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Abstract

This is an informal account of my solution of the Optimal Paper
Moebius Band conjecture, written in a way that you should under-
stand with just high school mathematics.

1 Introduction

This paper is an informal account of my paper [S1], which solves the Halpern-
Weaver conjecture about optimal paper Moebius bands. The paper [S1] has
a discussion of this problem and many references.

The purpose of this account is to give an informal account of my solution
of the Optimal Moebius Band conjecture. The conjecture itself is so simple
that practically anyone could understand it. The solution involves some
advanced (but not too advanced) mathematics in a few spots, but it seems a
shame not to try to make it so everyone can understand the solution as well.
That is what I will try to do in these notes.

If you want to understand these notes, you should get out some paper,
scissors, and tape. I’ll frequently refer to a paper Moebius band, and if you
are holding it in your hand you will have a better chance of knowing what I
am talking about.

Here is how to make a paper Moebius band: Cut out a strip of paper,
give it one twist, then tape the ends together. Figure 1 shows what you’ll
get.
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Figure 1: A paper Moebius band

For the sake of discussion suppose the width of your strip is always the
same, namely one unit wide. If you start with a long strip, you can do the
task easily. If you start with a shorter strip, you will find the task more
difficult. How short can you go?
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Figure 2: The optimal paper Moebius band?

Figure 2 shows a particularly beautiful example you can try to make. If
you start with a 1×

√
3 strip you can fold and (try to) tape it as indicated

in Figure 2. The tape runs along the dotted line in the “inside” of the little
triangular “wallet” you are making. I’ve never tried the taping, but in my
mind it is taped.

Ideally speaking, the result is a perfectly flat Moebius band made out of
paper. The final rotation in Figure 2 is not necessary but it highlights a kind
of “T -pattern” you see in the picture, made from the top edge and dotted
line. (This kind of T -pattern will be the star of our show.) Even if you stop
reading this article now, you should fold up a strip as in Figure 1 and ponder
it. It is a thing of great beauty and elegance.

The question is: Can you do better than this example? Informally speak-
ing, can you turn a 1× λ strip into a paper Moebius band if λ <

√
3? That

is what I proved: You cannot do better than
√

3. Also, if you make one out
of a 1×λ strip and λ is only slightly larger than

√
3 then the result will look

like Figure 1. In other words, the example in Figure 1 is uniquely the best
one. All of this was conjectured by Halpern and Weaver in 1977, though
Dmitry Fuchs tells me he thinks the conjecture is probably older.
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2 Representing a Paper Moebius Band

Even if we use strips of the same length – I mean longer than
√

3, the
length that forces Figure 2 – the paper Moebius band you make will not look
precisely like one I would make. The problem is that it is too floppy. What
you would like is a way to represent the thing by a planar diagram, much in
the way that a planar map of the earth represents the earth itself. The left
side of Figure 3 shows how this works.

1

Figure 3: The rectangle (left) and the Moebius band (right).

The picture on the left is a rectangle, but the arrows on the top and
bottom are supposed to explain how you tape up the ends to make the
Moebius band on the right. The top left endpoint gets taped up to the botton
right endpoint and the top right endpoint gets taped up to the bottom left
endpoint.

You should imagine that every time your left hand touches a point on
the left, your right hand touches the corresponding point on the right. Move
your left hand around and your right hand follows along. If you were to have
the right hand lead, then as your right hand approached the taped seam,
your left hand would go to either the top or the bottom of the rectangle.
Then as your right hand passed the seam you left hand would jump to the
opposite side. In this way, we’ll record spatial features of the actual Moebius
band with a planar diagram.

3



3 The Bends

Pick up your paper Moebius band and hold it up close to your face. Now
turn it around. If you turn it around just the right way, you’ll see a kind
of ridge that runs across it. This ridge is a perfectly straight line segment.
Find a ridge and run your fingers along it. Feel its straightness. I’ll call this
ridge – meaning a perfectly straight line segment on the Moebius band that
starts and ends on the boundary – a bend .

If you examine the Moebius band carefully, you will see that it has lots
of bends. In fact, every point lies on a bend and the bends kind of fill out
the Moebius band in the manner shown in Figures 1 and 3. The bends live
on the actual 3D Moebius band. I’ll call the corresponding line segments on
the lefthand planar representation pre-bends . Each pre-bend has the same
length as its corresponding bend.

Now imagine a kind of movie that works like this. Turn out the lights
and imagine that one of the pre-bends is lit up like a neon light. Let us say
it is yellow. The corresponding bend on the right is also lit up in neon blue.
Now imagine that the pre-bend starts moving. You see this moving yellow
neon light going up the rectangle and then, when it gets to the top, jumping
back down in an instantaneous way.

What about on the right? You see this blue neon bend moving around in
space, a flying spinning thing. There are no jumps to the image on the right,
it just makes a continuous flight. When the blue bend makes one circuit
it comes back to its original location. However, something interesting has
happened, the two endpoints of the bend have switched. It has turned over,
so to speak.

You can try this for yourself. Find a bend on your Moebius band and
start mentally tracking it as it moves around. Use a pen or pencil to draw
it. Now trace what happens when you go all the way around. You will see
the turnover I am talking about.

Now think again about the movie of the blue neon light. At some point
during the movie, the blue bend is turned “halfway”. It is perpendicular to
its original location. The bends themselves might not lie in the same plane,
but if you looked down on them, so to speak, and then extended them into
lines, the lines would be perpendicular. Let’s call two bends partners if they
are turned half way around from each other. Each bend has at least one
partner, thanks to the turnover property. A bend could have more than one
partner – this will come up again later on in the discussion.
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4 T Patterns

Recall that partner bends are two bends whose directions are perpendicular.
Let us call the pair of partner bends a T -pattern if they lie in the same
plane. In Figure 2, the dotted line segment and the top edge make a T -
pattern. The first step in my proof is showing that every sufficiently short
paper Moebius band has a T -pattern. I’ll sketch the proof in this section
given some simplifying assumptions. The real proof in the paper takes care
of these fine points.

Each pair of partner bends also defines a pair of parallel planes. One
bend is contained in one plane and one bend is contained in the other plane.
(One way to see these planes is to rotate space so that one of the partner
bends points along the X-axis and the other points along the Y -axis. Then
the two planes I am talking about are parallel to the XY plane.) Though
these planes are parallel, they might not coincide. If they did coincide then
the bends would make the T -pattern. Let’s color these planes red and green.
Let’s say that the red plane is above the green plane.

For simplicity let’s assume that each bend has a unique partner bend.
Our blue bend, we have a second bend, which is the partner. Now we forget
the blue bend and consider the red and green planes. As the blue bend
moves, the red and green planes move. We have flying red and green planes,
moving around like the wings of a dichrome butterfly. The wings stay parallel
to each other and they sort of beat in and out. Now let’s shorten the movie
so that the initial blue bend does not go all the way around but rather only
travels to the location of its partner and then stops. Let’s rotate the picture
so that the planes are horizontal at the start of the movie. What happens
at the end of the movie? The two planes have interchanged! The plane that
once contained the bend we are following now contains the partner.

How can this happen? There are two ways. One way is that the planes
could stay distinct from each other and turn over. You should picture our
butterfly doing a kind of corkscrew twist. The other way is that the planes
must penetrate each other. At the instant of penetration they coincide, and
this gives us a T -pattern.

We just have to rule out the turn-over option. Well, the planes start out
horizontal and at the end are horizontal again. The turnover option takes a
lot of length to execute – in fact more than 7π/12 units of length, a number
larger than

√
3. If we had a paper Moebius band whose length was anywhere

near
√

3, the turnover option cannot happen and so the T -pattern exists.
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5 The Triangle

Our T -pattern lives in some plane, and we’ll rotate the picture so that we are
looking down on it. Let B′ and T ′ be the bends comprising the T -pattern.
Consider the following two statements.

1. The line extending T ′ does not touch B′.

2. The line extending B′ does not touch T ′.

At least one of these statements is true, or they both could be true. In either
case we can switch the names of B′ and T ′, if needed, to arrange that the
first statement is true. Now we rotate the picture so that B′ is vertical and
T ′ is horizontal. Since statement 1 is true, either B′ lies entirely above the
line extending T ′, or else entirely below it. I’ll rotate the picture so that B′

is below, which makes B′ and T ′ look like a T .

T'

B'

Figure 4: The T pattern and the triangle ∆.

Figure 4 shows a triangle ∆ that is defined by the endpoints of T ′ and B′.
How big is the perimeter of ∆. Well, B′ and T ′ have length at least 1, and
it turns out that the perimeter is as small as possible when both segments
have length 1 exactly and they make a perfect T . That is, ∆ should be an
isosceles triangle of base 1 and height 1. The perimeter of this particular
triangle is 2φ, twice the golden ratio.

Finally, Figure 4 shows how the boundary of our Moebius band sits with
respect to the T -pattern. This red loop lives in space but it touches our plane
at least at the vertices of the bends B′ and T ′. In particular, it contains the
∆ vertices. Therefore, the boundary of the Moebius band is at least as long
as the perimeter of ∆. At the same time, if you look at the rectangle picture
in Figure 2 you can see that the length of the boundary is 2λ. We have
therefore proved that λ ≥ φ. This is already an improvement over what had
been known.
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6 Cutting it Open

Let us cut open our Moebius band along B, the pre-bend corresponding to
B′. So, pick up your paper Moebius band and cut it across, in a straight
line, preferable at some angle to the boundary. What do you get? You get a
trapezoid, as shown on the left side Figure 5. The colored vertices indicate
the way you would tape this thing back together. The red vertices are taped
together and so are the yellow ones. The blue and green vertices are just
sitting there.
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Figure 5: All the quantities you need to know.

I’ve drawn one of 4 basic pictures you could draw. In some of the other
pictures, B slants downward on the bottom and upward at the top. In some
of the other pictures, T slants upwards. It turns out that the calculations
work out the same way for all possibilities. The formulas are all the same.
This one is easiest on the eyes when you want to calculate things.

For example,
`(D2) = `(H2) + t+ b. (1)

If you define (−t) to be the slope of T and b to be the slope of the bottom
choice of B, then this formula works however the picture is drawn. Here `
stands for length. Another one of these formulas is

`(D1) = `(H1) + t− b. (2)
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7 Going in for the Kill

Here are some more formulas.

`(T ′) = `(T ) =
√

1 + t2. (3)

It turns out that the perimeter of a triangle (like ∆) having base
√

1 + t2

and height at least 1 is at least

P (t) =
√

1 + t2 +
√

5 + t2. (4)

Also the sum of the two diagonal sides of ∆ is at least
√

5 + t2.
The length of the boundary of the Moebius band is

`(D1) + `(D2) + `(H1) + `(H2) = 2`(D1) + 2`(D2)− 2t. (5)

As the same time the combined length of D1 and D2 is at least the length
of the non-diagonal sides. Putting everything together. The length of the
boundary is at least 2

√
5 + t2 − 2t. Remembering that this is 2λ, we have:

λ ≥
√

5 + t2 − t. (6)

To make the argument easier I’ll just prove that λ ≥
√

3. I’ll let you worry
about why the case of equality cannot occur. I’ll argue by contradiction. So,
I’ll assume that λ <

√
3 and something will go wrong. If λ <

√
3 then

√
5 + t2 − t <

√
3. (7)

Adding t from both sides, squaring both sides, then simpifying, we discover
that this inequality implies that t > 1/

√
3.

The function P (t) gets larger as t increases. Since t > 1/
√

3, the perimeter
of ∆ is greater than P (1/

√
3). But – and here is the moment of truth – we

have
P (1/

√
3) = 2

√
3. (8)

Remembering that 2λ is at least the perimeter of ∆ we see that 2λ > 2
√

3.
This is to say that λ >

√
3. This contradicts our assumption that λ <

√
3.

We’re done here.
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