axiom 1 above.
But theny c T,. Sincep, andy agree ab, they must agree (by the Embedding
Theorem) on the whole path. But thefa contains a 1-low vertex. This is a
contradiction.

Now we know thatf, does not crosg Xgy. But thenfy C Ap. Hencepy is a
component of . Sincefy and B, agree ab, we havefy = f,. By construction,
Bo = B2 contains aD-low vertex and no 1-low vertex. Therefofig = f2is a
D-hovering component df. ]

The rest of the chapter is devoted to the proof of Lemma 308h¥Ve 4 cases
to consider, and we will consider these cases in turn.

1. Ayisodd andA; < A,.

2. Asisodd andA; > As.

3. Ayisevenandd; < A.

4. Asis evenandd; > A,.

Now we reconcile the notation here with the notation in 84.1.
In case 1, we have

Ao = (A2)s — (A2)—, A= (A)_. (30.3)

In case 2, we have
Ao = (A2)- — (A2)4, AL = (A)y4. (30.4)

In case 3 we have
Ao = (A2)+, A= (A2)-. (30.5)

In case 4 we have
Ao = (A2)-, A= (A2)4. (30.6)

We will concentrate on cases 1 and 3. case 2 is essentialiathe as case 1, and
case 4 is essentially the same as case 3. When it comes tirealwith cases 2 and
4, we will briefly indicate the modifications needed and thesvesome illustrations
from Billiard King.

The parallelograms come from two sources:

» The Decomposition Theorem in Chapter 19.

» The minor box in §28.6.1.

We will explain this precisely below. Mainly, we are repagkay constructions we
have already made. When it comes to verifying the axioms, sue lessentially
already done all the hard work. The proofis mainly a mattéocditing the relevant
results in previous chapters.
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30.3 CASES 1 AND 2

Case 1:We state the following definitions.

* Xo = R1(A2), the small parallelogram from the Decomposition Theorem fo
the parameted,. Here X lies to the left of the origin.

« Xj is the minor box, defined relative to the paramegyin §28.6.1. Here
X lies to the right of the origin.

Remark: The top/bottom ofXy has a slightly different slope from the top/bottom
of X4, but the difference is tiny wheA, has high complexityX, and X1 may or
may not have about the same height. The figures below showameewhere this
happens and one case where it does not.

Lemma 30.4 (Xo, X1) satisfies axiom 1.

Proof: In 828.6.1, we showed tha€; ¢ A;. We just have to considey. The
argumentfoiXyis really the same as that for the Decompaosition Theorem.exdew
since we considered a different case there, we will work loeidetails here.

We will apply the Diophantine Lemma. Since we do not care abmall cases,
we write I, ~ |, to denote the relation where two intervals are with 2 unitsaith
other. We work with the linear functionals, andH, associated to the parameter
A,. Letu andw denote the top left and right vertices ¥, respectively. The
interval in the Diophantine Lemma is

l2 2 [—(G2)- — Go. o] - (30.7)
The lower bound comes from case 2 of Lemma 17.8.
Hence it suffices to show that

Ga(u) > —(92)- — o, Ha(w) < Qo. (30.8)
The symbol(>>) indicates an inequality in which the difference betweentithe
sides tends teo with the complexity ofA,.
We have the estimates
U —(Vo)_ + Wb, w A~ AW, =% % (30.9)
02 O

Here A5 = p;/q; is the superior predecessor A3. The approximation becomes
arbitrarily good as the complexity &%, tends toco. Hence the approximation is
good to within 1 unit oncé\, has sufficiently high complexity.

We compute
%
Go(u) =~ —(Q2)- — 4 > —(Qp)- — 4 > —(02)- — o
2(u) (02) 02+ 0o (@) (02) (G2)- — do
This takes care of the vertex Now we compute
%
H A < Az = Qo.
) S g =

This takes care of the vertex O
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Lemma 30.5 X is a cap.

Proof: ConsiderXy first. We are interested in hol sits with respect tXp, but
the Decomposition Theorem gives us information afigutBy the Decomposition
Theorem, the only component &% that crosse$ X is I'», @ major component.
The intersectiod’, N X is a single arc that crosséxo at its endpoints. These
endpoints are the low vertices. HowevEg, and T, agree inXp. Moreover, Xg
contains(0, 0). From this we see thdt is the only component to cro$s<o, and
the description of the intersections is exactly the same. o

Lemma 30.6 X is a cap.

Proof: This argument is really a repeat of the argument given in thefiof the
Pivot Theorem. Consider first the infinite striobtained by extending the top
and bottom sides oX;. By the Barrier Theorem, each major componentIof
intersectsSin a connected arc that contains 1-low vertices. Now we aealyhat
happens near the side wallsXf. The bottom left vertex0, O) is a low vertex of a
major component of 1. The same is true for the bottom right vertextf Indeed,
the bottom right vertex oK is the right endpoint of the bump associated¥g as
discussed in §28.2. This was a key part of the proof of thetFiheorem. By the
Hexagrid Theorem, the major componentdgfintersectX; in arcs connecting a
low vertex to the top o¥j. O

Combining these results, we see thdp, X;) satisfies axiom 2.

Lemma 30.7 (Xp, X1) satisfies axiom 3.

Proof: This follows from the geometric interpretation of the Di@pline constant
given in the Goodness Lemmain 817.4.2. See also §22.4. O

Lemma 30.8 (Xo, X1) satisfies axiom 4.

Proof: The left bottom vertex oy is —(V2)_, whereas the bottom right vertex
of X1 is (Vo). These two vertices differ by,. The bottom right vertex oKy is
(0, 0), the same as the bottom left vertexX{, as shown in Figure 30.1. We have
emphasized the gap between the two parallelograms, whigbuiglly tiny, for the
sake of highlighting the important issues.

Xo X,

\L 0 VA

Figure 30.1: The trap.
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Suppose for the moment that the sides<gfhave the same slope as the sides of
X1. Then, onceA; has high complexity, the tops of both parallelograms areemor
thanD units from the baseline. But then the union of translations

U (xo + Xq + kVo) (30.10)
kez
contains allD-low vertices, as desired.

The slight complicationis that the sidesXy{ are parallel to\,, whereas the sides
of X are parallel toV;. These are the vectors from Equation 3.2 relativA4@and
A;. As the complexity ofA; tends toco, the slopes converge, and Below lattice
point lies between the two lines emanating from the sametpdhus the union in
Equation 30.10 still contains ald-low vertices once?; has high complexity. O

Case 2:We use the same definitions as for case 1 excepttfiat)  replacegV,) .

in the definition of the minor box foX;. Aside from switching the roles played by
left and right, and+) and(—), the proofs for case 2 are exactly the same as the
proofs for case 1.

ap
md\
DD 7

T A

Figure 30.2: The traps and hovering components foy41.

Figure 30.2 shows an example in this case. We have
3 4 11
ho=13 tTar 27 47
The top frame shows some of the componenfS(@f1/47). Note that the low hov-
ering components, outlined in black, are trapped. Othempmmants, however, are

allowed to cross out of the traps. Figure 30.2 also shawAg, Az) andA (Aq, A).
We haveX; c A(Aj, A2).
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30.4 CASES3AND 4

Case 3:We defineXq to be the parallelogram bounded by the following lines.
1. The baseline relative t4,.
2. The line parallel td/y and containing\y. Compare the Room Lemma.
3. The line parallel t&\p and containing0, 0).
4. The line parallel t&\p and containing-(V2) .

We defineX; to be the minor box, as in §28.6.1. (This definition does net us
the parity ofAz.)

Lemma 30.9 (Xp, X1) satisfies axiom 1. ¥c Ao.

Proof: As in case 1, the work in §28.6.1 takes careXaf We just have to show
that Xo € Ag. We will apply Lemma 27.4. This time we work with the linear
functionalsGo andHg associated to the paramet&y. Letu andw denote the top
left and right vertices oKy, respectively. The interval in the Diophantine Lemma
is

I~ [0, o] - (30.11)
Hence it suffices to show that
Ga(u) > —0p, Ha(w) < qo. (30.12)
We have
u=—(\Va)- +Wo, w = Wo. (30.13)
We compute
2
Go(W) ~ ~(@)- ~ o> ~(@)- ~ G = —(@)- ~ (@) =~
This takes care of the vertex Now we compute
g6
Ha(w) = Po + do <%
This takes care of the vertex |

Lemma 30.10 Xg is a cap

Proof: We use an argument similar to Lemma 30.6. Consider first fivatastrip

S obtained by extending the top and bottom sides(pf By Statement 1 of the
Hexagrid Theorem, no edge bf, crosses the top db. By this theorem, the only
component to cross the right sideX§, namely, the wall line througt0, 0), is T'o.

By rotational symmetry, the same is true for the left sidXgf The argument is es-
sentially the same as that given in §19.3. The pointis thaesotational symmetry
of Ty carries the left side oX to the right side. To be sure, compare Lemma 281.6.
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Lemma 30.11 (Xp, X;) satisfies axiom 2.

Proof: The argumentfoK; is essentially the same asin case 1. The only difference
is that we use the setup from §28.9.2 becatysand A; are both even rational§]

Combining these results, we see tfdg, X;) satisfies axiom 2. The verification
of axioms 3 and 4 is the same as in case 1.

Case 4: We use the same definitions as in case 3 except that we inteyeltae
roles played by-(V,)_ and(V2).. The proof in this case is essentially the same
as in case 3, modulo the same switching of left and right. fei@0.3 shows an
example for

9 7 A — 16

31 YT 2w >~ 55

Figure 30.3 also shows the hovering components that arpddiin the parallelo-
grams.

Ag =

Figure 30.3: The traps and hovering components for35.
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Chapter Thirty-One

Proof of the Low Vertex Theorem

31.1 OVERVIEW

The Low Vertex Theorem in Chapter 23 is a consequence of tleniog result.

Lemma 31.1 (Descent)Let A< (0, 1) be irrational. Let{B,} be any sequence of
rationals in (0, 1) that converges to A. L¢tbe a low component of (B,). There
is some constant Tsuch that every D-low vertex @f can be connected to a low
vertex off in less than Dsteps. Here Ddepends on D and on A but not on n.

Proof of the Low Vertex Theorem: Let Ny and {v,} be as in the Low Vertex
Theorem. Lets, be the component ofl',, that contains),. Here is the imput
from the Hovering Lemma. If the constaNi is chosen sufficiently large, then the
inequality

diam(fn) > Ny
implies thats, is alow component. We choosg in this way. Applying the Descent
Lemma to the sequendd\,}, the component = Sy, and the constar® = Ny,
we immediately obtain the conclusion of Low Vertex TheoreithviN, = D’. O

The rest of the chapter is devoted to proving the Descent Lan®@ur proof of
the Descent Lemma is somewhat complicated by the fact thahweot quite prove
a very useful conjecture. Experimentally, we observe tfleiang improvement
for the Inheritance Lemma.

Conjecture 31.2 Let A be any rational having the predecessors & A, and
AL & A, TheAn every minor low component b% is eitrler the translate of a low
component ofly or the translate of a low component @f;.

Referring to the proof of the Pivot Theorem, the end major gonents give us
trouble. See the discussion at the end of §28.2.

As we will explain below, Conjecture 31.2 would be very uséfiyroving the
Descent Lemma. See the remark in 831.3. Our strategy foimydkie Descent
Lemma is to prove a somewhat weaker version of ConjectutetBat captures all
the necessary features. We state this weaker result, Lerhi®a8the next section.
One strategy for understanding this chapter is to first asghmtruth of Conjecture
31.2. Then, once the overall logic of the argument makessseme can learn the
complications that arise from the fact that we must use LerBind in place of
Conjecture 31.2.
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31.2 A MAKESHIFT RESULT

Let A be an even rational. Previously, we divided the poly@j@A) into two arcs,
the pivot arcPT'(A) and the upper arc. These two arcs join together at the pivot
points.

N
Figure 31.1PT andQT.

Referring to the Barrier Theorem, recall tHatA) passes through the barrier at
2 points. One arc of lies below the barrier and one above. @I denote the
component that lies below. Thédl' ¢ QI'. We call QI" anextended pivot arc
We think of QI" as a kind of compromise between the whole compoiieand
the pivot arcPT'. If A has sufficiently high complexity, theQT" contains all the
vertices withinD of the baseline. This is a consequence of the Barrier Theorem

So far we have define@p only wheng = I'(A) and A is an even rational. The
result next serves both as a lemma and a definition. It witivallis to apply the
definition ofextended pivot arto all polygonal low components of (A) whenA
is any rational parameter. The result we prove here is bahana and a definition.

Lemma 31.3 Let A be arational having predecessorg A- A;and A, < A;. If
A, has high enough complexity, then every low componehtdfas a well defined
extended pivot arc, and this pivot arc is the translate of @ereded pivot arc of,-
foroneof j=0, 1.

Proof: We will suppose tha#; is odd. The even case is similar. In the proof of
the Inheritance Lemma, the same constructions and argsmenk for the whole
components and not just their pivot arcs — except perhapegicetse of the end major
components. Again compare the discussion at the end of §28.8eal with the
end major components, we consider the tfXp, X;) constructed in the previous
chapter. The important point here is that the topXafis the barrier line for the
paramete;. The two end major componergs and g, intersectX; precisely in
the arcsQp1 andQp,. HenceQp: andQp, are copied whole by,. Let # denote
the component of , that containgg N X;. We defineQ3 = Q. ThenQg is
copied fromI'; by construction. |
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Remark: Lemma 31.3 is not stated in a way that makes it obviously [l
Conjecture 31.2. Below we will explain why Lemma 31.3 playsle in the proof
of the Descent Lemma that is similar to the role that Conjec81.2 would play.

The following result is an addendum to the proof of Lemma 31.3

Lemma 31.4 Let N be fixed. If Ahas sufficiently high complexity ajgds an end
major componentof';, thenB; — Q1 does not contain any vertices within N units
of the baseline.

Proof: As in our proof of the Pivot Theorem, we consider the case wher A;.
The other case is entirely similar.
Let

y =F—Qp. (31.1)

Herey is an arc of . Let Xy be as abovel'; andI, agree inX;. The component
S has a low vertex irX;. The arcy has both its endpoints on the top edgexaf

Let S denote the infinite strip obtained by extending the left a@gttrsides of
X1. We claim thatg does not cross either side 8f To prove this claim, leS.
andSg denote the left and right boundaries®f Then/ does not cros§ , by the
Hexagrid Theorem applied #,. Likewise (/) does not crosS, , by the Hexagrid
Theorem. Hereis the same symmetry as in Lemma 28.1. By constructiswaps
S andSg. Henceﬁ does not crosSg. This establishes our claim.

&
S

Figure 31.2: y crossesX; four times.

Now we know thaty does not cross the sides®f Hence, ify contains a vertex
within N units of the baseline, this vertex must liea. But thenf crosses the top
edge ofX; at least 4 times, as shown in Figure 31.2. But these 4 cropsings are
then copied fronT;. This contradicts the Barrier Theorem because the top efdge o
X, is contained in the barrier line fdr;. O
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31.3 ELIMINATING MINOR ARCS

Suppose that the Descent Lemma is false. This means thatwisndea sequence
{vn} of vertices, all uniformly close to the baseline, such thatrt-neighborhood
of B, contains no low vertices. Hep# is the component df,, that contains,,. In
this section we reduce the several possible situationsecibnation that is easier
to manage.

Passing to a subsequence and using translation symmetcgmagrange one of
two cases.

* fBnis a minor component df,, for all n.
e Bn =Ty foralln.

Here we will show that a counterexample of the first kind fsr@eounterexample
of the second kind.

Remark: Assuming Conjecture 31.2, we can argue as follows. By Cdmjec
31.2, the componerf, is the translate of (B},) for someBy, € T(B,). Sincep,

is a low component, and yet theball aboutv, contains no low vertices, we see
that the diameter of, tends tooco with n. But then the complexity oB;, tends to
oo with n. Hence, by Lemma 29.8/ — A. Thus a counterexample to Lemma
31.1 involving minor components leads to a counterexamptaving major com-
ponents. The new counterexample uses the param{&girs

Since we cannot prove Conjecture 31.2, we have to make doLwitima 31.3.
We need one last result before we can make Lemma 31.3 worlsfor u

Lemma 31.5 Let 8, be a low component of (B,). Suppose that the diameter of
Bn tends toco. Then the distance from any point gp — Qf, to the baseline of
I'(B,) tends tox as well.

Proof: Thisis a consequence of Lemma 31.4. EAg¢ls a translate of a component
of the form

C, C=T(B)). (31.2)
Here B}, is on the tree of predecessorsBy. Since the diameter df tends tooco
with n, we see than the complexity 8f, tends taco with n by Lemma 29.7. Hence
the distance fron€ — QC to the relevant baseline tendsdo with n. O

Now let us revisitthe argumentabove. By Corollary 31.5pbiatso,, lie on Qp,
oncen is sufficiently large. Indeed, by Lemma 31.5, the distanomfs,, to a point
on S, — Qpf, tends taco with n. By Lemma 31.3, we know th&f;, is the translate
of QI'(B},) for someB/,. The sequencgB/} converges tA. ThenQI'(By,) has a
vertexoy, that is uniformly close to the baseline but hasameighborhood with no
low vertices. This is a counterexample of the second kind.

To finish the proof, we just have to rule out counterexampleésesecond kind.
We will first present a topological lemma and then complegepiioof.
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31.4 ATOPOLOGICAL LEMMA

The result concerns the trgjo, X1) constructed in the previous chapter. hebe
the bump associated to the parameigras in §28.2.

Lemma 31.6 When A has sufficiently high complexity, the seth X; consists of
2 connected arcs, each joining an endpoinygto the top of X.

Proof: In the even case, this is a restatement of Lemma 28.13. Garisiel odd
case. We takd\; < A,. The other case is entirely similiar.

The two endpoints of, areE; andE; + V,. Both these points belong .
The line parallel toA; throughV,/2 dividesX; into two pieces. (See Figure 31.3.)
By the Hexagrid Theoremny, crosses a door on this line. This door lies above the
top of X;. At the same timey, can cross the top oX; only twice. This follows
from the Barrier Theorem, as appliedAq, and from the fact that, andT, agree
in aneighborhood oK. So, starting from the left endpoint ¢, some initial arc of
y2 rises up to the top oK;. The next arc of, crosses through a door and returns to
the top ofX;. The final arc ofi, connects the top 0f; to the right endpoint of,. O

Figure 31.3 illustrates our argument far= 21/55. The dark-gray parallelogram
is X1. The line parallel taN, throughV,/2 is the line of high positive slope on
the right side of the figure. (The vectovssandW are as in the definition of the
Hexagrid given in Chapter 3.) The relevant door is the tqgat on this line at the
far right. We have shown part of the hexagrid so as to pointlautioor.

U

Figure 31.3: Lemma 31.6 forA, = 21/55.
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31.5 THE END OF THE PROOF

Letl', = T'(A2), asinthe previous section. We say th&l-arc ofl', is a connected
arca that joins a low vertex to ®-low vertex. Let|a| denote the smallest integer
N such thatz contains no vertices that are more thidnvertical units above the
baseline. Given ®-low vertexv € «a, let

F(A2) = maxf (v; Ay), f(v; Az) = min|al. (31.3)

In the first equation, the maximum is taken over@tow vertices. In the second
equation, the minimum is taken over &ltarcs having as an endpoint. (Actually,
this minimum it taken over the two shorteBtarcs, each going out in a different
directionfromw.) These functions depend implicitly @, which s fixed throughout
the discussion.

Before we prove any results, we give some intuition aboutfdmetion F. If
F(Ay) is large, it means that there exist®alow vertexv such that the only arcs
connecting to an actual low vertex rise up very high away from the baselift
least in a large neighborhood of the component containing would imitate a
hovering component. This is the sort of thing we want to rule o

Lemma 31.7 If A; has sufficiently high complexity, then
F(A2) < max(F(Ao), F(Al)).

Proof: We treat the odd case. The even case has the same proof evatepétuse
Lemma 27.12 in place of the Copy Lemma.

Let (Xo, X1) be the trap forA,. Choose aD-low vertexv € I'; such that
F(A2) = f(v). Recall thaty, is the bump corresponding #,. The unionl’; U y»
is one period of” modulo translations by,. We have two cases.

Case 1: Suppose thab € PI',. By the Copy TheoremPI', c T'p. By the
argumentin 822.4, a vertex dfl'; is k-low with respect toAy iff it is k-low with
respect toA,. Since both endpoints d?T', are 1-low with respect to both param-
eters, theD-arcs ofl'; realizing f (v, Az) coincide with theD-arcs ofl’, realizing

f (v, Ag). Hence

F(Ag) > f(v, Ag) = T(v, A2) = F(A2).

Case 2:Suppose that € y,. Theno C Xj, ando is in one of the two arcs from
Lemma 31.6. Let us say thatis on the left arcl. Thenl c I'1 N T2 N Xy, by
axiom 1 for traps combined with Lemma 27.4. By axiom 3 for siagvertex ofl
is k-low with respect toA, iff it is k-low with respect toA;. Leta be aD-arc of
I'1 such thatf (v; A1) = |a|. The left endpoint of is 1-low, and the right endpoint
lies on the top oX;. WhenA; has high complexityy c 1. The idea here is that
the D-arc connecting to the left endpoint of. remains inX1, whereas any-arc
exiting A must pass through the top #f. Sincea C 4, we haveF (A;) > F(Ap)
asincase 1. O

Let {B,} be the sequence in the Descent Lemma.
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Corollary 31.8 F(By) is uniformly bounded independent of n.

Proof: Applyingthe previousresult recursively, we see that tieseme parameter
Cn € T(By), of uniformly bounded complexity, such that

F(Bn) < F(Cy).

But the sequencgC,} has only finitely many distinct members, by Lemma 2917.

In light of the work in §31.3, the following corollary finiseehe proof of the
Descent Lemma.

Corollary 31.9 A D-low vertex of"(By) can be connected to a low vertexiafB,,)
by an arc that has length less thari.DHere D is independent of n.

Proof: Let v, be theD-low vertex in question. By Corollary 31.8 we can find

a D-arcan connectingy, to a low vertex ofl’(B,) such thata,| < N andN is
independent ofi. But the same argument as in the proof of Lemma 5.7 shows that
the diameter of:, is uniformly bounded. The idea here is thatcannot grow a
long way in a thin neighborhood of the baseline. o

This completes the proof of the Low Vertex Theorem. This madast remaining
piece of business. Our work is done.
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Appendix

In this appendix, we describe some additional experimeafitsérvations we have
made about outer billiards on kites and quadrilaterals.

A.1 STRUCTURE OF PERIODIC POINTS

A.1.1 Irrational Case

SupposeA is an irrational parameter. L&a andl be as in the Comet Theorem.
It follows from the Comet Theorem that all defined orbitd ir- C» are periodic.
Here we discuss a conjectural picture of the dynamics oktpeints. We use the
notation from the Comet Theorem.

As in §24.2, we can naturally identifg 5 with the ends of an infinite directed
tree Ta. Using the homeomorphism

¢:ZA 4 CA,

we can formally extend the return map 6 — ¢(—1) to all of C, even though
the extended return map does not correspond to the outiardhdldynamics on the
extra points. The extended return map is induced by an autahism

Oa: TA—> TA

as discussed in §24.2. The complementary open intervéls-i€ 5 — thegaps- are
naturally in bijection with the forward cones ®f.

Conjecture A.1 The outer billiards map is entirely defined on a gap. The first
return map to |— Cp permutes the gaps according to the action@®{£ on the
forward cones of 1.

Some reflection should convince the reader that this is thplsist possible descrip-
tion of the periodic dynamics that is compatible with the @bfheorem.

With a lot of effort, we can prove the weaker result that Conjes A.1 correctly
describes the first return map for evelgfinedorbitin | — Ca. The part we cannot
prove is that all the orbits df — Cx are actually defined. This is a big difference.
If all points in the same gap have well defined orbits, thenithele gap moves as
a single orbit. That is, all points in the same gap have theesasmbinatorial type
of orbit. Without knowing that all points in the gap have wedfined orbits, all we
can say is that two points in the same gap returhitothe correct way. The orbits
might have different itineraries outside bf

We might have included the proof of the weak version of CauojerA.1 in this
book, but we would prefer to hold out for the definitive result
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A.1.2 Rational Case

Now we describe a rational version of Conjecture A.1 whiadmbined with the
results we have proved, implies Conjecture A.1. Bet pn/Qn, as in Theorem
1.8. LetC(A) be the set from Theorem 1.8. Eaghe C(A) is the midpoint of a
special interval in the sense of §2.2. Call this interd&f). Define

ca={J 3o (A1)

¢eC(A)

Figure A.1 shows three examples. Here we have thickenedthesals to get a
better picture. We have also added white bars to clarify plaeiag.

¢ N
LN

Figure A.1: 6(A) for A=1/3and 311 and 725.

The three rationals in Figure A.1 are part of a superior seggieand one can
see that each level sort of refines the one above it. It is aecpresice of Lemma
2.6 that, in the odd case, there is a gap between every paitesfals inC(A). In
the even case, this need not be true. One can compute thiopssit the intervals
using the formula in Theorem 1.8.

Say that agapis an maximal interval of — C. For C(7/25) there are 7 gaps.
Each gap haslavel as indicated in the figure. The levels go from @telin C(A).
(HereAis thenth term in the superior sequence that leads up.jdnformally, the
gaps of levek < n — 2 are inherited from previous terms in the superior sequence
and the gaps of level — 1 are newly created with the last parameter.

Given this notion of levels, there is a natural identificataf C(A) with the
ends of a directed finite tree. The return m@p: C(A) — C(A) comes from an
automorphism of this tree. The union of all the gaps is biyectvith the forward
cones of the tree. The automorphism of the tree induces amauphism on the
set of forward cones. With all this notation in place, thejeoture for rational
parameters is exactly like Conjecture A.1.

The Inheritance Lemma in Chapter 29 makes some progressd@n@ving the
rational version of Conjecture A.1, but this lemma is not pawenough. (Neither
is Lemma 31.3.) We know how to deduce the rational versionarfj€cture A.1
from Conjecture 31.2, but we do not know how to prove Conjec81.2.



book April 3, 2009

297
A.2 SELF-SIMILARITY

Figure A.2 shows the arithmetic graphs for the paramete®g408 and 72305.
These rationals are close approximations/®— 1 and+/5 — 2, respectively. The
second parameter is the Penrose kite parameter. It seentiselzithmetic graphs
associated to quadratic irrational parameters are seifegion a large scale.

Figure A.2: The arithmetic graph for rationals close4 — 1 and+/5 — 2.

Let I" denote thg?2, co, co)-triangle group, from Theorem 1.5. Létand¢ be
the interval from the Comet Theorem.

Conjecture A.2 Let g € T and let A e (0,1) be a fixed point of g. Suppose
thata = ¢S‘1(—1l has a well defined orbit relative to the parameter A. Then the
arithmetic graphl’, (A) is quasi-invariant under dilation bjg'(A)|Y/2.

By quasi-invariantwe mean that there is a dilatidn such thaf® andT(f) are
contained in bounded tubular neighborhoods of each otheme8mesp—1(—1)
does not have a well defined orbit. In these cases, there @acement for Con-
jecture A.2, but it is more difficult to state.

Conjecture A.2 forlA = +/5— 2 is a consequence of the results®i]} This kind
of self-similarity is stronger than the kind in item 3 of Thhem 1.5. Indeed, item
3 of Theorem 1.5 is really just a reflection of the fact thatgbeof low vertices of
the componenkt behaves like a large-scale fractal. Conjecture A.2 dedtls thie
whole arithmetic graph and not just the bottom layer of onaponent.

One consequence of Conjecture A.2 is that suitably resdiabid of arithmetic
graphs, atquadratic irrational parameters, are selfl@iirves — or perhaps closely
akin to self-similar tilings in the sense d€¢] if all components are rescaled at once.
We think that the following conjecture would be another @ngence.

Conjecture A.3 For each quadratic irrational A= (0, 1), there is some exponent
a = a(A) e (2,3) such that the bounfic;'d2, c,d %] in item 3 of the Comet
Theorem can be replaced pg; 'd~2, c,d 2] .
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A.3 GENERAL ORBITS ON KITES

This entire book is concerned with the special orbits onskithose that lie on
R x Zoqg- FOranyy e R, let

S ={y+ 2kl k e Z}, Qy={X,y)y €S} (A.2)
Q, consists of an infinite family of parallel lines, each spa2egart fromits nearest
neighbors. The special orbits all lie @y. The square of the outer billiards map
on a kite preserveQ, for any choice ofy.

Once we choose an offsete R, we can define the arithmetic graﬁl@(A y).
WhenAisrational, there is a canonical choice éoand we omit it from our notation.
Asy — 0, the nature of (A; y) changes in a fascinating way. In Figure A.3, we
showI (17/37; y) for the y-values
1 1 1
2> 4 8
As y — 0, the graph starts to concentrate along straight lines.s@ liges are
asymptotically paraIIeI to the lines of the door grid frone tHexagrid Theorem.

1,

F|gure A.3: The freezmg process.
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Informally, we think ofy e [0, 1] as being a kind of temperature, with O cor-
responding to freezing and 1 corresponding to boiling. Nbsd the figure for
y € [—1, 0] is symmetric. Thus one sees a similar freezing procegs-as0 from
below.

We do have an explanation of sorts for the freezing phenomehough we have
not worked through all the details. The Master Picture Theoseems to hold for
the general orbits. That is, there is one 5-dimensionalpicthat works for all
orbits and all parameters at once. The Master Picture Theaeeproved here is a
boundary case.

As y — 0, the regions in this master partition that assign noratigdges to
the arithmetic graph seem to concentrate along a finite usfitwyperplanes. The
preimages of these hyperplanes are the asymptotic linesweénsthe freezing
process.

Here are some other observations about these generalitedetic graphs.

The Embedding Theorem seems true in general.

» The Hexagrid Theorem is false in general.

The Diophantine Lemma is false in general.

All the results in §1.5 are false in general.

We think that most of our theorems ought to have (probablykeB®analogs for
the general orbit. We do not know which way to bet on the answmvever. Here
are some obvious questions one might ask:

Question 1: Is every orbit in a kite either periodic or unbounded?
Question 2: Is almost every orbit in a kite periodic?

Question 3: Are there any unbounded orbits that are not special orbits?
Question 4: Is every unbounded orbit oscillatory in at least one dicet?i

In the last question, an orbit @scillatoryif its w-limit set is nonempty. Erratic
orbits are oscillatory in both directions. Note that the @mheorem completely
answers all these questions for orbit<in.

What makes these questions difficult for us to answer (asae & general lack
of understanding of the situation) is the fact that the Heixeil§heorem no longer
holds. This precise result played a huge role in our overalbp It is interesting
that one sees remnants of the hexagrid, as the asympteis; &s the temperatuye
tends to 0. One might wonder if there is a united Hexagrid Téedhat somehow
governs the whole picture. Another difficulty is that the €dmeorem no longer
seems to hold in such a precise way as they did for speciabkorbi
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A.4 GENERAL QUADRILATERALS

First we discuss the situation for trapezoids. As mentioinetthe introduction,
Dan Genin worked out the complete picture for trapezoide [6€]. His work is
similar in spirit to the work discussed in this book, thoudtinately the situation
for trapezoids is simpler. Genin finds that all orbits are rmed, and most are
aperiodic. Thus the orbit dichotomy, periodic or unbound#mes not work for
trapezoids.

One appealing feature about studying the general quashdlais that one can
perhaps interpolate between the work in this book and Gemésults. The final
picture ought to be compatible with both kites and trapezoid/e have no idea
how to carry this out at present. However, in this sectionwilepresent some
interesting figures. Our latest version of Billiard King ¢aims a separate program
that generalizes some of the features of Billiard King to egahquadrilaterals.
Indeed, Figure A.3 is taken from this other program.

The space of convex quadrilaterals modulo the affine group is 2-dinfeame.
For (a, b, ¢) in the positive orthant dR®, we letQ(a, b, c) denote the quadrilateral
with vertices

a+b b+c
0.0, (1,0, (01, v= :
©.0, €0, O, v (a+b+c’a+b+c)

Any convex quadrilateral is affinely equivalent to so@éa, b, c). Our coordinati-
zation is adapted to a certain action of the positive matiiic& L3(Z) on Q, which
we will not discuss. The trapezoids correspond to pointhiefform(0, b, ¢) and
(symmetrically)(a, b, 0).

For the first return map, we take to be the stripR, x [—1, 1]. This time we
consider the solid strip and not just its boundary. Pickimpgpiat (a1, a2) € E and
watching the first return map, we see a sequence of points

(0(1, 02) + (ka, 2nk) + 200, My, Nk, Ok € Z. (A.3)

The lattice path corresponding to the orbit, namglyy, nk, ok}, lies very close to
aplane inR®. The fact that thg-coordinate lies inf 1, 1] places a relationship on
nk andog. We can project into this plane and draw a 2 dimensional figure

When we do this carefully, taking into account the parityrag&quation 2.10,
we get a notion of the arithmetic graph that extends what we ffiar kites. We
show some illustrations below. In all the figures, we stathwhe offset value
(a1, a2) = (0, —1). As for the case with kites, we mean to add an infinitesimally
small vector to the offset, so as to track well defined orliitsmpare the discussion
in 82.5.

Figure A.4.1 shows the figure for the trapezoid with coortésé0, 233 377).
One of the main diagonals of our bounding box is approxirydted baseline. Here
233 and 377 are fairly large Fibonacci numbers. This figutgpial of what one
sees for trapezoids.
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;

)

1 / / /1 / / / /

Figure A.4.1: The arithmetic graph fof0, 233 377).

When we perturb away from the trapezoids, the orbits becoashmore compli-
cated. Figure A.4.2 shows part of what we would call the funeiatal component
I'(1, 233 377). This component tracks essentially the same orbit we censitl
extensively in the book. The path is part of a single immeps#ygonal arc!

Figure A.4.2: Part ofT"(1, 233 377).

Looking closely at the figure, it seems as if several of thargts approximate
curved arcs. It seems that one can get genuinely curved grtakimg rescaled
limits. For instance, a suitable limit of the graphs cormgfing to the family
{(1, Fn, Fay1)} seems to have this property. Hdfgis thenth Fibonacci number.

Figure A.4.3 shows a similar phenomenon for a messier fuedéamhcomponent.
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Figure A.4.3: Part of (336, 237, 239).

Sometimesthe figure for the fundamental orbit dissolvesantincomprehensible
cloud, as in Figure A.4.4. We are sure that one can state famgeénteresting about
the structure of a polygonal path like this, but we do not kndvat that statement
is. Perhaps the reader can see why we confined our attentapetdal orbits on

kites.

Anl

Figure A.4.4: Part of (336, 239, 611).
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affine action, 63

algorithm for the Master Picture Theorem, 66

aperiodic orbits, 1
arithmetic graph, 12, 26
arithmetic kite, 33

backward erratic orbits, 3
Barrier Theorem, 125
baseline, 26

billiards, 1

bounded orbits, 1

bump, 250, 260

Cantor set, 207

caps, 280

celestial mechanics, 1, 5
Comet Theorem, 7, 205, 295
Continuity Principle, 30
convex integral polytopes, 63
Copy Theorem, 12, 195, 239
crossing cells, 135

cusped solenoid, 5

Decomposition Theorem, 171
density of periodic orbits, 50
Descent Lemma, 287
dimension formula, 231
diophantine constant, 159
door grid, 33

doors, 35, 133

EIRS, 188
Embedding Theorem, 12, 101
end major components, 260

enhanced renormalization sequence, 188

erratic orbits, 3

Erratic Orbits Theorem, 3, 45
essential conjugacy, 5

even predecessor, 273
excursion distance, 8, 208

Farey pairs, 249

Farey triangulation, 153
first return map, 25
fleeting orbits, 11

forward erratic orbits, 3
freezing phenomenon, 298

fundamental map, 26
general orbits, 298

half-disk, 2

Hausdorff dimension, 6, 230, 231
Hausdorff metric, 30

Hausdorff topology, 30
hexagrid, 33, 35, 136

Hexagrid Theorem, 12, 35, 133
homology, 27

hovering components, 279
Hovering Lemma, 279
hyperbolic geometry, 153, 228
hyperbolic triangle group, 5, 228
Hyperplane Lemma, 93

inferior predecessor, 41

inferior sequence, 7, 41, 153, 187
Inheritance Lemma, 273
Intersection Lemma, 143

inverse limit, 7

lattice vector field, 12

limit set, 9, 19

low component, 287

low vertex, 28, 196, 205

Low Vertex Theorem, 205, 287

Master Picture Theorem, 15, 25, 55
Master Picture Theorem example, 60
middle major components, 260
minimality, 4, 287

minor box, 266

minor components, 260

Mismatch Principle, 171

modular group, 5

modularity, 229

Moser-Neumann question, 1

odd predecessor, 273

odometer, 5

orbit dichotomy, 49

ordering, reverse lexicographic, 193
ordering, twirl, 193

partition, 21, 57, 66
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Penrose kite, 6

Period Theorem, 213, 273
periodic orbits, 1
persistent orbits, 11
phase portrait, 28
Pinwheel Lemma, 25, 69
pinwheel map, 69, 70
pivot arcs, 249

pivot points, 239

Pivot Theorem, 195
polygonal outer billiards, 19
polyhedron exchange, 15

quadratic irrational parameters, 231
quadrilaterals, 300
quasirational polygon, 2

rational kite, 10

rational polygons, 19
regular pentagon, 2
renormalization sequence, 7
return map, 4

return times, 208

Rigidity Lemma, 31, 50, 276
room grid, 33

Room Lemma, 37

rooms, 35

self-similarity, 231, 297
singular set, 93

special intervals, 20

special orbits, 3, 20
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Strip Lemma, 79

strip map, 69

strips, 69

strong sequences, 43, 181
Structure Lemma, 249
superior parameters, 188
superior predecessor, 41
superior sequence, 7, 41, 187
superior term, 7

symmetry, near-bilateral, 113
symmetry, rotational, 111
symmetry, translational, 107

temperature, 298

tilings, 19

Torus Lemma, 77

Torus map, 78
trapezoids, 2, 300

traps, 280

tree automorphism, 295
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trimmed Cantor set, 4
twist automorphism, 193

unbounded orbits, 1
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