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Abstract

This paper gives another proof of the key lemma in my recent paper
which solves the optimal paper Moebius band conjecture of Halpern
and Weaver, namely Lemma C

1 Introduction

The original content of this paper is completely superceded by my paper [S1],
which solves the Halpern-Weaver conjecture about optimal paper Moebius
bands. The paper [S1] has a discussion of this problem and many references.

The key lemma in [S1] is Lemma C below, a statement about the exis-
tence of so-called T -patterns in certain paper Moebius bands. A version of
this lemma also appears in [S2]. The current version of this paper re-proves
Lemma C in a different way than is done in [S1]. The proof we give here is
similar to the one given in [S2] but now that I realize it the key result for
the conjecture, I am taking the opportunity to re-do the proof more carefully
and with better exposition. The proof here is longer than the proof given
in [S1] but somehow more geometrically intuitive. Some readers interested
in the proof of the Halpern-Weaver conjecture might like the argument here
better.

An embedded paper Moebius band of aspect ratio λ is a smooth isometric
embedding I : Mλ → R3, where Mλ is the flat Mobius band

Mλ = ([0, 1]× [0, λ])/ ∼, (x, 0) ∼ (1− x, λ) (1)
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An isometric mapping is a map whose differential is an isometry. The map
is an embedding if it is injective. In [S1] I prove that a smooth embedded
paper Moebius band has aspect ratio greater than

√
3. This result is sharp,

and the solution of the Halpern-Weaver conjecture.
Being a ruled surface, a smooth paper Moebius band has a foliation by

straight line segments which we call bends . We call a bend gentle if the line
extending it makes an angle of less than π/4 with the XY -plane. We call
the Moebius band gentle if all the bends are gentle.

We say that a T -pattern in a paper Moebius band is a collection of 2
co-planar bends such that the lines extending them are perpendicular. Here
is the key technical result of [S1].

Lemma 1.1 (C) A gentle paper Moebius band has a T -pattern.

In this paper I will reprove Lemma C in a different category, that of
immersed piecewise linear Moebius bands. At the end, I will deduce Lemma
C above from the polygonal version.
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2 Nice Approximations

2.1 Pairs of Lines

In this first section we will prove two results about configuration spaces of
lines. The second of these results, Lemma 2.2, will be useful in subsequent
sections. After proving Lemma 2.2, we will define polygonal Moebius bands
and then use Lemma 2.2 to show that we can approximate an arbitrary
polygonal Moebius band by one which has a nice property useful for proving
Lemma C.

Say that an anchored line in R3 is a line through the origin. Say that
an anchored plane is a plane in R3 through the origin. Let Π1 and Π2 be
anchored planes. A sector of the plane Πj is a set linearly equivalent to the
union of the (++) and (−−) quadrants in R2. Let Σj ⊂ Πj be a sector. The
boundary ∂Σj is a union of two anchored lines crossing at the origin.

Lemma 2.1 Suppose that Π1 and Π2 are not perpendicular. The set of per-
pendicular anchored lines (L1, L2) with Lj ∈ Πj for j = 1, 2 is diffeomorphic
to a circle.

Proof: For each anchored line L1 ∈ Π1 the line L2 = L⊥1 ∩Π2 is the unique
choice anchored line in Π2 which is perpendicular to L1. The line L2 is a
smooth function of L1. So, the map (L1, L2) → L1 gives a diffeomorphism
between the space of interest to us and a circle. ♠

Lemma 2.2 Suppose Π1 and Π2 are not perpendicular and no line of ∂Σ1

is perpendicular to a line of ∂Σ2. Then the set of perpendicular pairs of
anchored lines (L1, L2) with Lj ∈ Σj for j = 1, 2 is either empty or diffeo-
morphic to a closed line segment. If (L1, L2) corresponds to an endpoint then
exactly one of these lines lies in the boundary of its sector.

Proof: Let Π1 and Π2 be anchored planes. Let S1 denote the set of per-
pendicular pairs as in Lemma 2.1. Let X ⊂ S1 denote the set of those pairs
with Lj ∈ Σj. Let π1 and π2 be the two diffeomorphisms from Lemma 2.1.
The set of anchored lines in Σj is a line segment and hence so is its inverse
image Xj ⊂ S1 under πj. We have X = X1 ∩X2.
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Suppose X is nonempty. Then some p ∈ X corresponds to a pair of lines
(L1, L2) with at most one Lj ∈ ∂Σj. But then we can perturb p slightly, in at
least one direction, so that the corresponding pair of lines remains in Σ1×Σ2.
This shows that X1 ∩ X2, if nonempty, contains more than one point. But
then the only possibility, given that both X1 and X2 are segments, is that
their intersection is also a segment.

If neither L1 nor L2 lies in the boundary of its sector then we can perturb
in both directions. This implies that X contains the point corresponding to
(L1, L2) in its (relative) interior. Hence the endpoints of X correspond to
pairs with at least one line in the boundary of a sector. Both lines cannot
be in the sector boundary because, by assumption, a sector boundary line
of one sector cannot be perpendicular to a sector boundary line of the other
sector. ♠

2.2 Polygonal Moebius Bands

We represent Mλ as the quotient of a bilaterally symmetric trapezoid τ , as
shown in Figure 2.1. A transverse triangle in Mλ is one having 1 edge ∂Mλ

and 2 edges with their vertices in ∂Mλ as shown in Figure 2.1. We call the
edge in ∂Mλ the ridge. We define a pre-bend of a transverse triangle to be a
segment joining the ridge to the opposite vertex.

Figure 2.1: Transverse triangulation and pre-bend foliation

A transverse triangulation of Mλ is a partition of τ into transverse trian-
gles. Each transverse triangle has a foliation by pre-bends, and these piece
together to give the pre-bend foliation of τ . Say that polygonal Moebius band
is a continuous map I : Mλ → R3 that is piecewise affine with respect to
some transverse triangulation of Mλ. We always cut open along a pre-bend
to get the kind of trapezoid representation shown in Figure 2.1. The map I
should be injective on each transverse triangle but not necessarily globally
injective.
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We define the bends to the images of the pre-bends under I. As in the
smooth case, a T -pattern in a polygonal Moebius bend is a pair of bends
having perpendicular and coplanar extending lines. More generally, we call
two bends partners if the lines through the origin parallel to these bends are
perpendicular.

We identify the pre-bends of Mλ with the circle R/λZ as follows: We
map each pre-bend to its intersection with the centerline of Mλ, and this is
a copy of R/ΛZ . We call two points r, s ∈ R/λZ partners if the bends I(βr)
and I(βs) are partners. We let Ω ⊂ (R/λZ)2 be the subset of partner points.
We call W nice if Ω is a piecewise smooth 1-manifold – i.e. a finite disjoint
union of piecewise smooth embedded loops.

Lemma 2.3 Let M be a polygonal Moebius band. We can find a linear
transformation φ as close as we like to the identity so that φ(M) is nice.

Proof: Say that an image triangle of M is the image under I of one of
the triangles in the transverse triangulation. Each image triangle µ defines
a sector. The anchored plane containing the sector is parallel to the one
containing µ. The boundary of the sector is the union of the two anchored
lines parallel to the apex-incident edges of µ.

Now we consider an affine adjustment using a linear map φ. Since we
just need to destroy finitely many perpendicularity relations we can take φ
as close as we like to the identity such that every pair of sectors associated to
φ ◦ I satisfies the hypotheses of Lemma 2.2. We also call the new polygonal
Moebius band M and we show that it is nice.

Let Ω be the partner set. The space (R/λZ)2 is tiled by special rectangles
corresponding to pairs of transverse triangles. By Lemma 2.2 any nontrivial
intersection of Ω with a special rectangle is a special segment with endpoints
in the relative interiors of edges of ∂R. Any two special segments have
disjoint interiors because their interiors lie in different rectangle interiors.
Let s1 be any special segment, contained in a special rectangle R1. Let v be
an endpoint of s1. Let R2 be the special rectangle adjacent to R1 and sharing
the edge containing v. Since Ω∩R2 is nonempty, this intersection is another
special segment s2 which also contains v. In this manner, s1 continues across
v to a unique special segment s2.

These properties, disjoint interiors and continuance across vertices, show
that Ω is an embedded piecewise smooth 1-manfold. ♠
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3 Existence of T Patterns

3.1 An Odd Homology Class

Let I : Mλ → M be a nice polygonal Moebius band. Let Ω be the partner
set for M . By hypothesis, Ω is a piecewise smooth 1-manifold, a subset of
the open cylinder Υ, which we get by removing the diagonal from (R/λZ)2.
We call Ω odd of Ω represents the nontrivial element of the homology group
H1(Υ;Z/2) = Z/2. In this section we prove that Ω is odd.

We let Υ be the compactification of Υ obtained by adding 2 boundary
components. The point (a, b) lies near one boundary component if b lies
just ahead of a in the cyclic order coming from R/λZ. The point (a, b) lies
near the other boundary component if b lies just behind of a in the cyclic
order coming from R/λZ. We get a path γ which runs from one boundary
component of Υ to the other by holding a fixed and varying b all the way
around from ahead of a to just behind a. Let γ be such a path. If we pick
a generically then γ intersects Ω transversely. In particular, γ intersects Ω a
finite number of times.

Lemma 3.1 If γ intersects Ω an odd number of times then Ω is odd.

Proof: If ω is a component of Ω then γ intersects ω an even number or
an odd number of times, depending respectively on whether ω is trivial or
nontrivial in H1(Υ;Z/2). Hence Ω has an odd number of homologically non-
trivial components. Hence Ω is odd. ♠

Lemma 3.2 γ intersects Ω an odd number of times.

Proof: We give an orientation to the pre-bend βa corresponding to a. This
gives an orientation to the bend I(βa). We attempt to give a continuous
orientation to the bends I(βb), knowing that this is impossible because we
are on a Moebius band. But we can almost do this. When b is just ahead
of a we orient I(βb) so that it points almost in the same direction as I(βa).
After we have gone all the way along γ until b is just behind a, the bend I(βb)
points almost in the opposite direction as I(βa). This means that the bends
are partners an odd number of times along the path. Hence γ intersects Ω
an odd number of times. ♠
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3.2 The Main Argument

Let M be the nice and gentle polygonal Moebius band. Suppose u, v are
are partner bends. There is a unique pair of parallel planes U, V such that
u ⊂ U and v ⊂ V . These planes are both orthogonal to the cross product of
vectors parallel to u and v. We call U or V auxiliary planes . If U = V then
we have a T -pattern.

Lemma 3.3 No associated plane contains a vertical line.

Proof: We argue by contradiction. Let (U, V ) be a pair of associated planes
which supposedly contain the vertical direction. Let (u, v) be the correspond-
ing partner bends. Let Lu and Lv be the lines parallel to u and v through
the origin. Let L∗ be the line through the origin perpendicular to both Lu
and Lv. Since L∗ is perpendicular to all vectors in U and V , we know that
L∗ is perpendicular to (0, 0, 1). Hence L∗ lies in the XY -plane. We might as
well rotate about the Z-axis so that L∗ is the Y -axis. But then Lu and Lv
lie in the XZ plane. So we have 2 lines in the XZ plane which are perpen-
dicular and both make an angle of less than π/4 with the XY plane. This is
impossible. ♠

Let us deduce the M has a T -pattern from these results. Consider
f : Υ → Υ given by f(a, b) = (b, a). This map is an involution and an
isomorphism on H1(Υ;Z/2). By construction f permutes the components
of Ω. Since Ω is odd, there must be some component ω of Ω such that
f(ω) = ω. This means that we can find a continuous path in Ω, namely a
suitable arc of ω, such that f swaps the endpoints of our path. Call this the
swapping path.

Let (ut, vt) be the continuous path of pairs of partner bends in M corre-
sponding to the swapping path. Let (Ut, Vt) be the corresponding continuous
path of auxiliary planes. Let [Ut] and [Vt] be the points where these planes
intersect the Z-axis. These points are well-defined and vary continuously
by Lemma C2 and compactness. By construction these intersection points
switch places as we traverse the swapping path. Hence there is some pa-
rameter s for which [Us] = [Vs]. But then, because Us and Vs are parallel,
Us = Vs. But then us and vs make a T -pattern in M .
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3.3 Approximation Arguments

We have just proved that a nice and gentle polygonal Moebius band has a
T -pattern. Now let us get the same result without assuming niceness. Let M
be a gentle polygonal Moebius band that is not necessarily nice. If we choose
any linear φ close enough to the identity then φ(M) is also gentle. This is
just compactness. By Lemma 2.3 we can choose such a φ so that φ(M) is
both nice and gentle. So, we have a T -pattern on φ(M) by Lemma C1. The
image of this T -pattern under φ−1 is as close as we like to being a T -pattern
on M . Taking a limit we get a T -pattern on M . This completes the proof.

We have proved that a gentle polygonal Moebius band has a T -pattern.
Let us now deduce Lemma C in the introduction from this fact. Suppose
that I : Mλ →M is a smooth paper Moebius band that is gentle.

Take a finite list β1, ..., βn of pre-bends in Mλ, with β1 being the first
bend and βn being the last. Call this a mesh. These pre-bends divide Mλ

into thin trapezoids. We add diagonals to get a transverse triangulation. We
use the values of I on the vertices of the transverse triangles to define I ′.
By construction I and I ′ agree on β1, ..., βn. We call these bends the shared
bends . Hence I ′ : Mλ →M ′ is a polygonal Moebius band.

If we take our mesh fine enough then by compactness and continuity M ′

will be gentle. But then M ′ has a T -pattern (u′, v′). Once we take our mesh
fine enough we can make u′ and v′ as close metrically as we like to shared
bends u and v. Now we can say that M has a pair of bends whose extending
lines are as close as we like to being perpendicular and coplanar. We can
take a limit of these near T -patterns on M to get an actual T -pattern on M .
This completes the proof.
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