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Abstract

We prove that a smooth embedded paper Moebius band must have
aspect ratio greater than

√
3. We also prove that any sequence of

smooth embedded paper Moebius bands whose aspect ratio converges
to
√

3 must converge, up to isometry, to the famous triangular Moe-
bius band. These results answer the mimimum aspect ratio question
discussed by W. Wunderlich in 1962 and prove the more specific con-
jecture of B. Halpern and C. Weaver from 1977.

1 Introduction

To make a paper Moebius band you give a strip of paper an odd number of
twists and then tape the ends together. For long strips this is easy and for
short strips it is difficult or impossible. Figure 1 shows a famous example
called the triangular Moebius band that is based on a 1×

√
3 strip.
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Figure 1: The triangular Moebius band
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The strip in Figure 1 is colored red on one side and blue on the other.
You are supposed to fold and somehow tape the thing as indicated in Figure
1. The tape runs along the dotted line in the “inside” of the little triangular
“wallet” you are making. The final rotation highlights a kind of “T -pattern”
made from the top edge and the dotted line, a pattern that is important in
this paper. You might enjoy finding other ways of making this example in
which the taping is easier to manage.

What is the smallest λ for which we can turn a 1 × λ strip into a paper
Moebius band? In order to answer this question we have to be more formal
about what we are doing. Formally speaking, a smooth paper Moebius band of
aspect ratio λ is an infinitely differentiable isometric mapping I : Mλ → R3,
where Mλ is the flat Mobius band obtained by identifying the top and bottom
of a 1× λ rectangle. That is:

Mλ = ([0, 1]× [0, λ])/ ∼, (x, 0) ∼ (1− x, λ). (1)

An isometric mapping is a map which preserves arc-lengths. The map is an
embedding if it is injective, and an immersion in general. The image

Ω = I(Mλ) (2)

is an example of a developable surface-with-boundary. I learned about paper
Moebius bands from the beautiful expository article [FT, Chapter 14] by
Dmitry Fuchs and Sergei Tabachnikov.

The early papers of M. Sadowsky [Sa] and W. Wunderlich [W] treat
both the existence and differential geometry of smooth paper Moebius bands.
(See [HF] and [T] respectively for modern English translations.) The paper
[CF] gives a modern differential geometric framework for smooth developable
surfaces.

Why bother with smooth maps? Well, if you just look at ways of folding
paper up to make a Moebius band you can get all kinds of weird examples.
For instance, you could take a square, fold it like an accordion into a thin
strip, twist, then tape. This monster is not approximable by smooth exam-
ples. The smooth formalism rules out pathologies like this. In contrast, the
triangular paper Moebius band can be approximated to arbitrary precision
by smooth embedded paper Moebius bands. See [Sa], [HW], and [FT].

W. Wunderlich discusses the minimum aspect ratio question in the in-
troduction of his 1962 paper [W]. He says that it is easy to make a paper
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Moebius band when λ ≥ 5 and that the minimal value is not known. Since it
is a very natural question I can imagine that it has been raised even earlier.

In their 1977 paper [HW], Halpern and Weaver study the minimum as-
pect ratio question in detail. They prove two things.

• For smooth immersed paper Moebius bands one has λ > π/2. More-
over, for any ε > 0 one can find an immersed example with λ = π/2+ε.

• There exists some ε0 > 0 such that λ > π/2+ε0 for a smooth embedded
paper Moebius band. This ε0 is not an explicit constant.

Halpern and Weaver give examples of smooth embedded paper Moebius
bands with λ =

√
3 + ε for any ε > 0. As they point out, similar exam-

ples appear in [Sa]. These examples converge to the triangular Moebius
band from Figure 1 as ε → 0. The last line of [HW] states the conjecture
that λ >

√
3 for an embedded paper Moebius band.

In this paper I will prove the Halpern-Weaver Conjecture and show that
the triangular Moebius band is uniquely the best limit.

Theorem 1.1 (Main) A smooth embedded paper Moebius band has aspect
ratio greater than

√
3.

Theorem 1.2 (Triangular Limit) Let In : Mλn → Ωn be a sequence of
smooth embedded paper Moebius bands such that λn →

√
3. Then, up to

isometry, In converges uniformly to the triangular Moebius band map.

Let me explain the strategy of the proofs. Let Ω be a smooth embedded
paper Moebius band. A bend on Ω is a line segment which cuts across Ω and
has its endpoints in the boundary. We say that a T -pattern on Ω is a pair
of bends which lie in perpendicular intersecting lines. We call the T -pattern
embedded if the two bends are disjoint. In §2.1 we prove

Lemma 1.3 (T) A smooth embedded paper Moebius band has an embedded
T -pattern.

Our proof is topological. It is well known that Ω has a partition into con-
tinuously varying bends. We apply (essentially) the Borsuk-Ulam Theorem
to a pair of functions describing the geometry of pairs of bends in this par-
tition; the simultaneous vanishing of these functions gives us our embedded
T -pattern. Our proof, slightly modified, would also show that an immersed
paper Moebius band has a T -pattern.

In §2.2 we prove
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Lemma 1.4 (G) A smooth paper Moebius band with an embedded T -pattern
has aspect ratio greater than

√
3.

The basic idea of the proof is to cut Ω open along one of the bends comprising
the T pattern and then to solve an optimization problem which involves
mapping a trapezoid into space with certain constraints.

The Main Theorem is an immediate consequence of Lemma T and Lemma
G. The proof of the Triangular Limit Theorem, given in §2.3, amounts to
examining what our proof of Lemma G says about a minimizing sequence.

The proofs are done after §2, but I also include some more material. In
§3 I will comment on the proofs and discuss some related topics. In §4,
an appendix, I give a self-contained and elementary proof of the result that
a smooth embedded paper Moebius band has a continuous partition into
bends. I found the proofs in the literature not so easy to understand.

The ideas in this paper are an outgrowth of my earlier paper [S1]. In
[S1] I prove a version of Lemma T (with some side hypotheses) and then
deduce from the t = 0 case of Equation 4 below that λ > φ = (1 +

√
5)/2 in

the embedded case. I solved an optimization problem akin to Lemma G in
[S1] in order to further improve the bound, but I made an idiotic mistake: I
thought that when you cut Mλ open along a bend you get a parallelogram
rather than a trapezoid. This mistake invalidates the further bound, and
all I can conclude from [S1] is that λ > φ. I was amazed and delighted
to discover that the correctly done optimization problem, namely Lemma
G, gets the sharp bound. The work here supersedes [S1] and is completely
independent from it.

Some readers might find this paper hard to read because I do not include
much background information. I have subsequently written a longer and
friendlier account [S2], aimed at university students and perhaps advanced
high school students. This paper is available on my Brown University website.
My website also has some informal notes which are even more elementary.

Here is some additional context. The topic of paper Moebius bands is
adjacent to a number of different subjects. The paper [GKS] considers the
related question of tying a piece of rope into a knot using as little rope as
possible. See [DDS] for further results. One could view these rope knot
questions as variants of the Halpern-Weaver Conjecture in a different cate-
gory. Indeed, our Lemma T seems quite related in spirit to the quadrisecent
idea in [DDS]. I will say a bit more about this in §3.2.
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Paper Moebius bands are even more closely related to folded ribbon knots ,
and the triangular Moebius band can be interpreted as a folded ribbon knot.
See [D] for a survey on this topic. More precisely, see [DL, Corollary 25]
for a result which is in some sense a special case of our two results and see
[DL, Conjecture 26] for a variant of the Halpern-Weaver Conjecture in the
category of folded ribbon knots. I will say more about this in §3.3.

Some authors have considered “optimal Moebius bands” from other per-
spectives. The papers [Sz] considers the question from an algebraic perspec-
tive and the paper [MK] consider the question from a physical perspective.
The paper [SH] precisely describes the resting shape of a paper Moebius
band.

I would like to thank Brienne Brown, Matei Coiculescu, Robert Connelly,
Dan Cristofaro-Gardiner, Elizabeth Denne, Ben Halpern, Dmitry Fuchs,
Javier Gomez-Serrano, Aidan Hennessey, Anton Izosimov, Jeremy Kahn,
Rick Kenyon, Stephen D. Miller, Noah Montgomery, Sergei Tabachnikov,
and Charles Weaver for helpful discussions about this subject. I especially
thank Matei for suggesting that I try for a “mapping proof” of Lemma T
as opposed to the kind of proof I had previously. That suggestion led me to
find a really nice proof of Lemma T that greatly simplified this paper.
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2 Proofs of the Results

2.1 Proof of Lemma T

Let I : Mλ → Ω be a smooth embedded paper Moebius band. As is well
known, Ω has a (not necessarily unique) partition into continuously varying
bends. See §4 for a self-contained proof. We fix such a partition once and for
all. We parametrize the space of bends in the partition by R/λZ as follows:
We assign to each bend the point where it intersects the centerline of Ω and
then, using I, we identify the centerline with R/λZ.

The Cylinder: Let Υ be the topological cylinder of unequal ordered pairs
(x, y) ∈ (R/λZ)2. A point (x, y) ∈ Υ corresponds to a pair (u, v) of unequal
bends. We let Υ be the compactification of Υ obtained by adding 2 boundary
components. The point (x, y) lies near one boundary component if y lies just
ahead of x in the cyclic order coming from R/λZ. The point (x, y) lies near
the other boundary component if y lies just behind of x in the same cyclic
order. Let ∂Υ be the boundary of Υ. The involution Σ(x, y) = (y, x) extends
to Υ and swaps the boundary components.

Oriented Bends: Let (x, y) ∈ Υ be arbitrary. There is a unique minimal
path xt ∈ R/λZ such that x0 = x and x1 = y and xt is locally increasing
with respect to the cyclic order on R/λZ. This path is short when (x, y)
is near one component of ∂Υ and long near the other. Let ut be the bend
associated to xt. Given an orientation on u0 = u, we extend it continuously
to an orientation on u1 = v. Let −→u be vector parallel to our oriented u.
That is, −→u points from the tail of u to the head of u. Likewise define −→v . We
write −→u  −→v . Since we are on a Moebius band, −→v  −−→u .

The Functions: Let mu and mv be the midpoints of u and v. Define

g(x, y) = −→u · −→v , h(x, y) = (mu −mv) · (−→u ×−→v ). (3)

If we had started with the other orientation of u we would get the same value
for g and h because −−→u  −−→v . Hence g and h are well defined. Note that
g and h extend continuously to Υ. Note the following:

1. On one component of ∂Υ we have g ≥ 1 and h = 0.

2. On the other component of ∂Υ we have g ≤ −1 and h = 0.
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3. We have g ◦ Σ = −g and h ◦ Σ = −h.

Here is the justification for Claim 3.

g(y, x) = −→v · (−−→u ) = −g(x, y).

h(y, x) = (mv −mu) · (−→v × (−−→u )) = (mv −mu) · (−→u ×−→v ) = −h(x, y).

Lemma 2.1 If g(x, y) = h(x, y) = 0 then (u, v) is an embedded T-pattern.

Proof: Since g(x, y) = 0 the vectors −→u and −→v are orthogonal. Hence
−→n = −→u ×−→v is nonzero. By construction u and v and the segment mumv all
lie in planes orthogonal to −→n . Since u ∪ v ∪mumv is connected, this union
lies in the same plane orthogonal to −→n . In short, u and v are co-planar. The
bends are disjoint because they are in the same partition. ♠

To prove Lemma T, we just have to prove that g and h simultaneously
vanish somewhere in Υ. Suppose not. Since |g| ≥ 1 on ∂Υ, we can say
that g and h do not simultaneously vanish on Υ. Let S1 be the unit circle.
Let A = (g, h) and B = A/‖A‖. Then B : Υ → S1 is well-defined and
continuous. B maps one component of ∂Υ to (1, 0) and the other to (−1, 0).

Consider a path γ which connects a point in one component of ∂Υ to a
point in the other. The image B(γ), when oriented from (1, 0) to (−1, 0),
winds some half integer w(γ) times around the origin. All choices of γ are
homotopic to each other relative to ∂Υ. Thus w(γ) is independent of γ. In
particular, w(Σ(γ)) = w(γ). However, B ◦ Σ = −B. So, when we orient
B(Σ(γ)) = −B(γ) from (1, 0) to (−1, 0), as illustrated in Figure 2, the
winding number is −w(γ). This contradiction completes the proof.

B( )

w=1/2

-B( )

w=-1/2

Figure 2: The effect of negation: a cartoon
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2.2 Proof of Lemma G

Let ∇ be a triangle with horizontal base. Let p(∇) be the perimeter of ∇
and let n(∇) be the sum of the lengths of the non-horizontal edges of ∇.

Lemma 2.2 If ∇ has base
√

1 + t2 and height h ≥ 1 then n(∇) ≥
√

5 + t2

and p(∇) ≥
√

1 + t2 +
√

5 + t2. Equality occurs iff ∇ is isosceles and h = 1.

Proof: This is an extremely well known kind of result. Let β =
√

1 + t2.

2h
v
3

v
2v

1

v
2
'

Figure 3: The diagram for Lemma 2.2.

Let v1, v2, v3 be the vertices of∇, with v3 the apex. Let v′2 be the reflection
of v2 through the horizontal line containing v3. By symmetry, the triangle
inequality, and the Pythagorean Theorem,

n(∇) = ‖v1−v3‖+‖v3−v′2‖ ≥ ‖v1−v′2‖ =
√
β2 + 4h2 ≥

√
β2 + 4 =

√
5 + t2.

The bound for p(∇) follows immediately. In the case of Equality, h = 1 and
v1, v3, v

′
2 are collinear, meaning that ∇ is isosceles. ♠

Let I : Mλ → Ω be a paper Moebius band with an embedded T -pattern.
We write S ′ = I(S) for any relevant set S and we let `(·) denote arc-length.
By definition, we have `(γ) = `(γ′) for any curve γ ⊂ Mλ. For instance,
`(∂Mλ) = `(∂Ω).

Let B′ and T ′ be the pair of disjoint bends comprising an embedded T -
pattern of Ω. Since they lie on intersecting lines, B′ and T ′ are co-planar.
We choose so that the line extending T ′ is disjoint from B′, then rotate so
that B′ and T ′ are respectively vertical and horizontal segments in the XY -
plane and B′ is strictly below the line extending T ′. Let B and T be the line
segments on Mλ corresponding to B′ and T ′. We cut Mλ open along B to
get a bilaterally symmetric trapezoid. See Figure 4.
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Figure 4: The trapezoid (left) and the T-pattern (right).

Here −t is the slope of T . The quantity b, which is the slope of the bot-
tom choice of B, plays no role in our calculations. The picture looks a bit
different when the signs of t and b are different, but it is always true that
`(H1) + `(H2) = `(D1) + `(D2)− 2t. The yellow triangle ∇ has base

√
1 + t2

and height greater than 1.

First Bound: We have 2λ >
√

1 + t2 +
√

5 + t2. Here is the derivation:

2λ = `(∂Mλ) = `(∂Ω) ≥ p(∇) >
√

1 + t2 +
√

5 + t2. (4)

The first inequality comes from the fact that ∂Ω is a (red and magenta) loop
containing all vertices of ∇. The second inequality is Lemma 2.2.

Second Bound: We have 2λ > 2
√

5 + t2 − 2t. Here is the derivation.

2λ = `(D1) + `(D2) + `(H1) + `(H2) = 2`(D1) + 2`(D2)− 2t =

2`(D′
1) + 2`(D′

2)− 2t ≥ 2n(∇)− 2t > 2
√

5 + t2 − 2t. (5)

The first inequality comes from the fact that D′
1 ∪ D′

2 is a (red) path that
connects w′ to x′ and contains u′. The second inequality is Lemma 2.2.

Combining the Bounds: Let t0 = 1/
√

3. If t ≥ t0 then our first bound
gives λ >

√
3. If t ≤ t0 then our second bound gives λ >

√
3. Hence λ >

√
3.

This completes the proof of Lemma G.
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2.3 Proof of the Triangular Limit Theorem

Suppose we have a sequence {Ωn} of embedded paper Moebius bands with
λn →

√
3. We run the constructions from Lemma G for each one. Looking

at the analysis done at the end of the proof of Lemma G, we see that

tn → t0 = 1/
√

3.

Also bn → 0, because otherwise the height of ∇n, which exceeds
√

1 + b2
n,

does not converge to 1. The parameters b = 0 and t = 1/
√

3 respectively
describe the top/bottom bend B′ and the middle bend T ′ shown on the red
strip in Figure 1 (left). We normalize by isometries of Mλn so that B′

n → B′

and T ′
n → T ′.

Thanks to the uniqueness in Lemma 2.2, the triangle ∇n converges up to
isometry to the equilateral triangle ∇ of perimeter 2

√
3 shown in Figure 1

(right). We normalize by isometries of R3 so that the vertices of ∇n converge
to the vertices of ∇. Inspecting Equation 4, we see that

|`(∂Ωn)− p(∇)| → 0. (6)

Since In is length perserving the convergence in Equation 6 implies that
In, when restricted to each of the 4 segmentsDn,j andHj,n in ∂Mλn , converges
uniformly to a linear isometry. Hence the restriction of In to ∂Mλn converges
uniformly to the map that comes from the triangular Moebius band. The
action of In on ∂Mλn determines the action of In on Mλn , so the convergence
on the boundary implies the convergence on the whole space. This completes
the proof of the Triangular Limit Theorem.
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3 Discussion

3.1 Lemma G

The proof of Lemma G only requires the map I : Mλ → Ω to have the
following properties.

1. I is continuous.

2. The interior of Mλ has a continuous partition by open line segments
whose endpoints lie in the boundary.

3. Given an arbitrary line segment v in the partition the image I(v) is a
line segment in R3 that is at least as long as v.

4. The restriction I : ∂Mλ → ∂Ω never increases arc-length.

5. There exist 2 segments v, w in the partition and a linear projection φ
onto a plane such that φ◦I is distance non-decreasing on each of v and
w and such that φ ◦ I(v) and φ ◦ I(w) are disjoint and perpendicular.

The Triangular Limit Theorem does not quite work in this generality,
because the restriction of I to ∂Mλ does not determine the action of I on
all of Mλ. Nevertheless, we can say that for a minimizing sequence {In}, the
maps converge uniformly on the boundary, up to isometry, to the triangular
Moebius band map. Also, up to isometries the images Ωn converge (e.g. in
the Hausdorff metric) to the triangular paper Moebius band.

3.2 Lemma T

Borsuk-Ulam Theorem: The proof I give of Lemma T is quite close to a
proof of the Borsuk-Ulam Theorem. Indeed, Jeremy Kahn pointed out to me
that the endgame of my proof really is the Borsuk-Ulam proof in disguise.
To see this, note that we obtain the 2-sphere S2 by crushing each component
of ∂Υ to a point. Then B induces a map S2 → S1 with B ◦ Σ = −B. The
map Σ, which is a glide reflection on Υ, acts on S2 as the antipodal map.

There is a very nice way to do all this explicitly. We think of Υ as the
set of equivalence classes of points (x, y) ∈ R2 such that x ≤ y ≤ x + 1.
The equivalence relation is (x, y) ∼ (x + k, y + k) for all k ∈ Z. Here is a
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continuous surjection from Υ to S2 which maps the boundary components
to (0, 0,±1) and is a homeomorphism from Υ to S2 − {(0, 0,±1)}:

(x, y)→ (
√

1− z2 cos(θ),
√

1− z2 sin(θ), z),

θ = π(x+ y), z = 2x− 2y + 1. (7)

The action of Σ on this version of Υ maps the class of (x, y) to the class
of (y, x + 1). The map in Equation 7 respects the equivalence relation and
conjugates Σ to the antipodal map.

We now redefine the vectors −→u and −→v to be the unit vectors parallel
to the orientations of u and v. Once this is done, the functions g and h
themselves extend to S2 and satisfy g(−P ) = −g(P ) and h(−P ) = −h(P )
for all P ∈ S2. We then conclude from the Borsuk-Ulam Theorem that there
is some P ∈ S2 such that g(P ) = h(P ) = 0. Since g((0, 0,±1)) = ±1 we
conclude that P 6= (0, 0,±1). Hence P actually corresponds to a T -pattern.

Paths of Oriented Lines: Anton Izosimov and Sergei Tabachnikov in-
dependently suggested to me the following formulation of Lemma T.

Lemma 3.1 Suppose {Lt| t ∈ [0, 1]} is a continuous family of oriented lines
in R3 such that L1 = Lopp

0 , the same line as L0 but with the opposite ori-
entation. Then there exist parameters r, s ∈ [0, 1] such that Lr and Ls are
perpendicular intersecting lines.

This result immediately implies Lemma T, and it has essentially the same
proof. In particular, Lemma 3.1 applies to maps I : Mλ → Ω which satisfy
Conditions 1-4 above. The output is a T -pattern which might or might not
be embedded. If I is an embedding then, of course, the T -pattern will also
be embedded.

The Study Sphere: Sergei also suggested to me a beautiful alternate for-
malism for the proof of Lemma T. One introduces the Study numbers . These
have the form x + εy where x, y ∈ R and ε2 = 0. Likewise, one introduces

the Study vectors . These have the form −→a + ε
−→
b , where −→a ,

−→
b ∈ R3 and

again ε2 = 0. In this context, the dot product of two Study vectors makes
sense and is a Study number.

Each oriented line ` ⊂ R3 gives rise to a Study vector ξ` = −→a +ε
−→
b where

−→a is the unit vector pointing in the direction of ` and
−→
b = `′ × −→a . Here
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`′ ∈ ` is any point. All choices of `′ give rise to the same
−→
b ; this vector is

called the moment vector of `. This formalism identifies the space of oriented
lines in R3 with the so-called study sphere consisting of Study vectors ξ such
that ξ · ξ = 1. The Study dot product ξ` · ξm vanishes if and only if ` and m
are perpendicular and intersect. Thus our two functions g and h carry the
same information as the Study dot product. This makes the functions g and
h seem more canonical.

Quadruple Point Configurations: After proving the Halpern-Weaver
Conjecture, I heard from a number of people who asked me how I thought of
Lemma T. I can’t remember exactly, but here is one association. Around the
time I got interested in the Halpern-Weaver Conjecture I had been thinking
quite a bit about the Square Peg Conjecture. (I often think about this con-
jecture.) This conjecture, which goes back to Toeplitz in 1911, asks if every
continuous loop in the plane contains 4 points which make the vertices of a
square. See [Mat] for a fairly recent survey of work done on it. One can
view a T -pattern as a collection of 4 points in the boundary of the Moebius
band which satisfy certain additional constraints – e.g. they are coplanar.
Put this way, a T -pattern does not seem so different from a square inscribed
in a Jordan loop.

As I mentioned in the introduction, the idea for Lemma T is also similar
in spirit for the idea developed in [DDS] concerning 4 collinear points on a
knotted loop. These so-called quadrisecants play a role similar to Lemma T
in getting a lower bound for the length of a knotted rope. I wasn’t thinking
about this at the time, however.

3.3 Folded Ribbon Knots

Elizabeth Denne pointed out to me the connection between paper Moebius
bands and folded ribbon knots . Her paper with Troy Larsen [DL] gives a
formal definition of a folded ribbon knot and has a wealth of interesting
constructions, results, and conjectures. See also her survey article [D].

Informally, folded ribbon knots are the objects you get when you take
a flat cylinder or Moebius band, fold it into a knot, and then press it into
the plane. Associated to a folded ribbon knot is a polygon, which comes
from the centerline of the object. Even though the ribbon knot lies entirely
in the plane, one assigns additional combinatorial data which keeps track
of “infinitesimal” under and over crossings as in a knot diagram. So the
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associated centerline is really a knot (or possibly the unknot).
[DL, Corollary 25] proves our Main Theorem in the category folded ribbon

Moebius bands whose associated polygonal knot is a triangle. This is a
finite dimensional problem. [DL, Conjecture 26] says that [DL, Corollary
25] is true without the restriction that the associated polygonal knot is a
triangle, and this is an infinite dimensional problem like the Halpern-Weaver
Conjecture.

The combination of our Main Theorem and the Triangular Limit Theorem
implies [DL, Conjecture 26]. One takes arbitrarily nearby smooth approxi-
mations, as in [HW], and then applies our results to them. Alteriatively, the
same proof that we gave of Lemmas G and T probably would work in this
category. (I did not think this through in all details.)

One might also ask about the converse. If it were possible to flatten,
through isometric embeddings, an arbitrary paper Moebius band into a knot-
ted ribbon graph, then [DL, Conjecture 26] would imply our results. (Again,
I did not think this through in all details.) While I do not think that all
twisted paper Moebius bands have this property, it might be the case that
paper Moebius bands with sufficiently small aspect ratio do have this prop-
erty. In any case, the possibility of flattening paper Moebius bands isomet-
rically into folded ribbon knots seems like an appealing topic for further
investigation.

3.4 More Twists

The Halpern-Weaver Conjecture is one of infinitely many similar kinds of
questions one can ask about paper Moebius bands. For instance, one can
take essentially all the many conjectures made in [DL] and translate them
from the language of folded ribbon knots to the language of paper Moebius
bands. Let me discuss the extent to which I have thought about this.

Twisted Cylinders: One can make a twisted cylinder by taking a 1 × λ
strip of paper, giving it an even and nonzero number of twists, and then tap-
ing the ends together. Such an object has a formal definition similar to what
I gave for paper Moebius bands. The essential feature of twisted cylinders
is that their two boundary components make a nontrivial link. As for the
case of paper Moebius bands, there are optimal limiting shapes which have
interpretations as folded ribbon knots.

Unlike the case considered in this paper, there are two distinct limiting
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folding patterns. Both of them are folding patterns which wrap a 1×2 strip 4
times around a right-angled isosceles triangle. In [S3] I prove that a twisted
cylinder has aspect ratio greater than 2 and that any minimizing sequence
converges on a subsequence to one of the two optimal models. This result
also confirms the n = 1 case of [DL, Conjecture 39]. The proof is somewhat
similar to what I do in this paper, though the fine-scale details are different.
Noah Montgomery independently came up with a proof of the cylinder result.
His elegant proof is different than mine.

Multi-Twisted Moebius bands: We define a multi-twisted paper Moe-
bius band to be what you get when you take a 1× λ strip of paper and give
it an odd number of at least 3 twists. An essential feature of these objects
is that their boundaries are knotted. I think it follows from the Triangular
Limit Theorem and from compactness that there is some ε0 such that the
aspect ratio of a multi-twisted paper Moebius band is at least

√
3 + ε0.

Brienne Brown did some experiments with these objects and found two
candidate optimal models. We call these the crisscross and the cup. Both
are made from a 1 × 3 strip of paper. The crisscross is planar, and has an
interpretation as a folded ribbon knot. The cup is not-planar: It is a double
wrap of 3 mutually orthogonal right-angled isoceles triangles arranged like 3
faces of a tetrahedron. We wrote about this in [BS], and conjecture there
that λ > 3 for an embedded multi-twisted paper Moebius band. The non-
planar nature of the cup makes me think that the kind of proofs I give in this
paper, which are essentially planar arguments, will not be able to establish
this conjecture. Some new ideas are needed.

One can define an n-twisted paper strip in the obvious way. When n
is odd, these are paper Moebius bands and when n is even these are paper
cylinders. Let λn be the infimal value of aspect ratios of n-twist embedded
paper strips. Our Main Theorem combines with the result in [HW] to say
that λ1 =

√
3. The results in [S3] say that λ2 = 2. We conjecture in [BS]

that λ3 = 3. Noah Montgomery has a construction showing that λn grows at
most like

√
n. Recently, Aidan Hennessey showed me a construction which

seems to prove that λn < 8 for all n.
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4 Appendix: The Bend Partition

4.1 The Proof Modulo a Detail

Let Ω be a smooth embedded paper Moebius band. Recall that a bend is a
straight line segment on Ω having its endpoints in ∂Ω. For the convenience
of the reader, I will give a self-contained proof of the following result.

Theorem 4.1 There is a continuous partition of Ω into bends.

Let Ωo be the interior of Ω. Let S2 be the unit 2-sphere. The Gauss
map, which is well defined and smooth on any simply-connected subset Ωo,
associates to each point p ∈ Ωo a unit normal vector np ∈ S2. Let dnp be the
differential of the Gauss map at p. Since the curvature Ωo is 0 everywhere,
dnp has a nontrivial kernel. The point p has nonzero mean curvature if
and only if dnp has nontrivial image. Let U ⊂ Ωo denote the subset having
nonzero mean curvature. Theorem 4.1 is a quick consequence of the following
result in differential geometry.

Lemma 4.2 Each p ∈ U lies in a unique bend γ. Furthermore, the interior
of γ lies in U .

Lemma 4.2 is a special case of the two essentially identical results, [CL,
p. 314, Lemma 2] and [HN, §3, Lemma 2]. These results and proofs are
done in a general multi-dimensional setting. Below I give an elementary and
geometric proof tailored to the 2-dimensional case.

It follows immediately from Lemma 4.2 that U has a continuous partition
into bends. The uniqueness implies the continuity. Let τ be a component
of Ω − U . If τ has empty interior then τ is a line segment, the limit of a
sequence of bends. In this case τ is also a bend. Suppose τ has non-empty
interior. The Gauss map is constant on τ and hence τ lies in a single plane.
Two sides of τ , opposite sides, lie in ∂Ω and are straight line segments. The
other two sides of τ , the other opposite sides, are bends. Thus τ is a planar
trapezoid. But then we can extend our bend partition across τ by simply
choosing any continuous family of segments on τ that interpolates between
the two bends in its boundary. Indeed, there is a canonical extension: If the
two bends of ∂τ lie on parallel lines we can take the interpolating bends to lie
on parallel lines. If they lie on intersecting lines, we can take the interpolating
bends to lie on lines which all go through the intersection point. Doing this
construction on all such components, we get our continuous partition of Ω
into bends.
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4.2 Proof of Lemma 4.2

Let U ⊂ Ωo as above. Let p → np be a local choice of the Gauss map. We
can rotate and translate so that near the origin U is the graph of a function

F (x, y) = Cy2 + higher order terms. (8)

Here C > 0 is some constant. The normal vector at the origin is n0 = (0, 0, 1).
The vector v0 = (1, 0, 0) lies in the kernel of dn0. Let w0 = (0, 1, 0). Let Π0 be
the plane spanned by w0 and n0. The image of Π0 ∩U under the Gauss map
is (near n0) a smooth regular curve tangent to w0 at n0. The sign depends
on the choice of local Gauss map.

Working locally, we have three smooth vectorfields:

p→ np, p→ vp, p→ wp = vp × np. (9)

Here vp is the kernel of dnp and × denote the cross product. Let Πp be the
plane through p and spanned by wp and np. From our analysis of the special
case, and from symmetry, the image of Πp∩U under the Gauss map is (near
np) a smooth regular curve tangent to wp at np. The asymptotic curves are
the smooth curves everywhere tangent to the v vector field.

Lemma 4.3 The asymptotic curves are line segments.

Proof: Let γ be an asymptotic curve. By construction, the Gauss map is
constant along γ. About each point in γ there is a small neighborhood V
which is partitioned into asymptotic curves that transversely intersect each
plane Πp when p ∈ γ∩V . Hence the image of V under the Gauss map equals
the image of Πp ∩ V under the Gauss map. This latter image is a smooth
regular curve tangent to wp at np. Since this is true for all p ∈ γ ∩ V and
since np is constant along γ we see that wp is constant along γ. Hence vp is
constant along γ. Hence γ is a line segment. ♠

The nonzero mean curvature implies that γ is the unique line segment
through any of its interior points. We just have to rule out the possibility
that γ reaches ∂U before it reaches ∂Ω. Assume for the sake of contradiction
that this happens. We normalize as in Equation 8.

We now allow ourselves the liberty of dilating our surface. This dilation
preserves all the properties we have discussed above. By focusing on a point
of γ sufficiently close to ∂U and dilating, we arrange the following:

17



• A neighborhood V of Ωo is the graph of a function over the disk of
radius 3 centered at the origin.

• Given p ∈ V let p′ be the projection of p to the XY -plane. We have
|p′1 − p′2| > (2/3)|p1 − p2| for all p1, p2 ∈ V .

• γ ⊂ U contains the arc connecting (0, 0, 0) to (3, 0, 0), but (0, 0, 0) 6∈ U .

Let a ∈ (0, 3). At (a, 0, 0) we have va = (1, 0, 0) and wa = (0, 1, 0) and
na = (0, 0, 1). Let Πa be the plane {X = a}. Near (a, 0, 0), the intersection
Ua = U ∩ Πa is a smooth curve tangent to wa at (a, 0, 0).

Let ζ = (1, 0, 0). Fix δ > 0. By continuity and compactness, the asymp-
totic curves through points of U1 sufficiently near ζ contain line segments
connecting points on U2 to points on Uδ. Call these connectors . There exists
a canonical map Φδ : U1 → Uδ defined in a neighborhood of ζ: The points
q ∈ U1 and Φδ(q) ∈ Uδ lie in the same connector.

Lemma 4.4 Φδ expands distances by less than a factor of 3.

Proof: Let `1 and `2 be two connectors. Let aj = `j ∩ U1. Let bj = `j ∩ Uδ.
For any set S let S ′ be the projection of S to R2. We have the bounds

|a′1 − a′2|
|a1 − a2|

,
|b′1 − b′2|
|b1 − b2|

∈
[

2

3
, 1

]
,

|a′j − b′j|
length(`′j)

< 2.

Geometrically, a′j is very nearly the midpoint of `′j and b′j is the closer of the
two endpoints. Since `′1 and `′2 are planar and disjoint, our last inequality
(and essentially a similar-triangles argument) gives |b′1 − b′2|/|a′1 − a′2| < 2.
Putting everything together, we have |b1 − b2|/|a1 − a2| < 3. ♠

Fix ε > 0. The mean curvature along Uδ tends to 0 as δ → 0. If we
choose δ sufficiently small then the Gauss map expands distances along Uδ in
a neighborhood of (δ, 0, 0) by a factor of less than ε. Combining Lemma 4.4
and the fact that nq = nΦδ(q), we see that the Gauss map expands distances
by at most a factor of 3ε along U1 in a small neighborhood of ζ. Since ε is
arbitrary, w1 ∈ ker(dnζ). But v1 ∈ ker(dnζ) by definition. Hence dnζ is the
trivial map. The contradicts the fact that ζ ∈ U .

This completes the proof of Lemma 4.2.
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