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Abstract

We prove that a smooth embedded paper Moebius band must have
aspect ratio greater than

√
3. We also prove that any sequence of smooth

embedded paper Moebius bands whose aspect ratio converges to
√

3 must
converge, up to isometry, to the triangular Moebius band. These results
answer the mimimum aspect ratio question discussed by W. Wunderlich
in 1962 and prove the more specific conjecture of B. Halpern and C.
Weaver from 1977.

1 Introduction

1.1 The Triangular Moebius Band

To make a paper Moebius band you give a 1×λ strip of paper an odd number
of twists and then join the ends together. For long strips this is easy and for
short strips it is difficult or impossible. Let me first discuss a beautiful example
known as the triangular Moebius band . Figure 1a shows the triangular Moebius
band. It is based on a 1×

√
3 strip.
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Figure 1a: The triangular Moebius band

The strip in Figure 1a is lightly shaded on one side and darkly shaded on
the other. First fold the flaps in to make a rhombus, then fold the rhombus
in half like a wallet. This folding brings the two ends together with a twist.

∗Supported by N.S.F. Grant DMS-2102802, a Simons Sabbatical Fellowship, and a Mer-
cator Fellowship.
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The dotted segment indicates where the ends are joined. The bold segment
indicates the “wallet fold”. The dotted and bold segments together make a
pattern like a T. The pinstriping exhibits the strip as a union of line segments,
disjoint except at the endpoints, which stay straight during the folding.
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Figure 1b: The triangular Moebius band: another view

Figure 1b shows another view. Here we start with a symmetric trapezoid
rather than a rectangle, but we get the same object when we fold and join the
sides together. The bold edge indicates where the sides are joined. The dotted
and bold segments again make a “T-pattern”.

The triangular Moebius band goes back at least to the 1930 paper [Sa] of
M. Sadowsky. Technically, it does not quite fit the definition of a (smooth,
embedded) paper Moebius band that we give below, but it is the limit of such.

1.2 The Minimum Aspect Ratio Question

The triangular Moebius band looks like an extremely efficient construction.
Can we do better in terms of making λ smaller? To answer this question in a
meaninful way, we first need a formal definition.

Definition: A smooth paper Moebius band of aspect ratio λ is an infinitely
differentiable isometric mapping I : Mλ → R3, where Mλ is the flat Mobius
band obtained by identifying the length-1 sides of a 1× λ rectangle. That is:

Mλ = ([0, λ]× [0, 1])/ ∼, (0, y) ∼ (λ, 1− y). (1)

An isometric mapping is a map which preserves arc-lengths. The map is an
embedding if it is injective, and an immersion in general. Let Ω = I(Mλ). We
often write I : Mλ → Ω. We call Ω embedded when I is an embedding.

Remark: The smooth formalism rules out examples which render the main
question meaningless. For instance, you could fold any rectangle (e.g. a square)
like an accordion into a thin strip, twist, then tape. This origami monster is
not the limit of smooth embedded paper Moebius bands. For the reader who
does not like the smooth formalism, we give an alternative definition in §2.1
which is sufficient for our purposes and which avoids smoothness.
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The early papers of M. Sadowsky [Sa] and W. Wunderlich [W] treat both
the existence and differential geometry of paper Moebius bands. (See [HF]
and [T] respectively for modern English translations.) The paper [CF] gives a
modern differential geometric framework for developable surfaces like Ω. The
papers [CK], [KU], [RR] and [Sab] are all studies of the differential geometry
of paper Moebius bands. I learned about paper Moebius bands from the great
expository article [FT, Chapter 14] by Dmitry Fuchs and Sergei Tabachnikov.

W. Wunderlich discusses the minimum aspect ratio question, without an
explicit guess, in the introduction of his 1962 paper [W]. In their 1977 paper
[HW], Ben Halpern and Charles Weaver study the minimum aspect ratio
question in detail. They prove two things.

• For smooth immersed paper Moebius bands one has λ > π/2. Moreover,
for any ε > 0 one can find an immersed example with λ = π/2 + ε.

• There exists some ε0 > 0 such that λ > π/2 + ε0 for a smooth embedded
paper Moebius band. This ε0 is not an explicit constant.

On the last line of [HW], Halpern and Weaver conjecture that λ >
√

3 for a
smooth embedded paper Moebius band.

1.3 Results

In this paper I will resolve the Halpern-Weaver conjecture.

Theorem 1.1 (Main) A smooth embedded paper Moebius band has aspect
ratio greater than

√
3.

I will also prove that the triangular Moebius band is truly the optimal
paper Moebius band – at least when it comes to minimizing the aspect ratio.

Theorem 1.2 (Triangular Limit) Let {In : Mλn → Ωn} be a sequence of
smooth embedded paper Moebius bands with λn →

√
3. Then, up to isometry,

In converges uniformly to the map giving the triangular Moebius band.

Outline of the Proofs: Let I : Mλ → Ω be a smooth embedded paper
Moebius band. A bend is line segment B′ ⊂ Ω which cuts across Ω and has
its endpoints in the boundary. We call the pre-image B = I−1(B′) ⊂ Mλ a
pre-bend . Since I is arc-length preserving and B′ is an arc-length minimizing
path between its endpoints, B must also be an arc-length minimizing path
between its endpoints. Hence B is also a line segment.

It is a classic fact that Ω has a continuous foliation β by bends. See §2.1.
The bends in β vary continuously and are pairwise disjoint. The corresponding
foliation of Mλ by pre-bends is like the pinstriping in Figures 1a and 1b except
that the pre-bends are disjoint even at the endpoints.
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We say that a T -pattern on Ω is a pair of bends which lie in perpendicular
intersecting lines. Look again at the right sides of Figures 1a and 1b. We call
the T -pattern embedded if the two bends are disjoint. In §2.2 we prove

Lemma 1.3 (T) A smooth embedded paper Moebius band has an embedded
T -pattern.

Here is the idea. The space of pairs of unequal bends in β has a 2-point
compactification which makes it into the 2-sphere, S2. We define a pair of odd
functions on S2 which detect a T -pattern when they have a common zero. We
apply the Borsuk-Ulam Theorem to get a common zero.

In §2.3 we prove

Lemma 1.4 (G) A smooth embedded paper Moebius band with an embedded
T -pattern has aspect ratio greater than

√
3.

Here is the idea. We choose an embedded T -pattern on Ω and then cut Mλ

open along one of the corresponding pre-bends. The result is a bilaterally
symmetric trapezoid τ . See Figure 2 below. We then solve an optimization
problem which involves mapping τ into R3 with constraints coming from the
geometry of trapezoids and T -patterns.

The Main Theorem is an immediate consequence of Lemma T and Lemma
G. In §2.4 we prove the Triangular Limit Theorem by examining what the
proof of Lemma G says about a minimizing sequence of examples.

Remarks: (1) If an embedded paper Moebius band has a long enough strip
that is contained in a single plane, it also has a non-embedded T -pattern. That
is why we take special care to speak of embedded T -patterns.
(2) The interested reader would be able to tweak our proof of Lemma T to
show that a smooth immersed Moebius band has a T -pattern, though not nec-
essarily an embedded one. We do not want to fool around with this.
(3) Likewise, the interested reader would be able to tweak our proof of Lemma
G to prove that an immersed paper Moebius band with an embedded T -pattern
has aspect ratio greater than

√
3.

(4) The ideas above are an outgrowth of my earlier paper [S1]. In [S1] I prove
a version of Lemma T in a complicated way and with the side hypothesis that
λ < 7π/12. I then (correctly) deduce that λ ≥ φ = (1 +

√
5)/2. When I try to

further improve this easy bound, I make an idiotic mistake: I claim that when
you cut open Mλ along a pre-bend you get a parallelogram. This mistake in-
validates my final bound, a weird and forgettable algebraic number in (φ,

√
3).

This paper supersedes [S1] and is independent from it.
(5) My informal notes [S2] give a slower and more elementary account of my
proofs. I designed [S2] for college students and advanced high school students
who want to learn the arguments.
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1.4 Additional Material

The proofs are done after §2, but I include some more material in §3.
In §3.1 I elaborate on some aspects of the proofs given in §2.
In §3.2 I discuss an alternate framework for Lemma T.
In §3.3 I discuss some topics adjacent to paper Moebius bands. Let me

also say a few things here. The paper [CKS] and [DDS] consider the related
question of tying a piece of rope into a knot using as little rope as possible.
The papers [D] and [DL] consider folded ribbon knots. [DL, Corollary 25] is in
some sense a special case of our two results, and [DL, Conjecture 26] is a variant
of the Halpern-Weaver Conjecture in the category of folded ribbon knots. Our
Main Theorem incidentally resolves this folded ribbon knot conjecture. Some
authors have considered “optimal Moebius bands” from other perspectives,
either algebraic [Sz] or physical [MK], [SH].

In §3.4 I discuss some new results [BrS], [H], [S3] about multi-twist paper
Moebius bands and cylinders which followed after the writing of this article.

1.5 Acknowledgements

I thank Brienne Brown, Matei Coiculescu, Robert Connelly, Dan Cristofaro-
Gardiner, Elizabeth Denne, Dmitry Fuchs, Javier Gomez-Serrano, Ben Halpern,
Aidan Hennessey, Anton Izosimov, Jeremy Kahn, Rick Kenyon, Stephen D.
Miller, Noah Montgomery, Jan Neinhaus, Sergei Tabachnikov, and Charles
Weaver for helpful discussions about this subject. I especially thank Matei
for suggesting that I try for a “mapping proof” of Lemma T as opposed to
the kind of proof I had previously. That suggestion led me to find a really
nice proof of Lemma T that greatly simplified this paper. Finally, I thank the
anonymous referees for insightful and helpful comments.

2 Proofs of the Results

2.1 Existence of a Bend Foliation

One might instead define an embedded paper Moebius band to be an injective
arc-length preserving map I : Mλ → Ω ⊂ R3 such that Ω has a continuous
foliation by bends. This is what our proofs below really use. The reader who
prefers this alternate definition can skip this section. In this section we deduce
the existence of the bend foliation from the definition in the introduction.

Proposition 2.1 Ω has a continuous foliation by bends.

Proof: The Gauss map η, well-defined locally, assigns to each p ∈ Ω a unit
vector ηp normal to Ω at p. Since Ω is smooth even at the boundary ∂Ω, both
η and the mean curvature make sense even in ∂Ω.
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Let U ⊂ Ω be the set of points with nonzero mean curvature. By either
[HN, §3, Lemma 2] or [CL, p. 314, Lemma 2] each p ∈ U lies in a unique bend
γ ⊂ U . (See [Mas] or [S4] for simpler proofs; also see §3.1.) Hence U has a
partition into bends. The disjointness of these bends implies their continuity.

Let τ be the closure of a component of Ω − U . Note that τ lies in a sin-
gle plane because η is constant on τ . Either τ is a single bend, the limit of
bends converging to it on either side, or τ is a trapezoid: two opposite sides
τ1 and τ2 are bends and the other sides lie in ∂Ω. We foliate τ by bends, in-
terpolating between τ1 and τ2. Doing this for all τ , we get our foliation of Ω. ♠

2.2 Proof of Lemma T

Definitions: Let I : Mλ → Ω be a smooth embedded paper Moebius band.
We choose a continuous foliation β of Ω by bends, as guaranteed by Proposition
2.1. The preimage I−1(β) is a continuous foliation of Mλ by pre-bends.

Each bend u has exactly 2 unit vectors ±−→u parallel to it. We call either
one an orientation of u. The centerline of Mλ is the circle ([0, λ]× {1/2})/∼.
The centerline of Ω is the image of the centerline of Mλ under the map I.

Intersection with the Centerline: Here is a proof that a pre-bend u in-
tersects the centerline of Mλ exactly once. Let `(·) denote length. If we have
`(u) <

√
1 + λ2 we can move u by an isometry so that it misses the vertical

sides of [0, λ]× [0, 1]. But then u clearly intersects the centerline exactly once.
So, if u intersects the centerline more than once, we have `(u) ≥

√
1 + λ2 > λ.

But ∂Ω = I(∂Mλ) is a loop that contains the endpoints of the bend u′ = I(u).
Hence 2λ = `(∂Ω) ≥ 2`(u′) = 2`(u) > 2λ, a contradiction.

The Circle of Bends: Since I is an embedding, our intersection result above
implies that each bend of Ω intersects the centerline of Ω exactly once. We
associate to each bend of β the point where it intersects the centerline, which
we identify with R/2π. Thus we parametrize the bends of β by R/2π.

The Cylinder and the Sphere: Let Υ be the topological cylinder of pairs
(x0, x1) ∈ (R/2π)2 with x0 6= x1. A point (x0, x1) ∈ Υ corresponds to a pair
(u0, u1) of unequal bends. We let Υ be the compactification of Υ obtained by
adding 2 points: ∂+ (respectively ∂−) is the limit of pairs (x0, x1) where x1
is just ahead (respectively just behind) x0 in the cyclic order on R/2π. The
space Υ is homeomorphic to S2, the 2-sphere. (See §3.1 for an explicit home-
omorphism.) The map Σ(x0, x1) = (x1, x0) extends to a continuous involution
of S2 that swaps the two points ∂+ and ∂−.
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Propagating the Orientations: Let (x0, x1) ∈ Υ. There is a unique path
t → xt in R/2π which joins x0 to x1, moves at constant speed, locally in-
creases in the cyclic order on R/2π, and has length less than 2π. This path
has length near 0 (respectively near 2π) when (x0, x1) is near ∂+ (respectively
∂−). Let ut be the bend associated to xt. We write −→u 0  

−→u 1 when there is
a continuous orientation of the bends {ut} that restricts to −→u 0 and −→u 1. Note
that −−→u 0  −−→u 1 and, since Ω is a Moebius band, −→u 1  −−→u 0. Also −→u 1

converges to ±−→u 0 when (x0, x1) converges to ∂±.

The Map: Let mj be the midpoint of uj . Using the dot product (·) and
the cross product (×) define F = (g, h) : Υ→ R2, where

g(x0, x1) = −→u 0 · −→u 1, h(x0, x1) = (m0 −m1) · (−→u 0 ×−→u 1). (2)

Here −→u 0  
−→u 1. Our definition is independent of the chosen orientation since

−−→u 0  −−→u 1. Also, F extends continuously S2 with F (∂±) = (±1, 0). Since
−→u 1  −−→u 0 we have g(x1, x0) = −g(x0, x1) and

h(x1, x0) = (m1−m0) · (−→u 1× (−−→u 0)) = (m1−m0) · (−→u 0×−→u 1) = −h(x0, x1).

In short, F ◦ Σ = −F .

The Common Zero: We have (0, 0) ∈ F (Υ) by the Borsuk-Ulam Theo-
rem. Here is a self-contained proof. Suppose not. If γ is a continuous path
in S2 which goes from ∂+ to ∂−, then F (γ) goes from (1, 0) to (−1, 0), misses
(0, 0), and winds some half integer w(γ) times around the origin. All choices
of γ are homotopic to each other relative to ∂±, so w(γ) is independent of
γ. But consider γ′ = Σ(γ), re-oriented so that it goes from ∂+ to ∂−. Since
F ◦ Σ = −F the image F (γ′) is obtained by rotating F (γ) by 180 degrees
about (0, 0) then re-orienting it so that it goes from (1, 0) to (−1, 0). But then
w(γ′) = −w(γ), a contradiction.

Endgame: Let (u0, u1) be the bends corresponding to (x0, x1) ∈ F−1(0, 0).
First, u0 and u1 are disjoint because they belong to the same foliation. Sec-
ond, −→u 0 and −→u 1 are orthogonal because g(x0, x1) = 0. Third, −→u 0 and −→u 1 and
m0 −m1 are all orthogonal to −→n = −→u 0 ×−→u 1 because h(x0, x1) = 0, and this
easily implies that u0, u1 are coplanar. (To perhaps make this more clear, ro-
tate so that −→n = (0, 0, 1). Then −→u 0 and −→u 1 and m0−m1 are all “horizontal”.)
Hence (u0, u1) is an embedded T-pattern. This proves Lemma T.

2.3 Proof of Lemma G

Let ` denote arc length.

7



Lemma 2.2 Let5 be a triangle with horizontal base
√

1 + t2 and height y ≥ 1.
Let ∨ be the union of the two non-horizontal sides of 5. Then `(∨) ≥

√
5 + t2,

with equality iff 5 is isosceles and y = 1.

Proof: Let p1, p2, q be the vertices of 5, with p1, p2 lying on the base. Let
p′2 be the reflection of p2 in the horizontal line through q. Note that 5 is
isosceles iff p1, q, p

′
2 are collinear. By symmetry, the triangle inequality, and

the Pythagorean Theorem,

`(∨) = ‖p1 − q‖+ ‖q − p′2‖ ≥ ‖p1 − p′2‖ =
√

1 + t2 + 4y2 ≥
√

5 + t2.

We get equality if and only if p1, q, p
′
2 are collinear and y = 1. ♠

Let I : Mλ → Ω be a smooth embedded paper Moebius band with an
embedded T -pattern. Let S′ = I(S) for any S ⊂Mλ. We have `(γ) = `(γ′) for
any curve γ ⊂Mλ. We rotate Ω so that one of the bends of the T -pattern, T ′,
lies in X-axis and the other bend, B′, lies in the negative ray of the Y -axis.
Next, we let B = I−1(B′) and T = I−1(T ′) be the corresponding pre-bends.

We cut Mλ open along T to get a bilaterally symmetric trapezoid τ . We
normalize τ so that the parallel sides are horizontal. Reflecting τ in the coor-
dinate axes if needed, we arrange that u, v, w, x are mapped to Ω as in Figure
2. Compare Figure 1b. The quantities t and b (which are both positive in the
case depicted) respectively denote the horizontal displacements of T and B.
Let H = H1 ∪ H2 and D = D1 ∪ D2. We have H ′, D′ ⊂ R3, so you should
imagine you are floating in space above Figure 2 and looking down.

BT

uw

v
t

b

D1

1

D2

w

x

x H1 H2
-t

T 11 B'

T' w'x'
v'

u'

H2'

D1'

H1'

D2'

Figure 2: The trapezoid τ (left) and the T-pattern (right).

Since λ is the distance between the two midpoints of the T -edges,

λ = `(H) + t = `(D)− t. (3)

Since H ′ connects the endpoints x′, w′ of T ′ and contains v′ 6∈ T ′,

`(H) = `(H ′) > `(T ′) = `(T ) =
√

1 + t2 =⇒ `(H) >
√

1 + t2. (4)
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With Lemma 2.2 in mind, note that the shaded triangle 5 on the right has

base = `(T ′) = `(T ) =
√

1 + t2, height > `(B′) = `(B) =
√

1 + b2 ≥ 1.

Since D′ connects the top two vertices x′, w′ of 5 and passes through the
bottom vertex u′ of 5, we have `(D′) ≥ `(∨). Lemma 2.2 now gives

`(D) = `(D′) ≥ `(∨) >
√

5 + t2 =⇒ `(D) >
√

5 + t2. (5)

Equations 3, 4, and 5 give:

λ > max(h(t), d(t)), h(t) =
√

1 + t2 + t, d(t) =
√

5 + t2 − t. (6)

Now, h(1/
√

3) = d(1/
√

3) =
√

3, and h is increasing on R, and d is decreasing
on R. Hence max(h(t), d(t)) ≥

√
3 for all t. This proves Lemma G.

Our proof of the Main Theorem is done.

2.4 Proof of the Triangular Limit Theorem

Figure 3 shows what Figure 2 looks like with respect to the triangular Moebius
band and its T-pattern in Figure 1b.
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Figure 3: Figure 2 for the triangular Moebius band.

Let {In : Mλn → Ωn} be as in the Triangular Limit Theorem. We run the
construction of Lemma G for each n and analyze what happens as n → ∞.
We use the same notation but add subscripts to denote the dependence on n.

The Range: Since max(h(tn), d(tn)) →
√

3 we have tn → 1/
√

3. Hence the
base of 5n converges to 2/

√
3. Since the height of 5n is at least 1 the perime-

ter `(5n) cannot accumulate in (0, 2
√

3). Since `(5n) ≤ `(H ′n) + `(D′n) = 2λn
we have `(5n) → 2

√
3. This forces 5n to converge, up to isometries, to the

equilateral triangle in Figure 3 (right). We normalize by isometries so that
we get actual convergence. Note that bn → 0 and that v′n converges to the
midpoint of T ′n.
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The Domain: Since `(∂Ωn) − `(5n) → 0 and also v′n converges to the mid-
point of T ′n, all the slack goes out of Equations 4 and 5:

lim `(H ′n,1) = lim `(H ′n,2) = 1/
√

3, lim `(D′n,1) = lim `(D′n,2) = 2/
√

3. (7)

Since `(Hn,1) = `(H ′n,1), etc. τn converges (up to isometries) to τ , the trape-
zoid in Figure 3 (left). We normalize so that we get actual convergence.

The Map: The arcs H ′n,1, H
′
n,2, D

′
n,1, D

′
n,2 converge as sets to the line seg-

ments connecting their endpoints because `(∂Ωn) − `(5n) → 0. Since In
is length preserving, In converges uniformly to a linear isometry on each of
Hn,1, Hn,2, Dn,1, Dn,2. We divide Mλn into 3 triangles as in Figure 4.

BT

uw

v

D1 D2

w

x

x H1 H2

B'

T' w'x'
v'

u'

H2'

D1'

H1'

D2'

p p'

Figure 4: Figure 2 revisited

Consider the restriction of In to the left dark-shaded triangle 4n. First, In is
a linear isometry on wnxn = Tn. Second, In converges to a linear isometry on
the segment wnun = Dn,1. Third, In converges to a linear isometry on xnun
because ‖x′n−u′n‖ → ‖xn−un‖ and In is distance non-increasing. In summary,
In converges to a linear isometry on ∂4n. Since In is distance non-increasing,
this implies that In converges to a linear isometry on 4n. The same argument
works for the right dark-shaded triangle. But then In converges to an isometry
on the middle light-shaded triangle as well. Hence In converges to the piece-
wise linear isometry associated to the triangular Moebius band. This proves
the Triangular Limit Theorem.

The Bend Foliations: Our proof is done, but let us say a bit more. Let
pn be the midpoint of xnun, shown in Figure 4. The pre-bend γn through pn
has its endpoints on Hn,1 and Dn,1. Hence the bend γ′n through p′n has its
endpoints on H ′n,1 and D′n,1. Also, p′n converges to the midpoint of x′nu

′
n. This

geometry forces one endpoint of γ′n to converge to x′n and the other to u′n.
This means that γn converges to xnun. In other words, the left dotted line in
Figure 4 is, for large n, quite close to a pre-bend. The same goes for the right
dotted line. Hence the pre-bend foliation of Mλn converges to the pinstriping
shown in Figures 1a (left) and 1b (left), and the bend foliation of Ωn converges
to the pinstriping shown in Figures 1a (right) and 1b (right).
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3 Discussion

3.1 Remarks on the Proofs

Bends and Mean Curvature: Concerning Proposition 2.1, here we sketch
a proof that each p ∈ U lies in a unique bend γ ⊂ U . This sketch follows my
notes [S4]. Uniqueness is easy: If two bends intersect at p then U has zero
mean curvature at p, a contradiction.

Existence: Since Ω has zero Gauss curvature and U has nonzero mean
curvature, the differential dη has 1-dimensional kernel and 1-dimensional image
throughout U . Let γ ⊂ U be the curve through p integral to kernel(dη). The
triple {η, image(dη), kernel(dη)} defines an orthonormal frame along γ. First,
η is constant along γ by integration. Second, γ is part of a foliation F by
integral curves along which η is constant; this makes image(dη) constant along
γ. Hence kernel(dη) is constant along γ, making γ a line segment.

Here is why γ cannot exit U : Suppose q ∈ U − U is some first exit point.
Consider a unit vector field v along γ normal to γ but tangent to Ω. The
line segments of F near γ cannot drastically separate from each other as they
move “forwards” towards q because then they would “focus backwards” and
intersect in U . Since η is constant along these segments, this geometry makes
the ratio ‖dηζ(vζ)‖/‖dηp(vp)‖ uniformly bounded away from 0 as ζ → q. This
makes ‖dηq(vq)‖ > 0, contradicting the fact that q 6∈ U .

Explicit Homeomorphism: Concerning Lemma T, here is an explicit home-
omorphism between S2 and Υ. Let Xθ denote the bend corresponding to
θ ∈ R/2π. We identify ∂+ and ∂− respectively with the north and south
pole of S2. We parametrize S2 − ∂± by (θ, φ), where θ ∈ R/2π is the longi-
tude and φ ∈ (0, π), the angle with the vector pointing to ∂+, is the latitude.
The antipodal map is (θ, φ) → (π + θ, π − φ) in these coordinates. The cor-
respondence (θ, φ) ↔ (Xθ−φ, Xθ+φ) extends continuously to ∂± and gives a
homeomorphism between S2 and Υ which conjugates the antipodal map to Σ.
Thus, in the right coordinates, the functions g and h are odd functions in the
sense of the classical Borsuk-Ulam Theorem.

3.2 Paths of Oriented Lines

Anton Izosimov and Sergei Tabachnikov independently suggested to me the
following generalization of Lemma T.

Lemma 3.1 Suppose {Lt| t ∈ [0, 1]} is a continuous family of oriented lines in
R3 such that L1 = Lopp

0 , the same line as L0 but with the opposite orientation.
Then there exist parameters r, s ∈ [0, 1] such that Lr and Ls are perpendicular
intersecting lines.
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Proof: This has the same proof as Lemma T, once we observe that our func-
tion h, defined in Equation 2, is more natural than we have let on. The points
m0,m1 in the definition of h could be any points on u0, u1 and we would get
the same result. g and h are invariants of pairs of oriented lines. ♠

Sergei also suggested to me a beautiful alternate formalism for Lemma T:
the dual numbers. These have the form x + εy where x, y ∈ R and ε2 = 0.

Relatedly, the dual vectors have the form −→a + ε
−→
b , where −→a ,

−→
b ∈ R3 and

again ε2 = 0. In this context, the dot product of two dual vectors makes sense
as a dual number. See [HH] for an exposition.

Each oriented line ` ⊂ R3 gives rise to a dual vector ξ` = −→a + ε
−→
b where

−→a is the unit vector pointing in the direction of ` and
−→
b = `′×−→a . Here `′ ∈ `

is any point. All choices of `′ give rise to the same
−→
b ; this vector is called the

moment vector of `. This formalism identifies the space of oriented lines in R3

with the so-called Study sphere consisting of dual vectors ξ such that ξ · ξ = 1.
The dual dot product ξ` · ξm vanishes if and only if ` and m are perpendicular
and intersect.

3.3 Related Topics

Square Peg: The Toeplitz Square Peg Conjecture asks if every continuous
loop in the plane contains 4 points which make the vertices of a square. See
[Mat] for a fairly recent survey. One can view a T -pattern as a collection of 4
points in the boundary of the Moebius band which satisfy certain additional
constraints – e.g. they are coplanar. Put this way, a T -pattern is sort of like
a square inscribed in a Jordan loop.

Quadrisecants: The idea for Lemma T is also similar in spirit for the idea
developed in [DDS] concerning 4 collinear points on a knotted loop. These so-
called quadrisecants play a role similar to Lemma T in getting a lower bound
for the length of a knotted rope.

Folded Ribbon Knots: Elizabeth Denne pointed out to me the connec-
tion between paper Moebius bands and folded ribbon knots. Her paper with
Troy Larsen [DL] gives a formal definition of a folded ribbon knot and has a
wealth of interesting constructions, results, and conjectures. See also [D].

Folded ribbon knots are the objects you get when you take a flat cylinder or
Moebius band, fold it into a knot, and then press it into the plane. Associated
to a folded ribbon knot is a polygon, which comes from the centerline of the
object. Even though the ribbon knot lies entirely in the plane, one assigns
additional combinatorial data which keeps track of “infinitesimal” under and
over crossings as in a knot diagram. So the associated centerline is really a

12



knot (or possibly the unknot).
[DL, Corollary 25] proves our Main Theorem in the category folded ribbon

Moebius bands whose associated centerline is a triangle. This is a finite di-
mensional problem. [DL, Conjecture 26], the analogue of the Halpern-Weaver
Conjecture in the folded ribbon knot category, says that [DL, Corollary 25]
is true without the very strong triangle restriction. The combination of our
Main Theorem, the Triangular Limit Theorem, and smooth approximation as
in [HW] implies [DL, Conjecture 26].

3.4 More Twists

One can make a twisted cylinder by taking a 1 × λ strip of paper, giving it
an even and nonzero number of twists, and then joining the ends together.
There are two optimal limiting shapes which wrap a 1×2 strip 4 times around
a right-angled isosceles triangle. In [S3] I prove that a twisted cylinder has
aspect ratio greater than 2 and that any minimizing sequence converges on a
subsequence to one of the two optimal models. This result also confirms the
n = 1 case of [DL, Conjecture 39]. Noah Montgomery (private communication)
independently came up with a different proof of the cylinder result.

Brienne Brown did some experiments with 3-twist paper Moebius bands
and found two candidate optimal models which we call the crisscross and the
cup. Both are made from a 1× 3 strip of paper. The crisscross is planar and
the cup is not. In [BrS] we conjecture that λ > 3 for an embedded multi-
twisted paper Moebius band and that any sequence of minimizers converges
on a subsequence to either the crisscross or the cup.

More recently, Aidan Hennessey [H] proved the fantastic result that one
can make a cylinder or a Moebius band with any number of twists using a 1×6
strip. Extremely recently, following my lecture at UCLA on 8 Oct 2024, I told
Jan Neinhaus about Hennessey’s construction. The next day, Jan showed me
how one can optimize and get 3

√
3 + ε, for any ε > 0, in place of 6. Jan’s

limiting shape is half a regular hexagon. We conjecture that 3
√

3 is optimal in
this context. Nobody has written about this yet.
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of the Royal Society A (1993)

[Mas] W. S. Massey, Surfaces of Gaussian Curvature Zero in Euclidean 3-
Space, Tohoku Math J. (2) 14 (1), pp 73-79 (1962)

[Mat] B. Matschke, A survey on the Square Peg Problem, Notices of the A.M.S.
Vol 61.4, April 2014, pp 346-351.

14



[RR] T. Randrup, P. Rogan, Sides of the Möbius Strip, Arch. Math. 66 (1996)
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Nature Materials 6 (2007) pp 563 – 567

[T] Todres, R. E., Translation of W. Wunderlich’s On a Developable Möbius
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