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Abstract

We show that a smooth embedded paper Moebius band must have
aspect ratio at least φ = (1+

√
5)/2 = 1.61.... This is an improvement

of the previously known bound of π/2 = 1.5708....

1 Introduction

Note: This paper has been superseded by my recent paper The Optimal
Paper Moebius Band , (arXiv 2308.12641) which proves the Halpern-Weaver
conjecture in full. Also, this paper had a mistake in it. The updated ver-
sion here corrects the mistake and otherwise keeps as close as possible to the
original text.

This paper addresses the following question. What is the aspect ratio of
the shortest smooth paper Moebius band? Let’s state the basic question more
precisely. Given λ > 0, let

Mλ = ([0, 1]× [0, λ])/∼, (x, 0) ∼ (1− x, λ) (1)

denote the standard flat Moebius band of width 1 and height λ. This Moebius
band has aspect ratio λ. Let S ⊂ R+ denote the set of values of λ such that
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there is a smooth 1 isometric embedding I : Mλ → R3. The question above
asks for the quantity

λ0 = inf S. (2)

The best known result, due to Halpern and Weaver [HW], is that

λ0 ∈ [π/2,
√

3]. (3)

In §14 of their book, Mathematical Omnibus [FT], Fuchs and Tabachnikov
give a beautiful exposition of the problems and these bounds. This is where
I learned about the problem.

The lower bound is local in nature and does not see the difference be-
tween immersions and embeddings. Indeed, in [FT], a sequence of immersed
examples whose aspect ratio tends to π/2 is given. The upper bound comes
from an explicit construction. The left side of Figure 1.1 shows M√3, to-
gether with a certain union of bends drawn on it. The right side shows the
nearly embedded paper Moebius band one gets by folding this paper model
up according to the bending lines.

rotate

Figure 1.1: The conjectured optimal paper Moebius band

The Moebius band just described is degenerate: It coincides as a set with
the equilateral triangle ∆ of semi-perimeter

√
3. However, one can choose any

ε > 0 and find a nearby smoothly embedded image of M√3+ε by a process
of rounding out the folds and slightly separating the sheets. Halpern and

1The smoothness requirement (or some suitable variant) is necessary in order to have
a nontrivial problem. Given any ε > 0, one can start with the strip [0, 1]× [0, ε] and first
fold it (across vertical folds) so that it becomes, say, an (ε/100)× ε “accordion”. One can
then easily twist this “accordion” once around in space so that it makes a Moebius band.
The corresponding map from Mε is an isometry but it cannot be approximated by smooth
isometric embeddings.
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Weaver conjecture that λ0 =
√

3, so that the triangular example is the best
one can do.

The Moebius band question in a sense goes back a long time, and it is
related to many topics. The early paper [Sad] proves rigorously that smooth
paper Moebius bands exist. (See [HF] for a modern translation to english.)
The paper [Sab] studies the extrinsic geometry of flat Moebius bands embed-
ded or immersed into Euiclidean space. The paper [SU] establishes various
structural results about flat surfaces with singularities embedded in R3. The
paper [CF] gives a general framework for considering the differential geom-
etry of developable surfaces.

Some authors have discussed optimal shapes for Moebius bands from
other perspectives, e.g. algebraic or physical. See, e.g. [MK] and [S1]. The
Moebius band question has connections to origami. See e.g. the beautiful
examples of isometrically embedded flat tori [AHLM]. It is also related to
the main optimization question from geometric knot theory: What is the
shortest piece of rope one can use to tie a given knot? See e.g. [CKS].

In this paper we improve the lower bound. Because we do not want
to worry about possible pathologies, we assume explicitly that the smooth
extension of our map I to a neighborhood of Mλ is regular in the sense that
the differential dI is 1-to-1 everywhere. This regularity will help us when we
make polygonal approximations. We don’t want to worry about any funny
behavior at the boundary of Mλ.

Theorem 1.1 (Main) An embedded paper Moebius band must have aspect
ratio at least φ = (1 +

√
5)/2.

The proof of the Main Theorem has 2 ideas, which we now explain. Being
a ruled surface, I(Mλ) contains a continuous family of line segments which
have their endpoints on ∂I(Mλ). We call these line segments bend images .
Say that a T -pattern is a pair of disjoint perpendicular coplanar bend images.
The T -pattern looks somewhat like the two vertical and horizontal segments
on the right side of Figure 1.1 except that the two segments are disjoint in
an embedded example. Here is our first idea.

Lemma 1.2 An embedded paper Moebius band of aspect ratio less than 7π/12
contains a T -pattern.

Note that 7π/12 >
√

3, so Lemma 1.2 applies to the examples of interest to
us. The immersed examples in [FT] do not have these T -patterns, and it is
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illuminating to sketch the idea of the proof of Lemma 1.2 and see where it
breaks down for immersed examples. The proof does not break down until
the very end.

Proof Sketch: We will consider pairs of bend images whose directions are
perpendicular. Call these perpendicular pairs . We will use a homological
argument to produce a continuous path, though perpendicular pairs, which
starts at a perpendicular pair and returns to the same pair but with the
two bend images switched. A perpendicular pair determines a unique pair
of parallel planes, one containing each of the bend images in the pair. As
we go along our path, the original pair of planes must return to itself, but
with the planes switched. If the planes are to remain disjoint they must
sort of turn over each other. Once we suitably rotate the Moebius band, the
bound of 7π/12 will keep all the bend images horizontal enough to prevent
this turnover. So, what happens is that the planes coincide at some moment
along the path. At this moment the bend images are perpendicular and
coplanar. Since the Moebius band is embedded , this gives us a T -pattern. In
the immersed case, these coplanar perpendicular segments could cross each
other like a + sign.

The two bend images comprising the T -pattern divide I(M) into two
halves. Our second idea is to observe that the image I(∂Mλ) makes a loop
which hits all the vertices of the T -pattern. The convex hull of the T -pattern
contains a triangle of base at least 1 and height at least 1. Such a triangle
has semi-perimeter at least the golden ratio, 1.61.... Hence λ0 is at least the
golden ratio.

In §2 we introduce polygonal paper Moebius bands and some basic geo-
metric objects associated to them. We then prove Lemma 1.2 for polygonal
Moebius bands. The smooth case follows from a routine approximation ar-
gument.

I would like to thank Dan Cristofaro-Gardiner, Dmitry Fuchs, Steve
Miller, and Sergei Tabachnikov for helpful discussions about this problem. I
would especially like to thank Sergei for telling me about the problem and
pointing me to his book with Dmitry. I would also like to acknowledge the
support of the Simons Foundation, in the form of a 2020-21 Simons Sabbat-
ical Fellowship, and also the support of the Institute for Advanced Study,
in the form of a 2020-21 membership funded by a grant from the Ambrose
Monell Foundation.
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2 Existence of the T Pattern

2.1 Polygonal Moebius Bands

Basic Definition: Let Mλ be the Moebius band in Equation 1. Say that a
special triangle in Mλ is a triangle whose vertices all lie in ∂Mλ. A special
triangulation of Mλ is a triangulation consisting entirely of special triangles.
The left side of Figure 1.1 shows an example. Say that a polygonal Moebius
band is a pairM = (λ, I) where I : Mλ → R3 is a map which is an isometry
on each triangle of some special triangulation of Mλ. We work entirely with
polygonal Moebius bands. In the last chapter we explain why the results in
the polygonal case imply the results in the smooth case.

Associated Objects: Let δ1, ..., δn be the successive triangles of the special
triangulation associated to M.

• The ridge of δi is edge of δi that is contained in ∂Mλ.

• The apex of δi to be the vertex of δi opposite the ridge.

• A bend is a line segment of δi connecting the apex to a ridge point.

• A bend image is the image of a bend under I.

• A facet is the image of some δi under I.

We always represent Mλ as a parallelogram with top and bottom sides iden-
tified. We do this by cutting Mλ open at a bend. See Figure 2.1 below.

The Sign Sequence: Let δ1, ..., δn be the triangles of the triangulation
associated to M, going from bottom to top in Pλ. We define µi = −1 if δi
has its ridge on the left edge of Pλ and +1 if the ridge is on the right. The
sequence for the example in Figure 1.1 is +1,−1,+1,−1. In general, the
signs need not alternate like this.

The Core Curve: There is a circle γ in Mλ which stays parallel to the
boundary and exactly 1/2 units away. In Equation 1, this circle is the image
of {1/2} × [0, λ] under the quotient map. We call I(γ) the core curve.

The left side of Figure 2.1 shows Mλ and the pattern of bends. The
vertical white segment is the bottom half of γ. The right side of Figure
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2.1 (which has been magnified to show it better) shows I(τ) where τ is the
shaded half of Mλ. All bend angles are π and the whole picture is planar.
The grey shaded curve on the right is the corresponding half of the core
curve.

-

-

+

+

Figure 2.1: The bend pattern and the bottom half of the image

The Ridge Curve: We show the picture first, then explain.

Figure 2.2: Half 2x core curve (grey) and half ridge curve (black).
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Let βb be the bottom edge of the parallelogram representing Mλ. We
normalize so that I maps the left vertex of βb to (0, 0, 0) and the right vertex
to (B, 0, 0), where B is the length of βb. Let E1, ..., En be the successive
edges of the core curve, treated as vectors. Let

Γ′i = 2µiEi, i = 1, ..., n. (4)

Let Γ be the curve whose initial vertex is (B, 0, 0) and whose edges are
Γ′1, ...,Γ

′
n. Here µ1, ..., µn is the sign sequence.

Let CΓ be the cone of Γ to the origin. The cone CΓ is triangulated by
triangles ∆1, ...,∆n, where each ∆i is the translate of µiI(δi) whose apex
is at the origin. In particular, the vectors pointing to the vertices of Γ are
parallel to the corresponding bend images and have the same length. Figure
2.2 shows the portion of the ridge curve (in black) associated to the example
in Figure 2.1. We have also scaled the core curve by 2 and translated it to
show the relationships better.

Lemma 2.1 Γ connects (B, 0, 0) to (−B, 0, 0), has length 2λ, and is disjoint
from the open unit ball.

Proof: By definition Γ starts at (B, 0, 0). By construction, the segments
joining the origin to the two endpoints of Γ are parallel to the same bend
and have the same length. Hence Γ ends at (±B, 0, 0). To rule out (+B, 0, 0)

here, we note that our process can be done on the double cover M̃λ of Mλ.
The map Ĩ : M̃λ → R3 is defined by composing I with the covering map.
All the same constructions work. Let τ be the first triangle of Mλ and let τ̃1
and τ̃2 be the two triangles of M̃λ covering τ . The signs associated to these
two triangles are opposite. Hence, in the corresponding cone C̃Γ, which
extends CΓ, the corresponding triangles are images of each other under a
point reflection. This implies that Γ ends at at (−B, 0, 0).

There is a piecewise isometric bijection between ∂Mλ and Γ. Since ∂Mλ

has length 2λ so does Γ. Say that the lone vertex of a special triangle of
Mλ is the vertex which is the one opposite the side of the triangle that lies
in ∂Mλ. The distance from the lone vertex of a special triangle to the line
extending the opposite edge is 1. But this means that the distance from the
origin to the line extending the corresponding edge of Γ is 1. Such lines are
tangent to the unit sphere and remain outside the interior of the unit ball.
Since we can say this for each of the edges of Γ, this means that Γ is disjoint
from the open unit ball. ♠
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2.2 Geometric Bounds

While we are in the neighborhood, we re-prove the lower bound from [FT].
The proof in [FT] is somewhat similar, though it does not use the ridge curve.
Let λ be the aspect ratio of the polygonal Moebius bandM and let Γ be the
associated ridge curve. Let f : R3−B3 → S2 be orthogonal projection. The
map f is arc-length decreasing. Letting Γ∗ = f(Γ), we have |Γ∗| < |Γ| = 2λ.
Since Γ∗ connects a point on S2 to its antipode, |Γ∗| ≥ π. Hence λ > π/2.

Now we use the same idea in a different way.

Lemma 2.2 Suppose M has aspect ratio less than 7π/12. Then the ridge
curve Γ lies in the open slab bounded by the planes Z = ±1/

√
2.

Proof: We divide Γ into halves. One half goes from (B, 0, 0) to (0, T, 0)
and the second half goes from (0, T, 0) to (−B, 0, 0). Call the first half
Γ1. Suppose that Γ1 intersects the plane Z = 1/

√
2. Then the spherical

projection Γ∗1 goes from A = (1, 0, 0) to some unit vector B = (u, v, 1/
√

2) to
C = (0, 1, 0). Here u2 + v2 = 1/2. The shortest path like this is the geodesic
bigon connecting A to B to C. Such a bigon has length at least

arccos(A·B)+arccos(B ·C) = arccos(u)+arccos(v) ≥∗ 2 arccos(1/2) = 2π/3.

The starred inequality comes from the fact that the minimum, subject to the
constraint u2 + v2 = 1/2, occurs at u = v = 1/2.

We have just shown that Γ1 has length at least 2π/3. But Γ2 has length
at least π/2 because it connects (0, T, 0) to (−B, 0, 0) and remains outside
the open unit ball. This means that

length(Γ) = length(Γ1) + length(Γ2) ≥ 2π/3 + π/2 = 7π/6.

This exceeds twice the aspect ratio ofM. This is a contradiction. The same
argument works if Γ1 hits the plane Z = −1/

√
2. Likewise the same argu-

ment works with the roles of Γ1 and Γ2 interchanged. ♠

Corollary 2.3 Suppose M has aspect ratio less than 7π/12. Let β∗1 and β∗1
be two perpendicular bend images. Then a plane parallel to both β∗1 and β∗2
cannot contain a vertical line.
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Proof: Every bend image is parallel to some vector from the origin to a
point of Γ. By the previous result, such a vector makes an angle of less than
π/4 with the XY -plane. Hence, all bend images make angles of less than
π/4 with the XY -plane.

Suppose our claim is false. Then there is a plane Π parallel to two per-
pendicular bend images contains a vertical line. Let η be a unit normal
to Π. This means that the vector (0, 0, 1) is perpendicular to η. But then
η = (x, y, 0) for some x, y. We can rotate the picture about the z-axis,
without changing the hypotheses, so that η = (1, 0, 0).

So now we have the following situation. There are 2 perpendicular vectors
V1 and V2, both making an angle of less than π/4 with the XY -plane, which
lie in the Y Z plane. Let σ denote the slope function for vectors in the
Y Z-plane. We mean that σ(x, y, z) = z/y. The perpendicularity gives the
well-known formula

σ(V1)σ(V2) = −1. (5)

The angle condition gives |Σ(Vj)| < 1 for j = 1, 2. This gives us a contradic-
tion to Equation 5. ♠

2.3 Perpendicular Lines

As a prelude to the work in the next section, we prove a few results about
lines and planes. Say that an anchored line in R3 is a line through the origin.
Let Π1 and Π2 be planes through the origin in R3.

Lemma 2.4 Suppose that Π1 and Π2 are not perpendicular. The set of per-
pendicular anchored lines (L1, L2) with Lj ∈ Pj for j = 1, 2 is diffeomorphic
to a circle.

Proof: For each anchored line L1 ∈ Π1 the line L2 = L⊥1 ∩Π2 is the unique
choice anchored line in Π2 which is perpendicular to L1. The line L2 is a
smooth function of L1. So, the map (L1, L2) → L1 gives a diffeomorphism
between the space of interest to us and a circle. ♠

A sector of the plane Πj is a set linearly equivalent to the union of the
(++) and (−−) quadrants in R2. Let Σj ⊂ Πj be a sector. The boundary
∂Σj is a union of two anchored lines.
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Lemma 2.5 Suppose (again) that the planes Π1 and Π2 are not perpendicu-
lar. Suppose also that no line of ∂Σ1 is perpendicular to a line of ∂Σ2. Then
the set of perpendicular pairs of anchored lines (L1, L2) with Lj ∈ Σj for
j = 1, 2 is either empty or diffeomorphic to a closed line segment.

Proof: Let S1 denote the set of perpendicular pairs as in Lemma 2.4. Let
X ⊂ S1 denote the set of those pairs with Lj ∈ Σj. Let π1 and π2 be the
two diffeomorphisms from Lemma 2.4. The set of anchored lines in Σj is a
line segment and hence so is its inverse image Xj ⊂ S1 under πj. We have
X = X1 ∩X2. Suppose X is nonempty. Then some p ∈ X corresponds to a
pair of lines (L1, L2) with at most one Lj ∈ ∂Σj. But then we can perturb
p slightly, in at least one direction, so that the corresponding pair of lines
remains in Σ1 × Σ2. This shows that X1 ∩ X2, if nonempty, contains more
than one point. But then the only possibility, given that both X1 and X2

are segments, is that their intersection is also a segment. ♠

2.4 The Space of Perpendicular Pairs

We prove the results in this section more generally for piecewise affine maps
I : Mλ → R3 which are not necessarily local isometries. The reason for
the added generality is that it is easier to make perturbations within this
category. Let X be the space of such maps which also satisfy the conclusion
of Corollary 2.3. (In this section we will not use this property but in the next
section we will.) So, X includes all the isometric polygonal Moebius bands
of aspect ratio less than 7π/12 that we have been considering so far.

The notions of bend images and facets makes sense for members of X.
Recall that a bend image is the image under the map I : Mλ → R3 of a
bend. Most of these bends are not also edges of the special triangles in the
triangulation of Mλ. We say that a special bend is a bend which is contained
in the boundary of a special triangle. Each special bend is contained in the
boundary of two such triangles. We say that a special bend image is the
image of a special bend under I.

Lemma 2.6 The space X has a dense set Y which consists of members such
that no two facets lie in perpendicular planes and no two special bend images
are perpendicular.
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Proof: One can start with any member of X and postcompose the whole
map with a linear transformation arbitrarily close to the identity so as to
get a member of Y . The point is that we just need to destroy finitely many
perpendicularity relations. ♠

We find it convenient to work with Y rather than X. Given a memberM,
of Y let P denote the space of pairs of bends in Mλ whose images under I are
perpendicular. We can equally well think of P as the space of perpendicular
pairs of bend images. The two views are completely equivalent.

Let γ be center circle of Mλ. We can identify the space of bends of M
with γ: Each bend crosses γ exactly once and each point of γ is crossed by
a unique bend. The space of ordered pairs of unequal bends can be iden-
tified with γ × γ minus the diagonal. We compactify this space by adding
in 2 boundary components. One of the boundary components comes from
approaching the main diagonal from one side and the other comes from ap-
proaching the diagonal from the other side. The resulting space A is an
annulus. Thus, we consider P as a subset of A.

Lemma 2.7 P is a piecewise smooth 1-manifold in A.

Proof: We apply Lemma 2.5 to the the following objects:

• The planes through the origin parallel to the facets;

• The anchored lines parallel to the bend images within the facets. Within
a single facet the bend images and the corresponding anchored lines are
in smooth bijection.

By Lemma 2.5, the space P is the union of finitely many smooth connected
arcs. Each arc corresponds to an ordered pair of facets which contains at
least one point of P . Each of these arcs has two endpoints. Each endpoint
has the form (β∗1 , β

∗
2) where exactly one of these bend images is special. Let

us say that β∗1 is special. Then β∗1 is the edge between two consecutive facets,
and hence (β∗1 , β

∗
2) is the endpoint of exactly 2 of the arcs. Hence the arcs fit

together to make a piecewise smooth 1-manifold. ♠

Now we come to the topological part of the proof. We say that a compo-
nent of P is essential if it separates the boundary components of A.
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Lemma 2.8 P has an odd number of essential components.

Proof: An essential component, being embedded, must represent a generator
for the first homology H1(A) = Z. By duality, a transverse arc running from
one boundary component of A to the other intersects an essential component
an odd number of times and an inessential component an even number of
times. Let a be such an arc. Each point of a corresponds to a pair of bends,
which through the map I corresponds to a pair of bend images. As we move
along a the angle between the corresponding bend images can be chosen con-
tinuously so that it starts at 0 and ends at π. Therefore, a intersects P an
odd number of times. But this means that there must be an odd number of
essential components of P . ♠

2.5 The Main Argument

Now we prove Lemma 1.2. LetM be an (isometric) polygonal Moebius band
of aspect ratio less than 7π/12. There are members of Y arbitrarily close to
M. To show thatM has a T -pattern it suffices to show that any member of
Y sufficiently close toM has a T -pattern, because then we can take a limit
of such T -patterns and get one for M.

Relative to any member of Y , the space P is a piecewise smooth 1-
manifold of the annulus A with an odd number of essential components. The
involution ι, given by ι(p1, p2) = (p2, p1), is a continuous involution of A
which preserves P and permutes the essential components. Since there are
an odd number of these, ι preserves some essential component of P . But this
means we can find a continuous path K in P which joins a pair (β∗1 , β

∗
2) of

perpendicular bend images to the switched pair (β∗2 , β
∗
1).

Each element of K determines a unique pair of parallel planes, one con-
taining each bend. If we choose our member of Y sufficiently close to M,
then by compactness and Corollary 2.3 none of the planes we encounter while
moving along K contains a vertical line. Hence, our planes intersect the Z-
axis in single and continuously varying points. As we move along K, these
Z-intercepts change places and hence at some moment coincide. At this mo-
ment, the two parallel planes are the same plane. The corresponding bends
make a T -pattern.

This completes the proof.
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