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1 The Main Results

Let P be a twisted n-gon with corner invariants ..., x1, x2, .... This sequence
has period 2n. Let Ω1 be the monodromy matrix associated to P and let Ω2

be the dual monodromy matrix. We have the formulas

Ω1 =
(
∑[n/2]

k=0 Ok)
3

O2
nEn

; Ω2 =
(
∑[n/2]

k=0 Ek)
3

E2
nOn

. (1)

Here [n/2] is the floor of n/2. For convenience, we always take n even so that
[n/2] = n/2. The polynomials O1, E1, O2, E2... are the monodromy invari-

ants . The terms of Ok and Ek are homogeneous polynomials respectively of
weight −k and k relative to a scaling operation. See Equation 2 below.

We wish to consider these invariants for (closed) Poncelet polygons. We
will consider two poncelet polygons P and P ′ from the same family. This
means that P and P ′ are both inscribed in a conic C1 and superscribed
about another conic C2. We usually take C1 to be the unit circle (or its
complexification). We only consider the generic case, when C1 and C2 are in
general position. In this case, we call P and P ′ related. Our purpose is to
prove the following result.

Theorem 1.1 If P and P ′ are related Poncelet n-gons then Ok(P ) = Ok(P
′)

and Ek(P ) = Ek(P
′) for k = 1, ..., (n/2), n.
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The result also holds in the odd case, and the proof is similar. We treat
the even case just for convenience. We will deduce Theorem 1.1 from two
lemmas. The first lemma is a special case of Theorem 1.1.

Lemma 1.2 En(P ′) = En(P ) and On(P ) = On(P ).

The second lemma involves the scaling operation we mentioned above.
For t ∈ R, let Pt denote the twisted n-gon with invariants

...tx0, t
−1x1, tx2, t

−1x3...,

normalized so that Vt(j) = V (j) for j = 1, 2, 3, 4. Here V (j) is the jth vertex
of P and Vt(j) is the jth vertex of Pt.

Lemma 1.3 There are infinite many values t for which Ω1(Pt) = Ω1(P
′

t )
and Ω2(Pt) = Ω2(P

′

t ).

Proof of Theorem 1.1: Let t be any of the values from Lemma 1.3. We
have the general homogeneity relations:

Ek(Pt) = tkEn(P ); Ok(Pt) = t−kOk(P ). (2)

Lemma 1.2 combines with Equation 2 to give

En(Pt) = En(P ′

t ); On(Pt) = On(P
′

t ). (3)

Combining Equations 1, Equation 2, Equation 3, and Lemma 1.3, we have

n/2∑

k=1

tk
(
Ek(P ) − Ek(P

′)
)

= 0, (4)

for all t near 1. But then we have a polynomial with infinitely many roots.
Hence, all the coefficients are 0. That is, Ek(P ) = Ek(P

′) for all k. Similarly
Ok(P ) = Ok(P

′) for all k. ♠

We will prove Lemmas 1.2 and 1.3 by the same technique, which we now
describe. The idea is to complexify. Over C, the set of Poncelet polygons
related to P is parametrized by a complex torus T . One identifies the points
on T with flags (p, L), where p ∈ C1 and L is a line through p and tangent
to C2. There are two kinds of Poncelet polygons in this family, ordinary and
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degenerate. The ordinary Poncelet polygons are those consisting of n distinct
points in general position. The rest of the polygons we call degenerate.
(Below we will analyze the structure in detail.) We classify the points of T

as ordinary and degenerate, according to the type of polygon they correspond
to. There are finitely many degenerate points.

Let f : T → C denote the function f(z) = En(P z). Here P z is the
Poncelet polygon whose 1st and 2nd vertices determine the flag associated
to z. The vertex of the flag is V z(1) and the line contains V z(1) and V z(2).
The function f is a rational function on T . By this we mean that f is
holomorphic away from the degenerate points of T , and f has a Laurent series
in the neighborhood of each degenerate point. That is, f has no essential
singularities. We will prove the following result.

Lemma 1.4 For each degenerate point z ∈ T there is a sequence {zj} of

ordinary points such that zj → z and {f(zj)} is bounded.

Since f is a rational function, Lemma 1.4 implies that f has no poles on T .
Hence f is constant. This proves Lemma 1.2.

We will take a similar approach to Lemma 1.3. There is an action of Dn,
the order 2n dihedral group, on T , such that the orbits are exactly the flags
corresponding to Poncelet polygons. We describe this action below in detail.
We call two points of T equivalent if they are in the same Dn orbit.

Lemma 1.5 For each degenerate point z′ there is an eqivalent degenerate

point z with the following property. If t is sufficiently close to 1 then there is

a sequence {zj}, converging to z, such that

• P
zj

t exists.

• limj→∞ P
zj

t is a well-defined twisted n-gon.

Let gt(z) = Ω1(P
z
t ) and ht(z) = Ω2(p

z
t ). Lemma 1.5 covers one degenerate

point per equivalence class. Lemma 1.5 says that the functions gt and ht have
no poles at our special points. But the unordered pair {gt, ht} is constant on
Dn-orbits. Hence, gt and ht have no poles at all. Hence, these functions are
constant. This proves Lemma 1.3.

The rest of the paper is devoted to proving Lemmas 1.4 and 1.5.
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2 The Complex Picture

The complex torus T arises in the proof of the Poncelet porism. For = 1, 2
we have maps φj : T → Cj given by

φ1(z) = p; φ2(z) = L ∩ C2; z = (p, L). (5)

Both φ1 and φ2 are double branched-covers. The map φ1 is branched over
the 4 points of C1 ∩ C2. The map φ2 is branched over the points of x ∈ C2

such that the line tangent to C2 at x is also tangent to C1. There are 4 such
points.

There is some real plane X ⊂ CP
2 such that C1 ∩ C2 ⊂ X, and also all

common tangent lines lie in X. We can identify X with R
2. The picture

then looks like Figure 1.

Figure 1: all the branch points

The singular points of φj are the pre-images of the branch points. There
are 4 such points. When uniformized, T is obtained by gluing the opposite
sides of a rectangle in the obvious way. Referring to Figure 2, the black
points indicate the singular points of φ1 and the white points indicate the
singular points of φ2. Reflection in the vertical centerline swaps black and
white points. The dotted horizontal lines are φ−1

1 (C1). This well-known
structure is recalled in my paper on the Poncelet Grid. 1

1Our picture here differs from the one there only in that we are rotating the torus by

90 degrees so as to switch the roles played by horizontal and vertical.
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Figure 2: singular points

There is an involution Ij : T → T that commutes with φj . The involution
Ij fixes the singular points of φj. The group Dn = 〈I1, I2〉 is the dihedral
group of order 2n. The map φ1 maps the Dn-orbits to Poncelet polygons.
The Poncelet polygon is ordinary iff its image has n points. This happens
iff the orbit does not contain one of the singular points of φ1 or φ2. Thus,
there are 4n degenerate points. Each degenerate point is equivalent under
Dn to one of the singular points. 2n of these degenerate points lie on the
center horizontal line in Figure 2, hereafter called the centerline and denoted
by Ξ. The other 2n lie on the bottom/top horizontal edge of the rectangle.
By symmetry, it suffices to consider the ones on the centerline.

Figure 3 shows the degenerate points arranged along Ξ in case n = 4.
The endpoints of Ξ are identified, so that Ξ is really a circle. The degenerate
points on the Ξ are arranegd into two Dn-orbits. One of the orbits consists
of the black points and the other orbit consists of the white points. This
picture is representative of the even cases n. Referring to Lemma 1.5 we just
need to analyze these two special orbits.

Figure 3: degenerate points on the centerline

For the odd cases, the picture is a bit different, and for convenience we
ignore it.

5



3 Models for the Degenerations

We already mentioned that we only consider the case when n is even. As
another convenience, we take n large, say n > 100. The purpose of taking
n large is so that we can isolate the (two) parts of a degenerate Poncelet
polygon that cause us trouble.

Let Ξ denote the centerline of T . The map φ1 : Ξ → C1 is a 2-to-1
folding map. The two singular points on Ξ are mapped to the two upper
intersection points of C1 ∩ C2, and φ1(Ξ) is precisely the uppermost arc of
C1−C2. Outside any neighborhood U of the two singularities of φ1, the map
φ1 is CU -bilipschitz. Here CU depends on the neighborhood U . Here Ξ is
given its uniformized metric and C1 is given its usual metric.

We call the singular orbits on Ξ by O1 and O2. These orbits have the
following description.

1. O1 is the Dn-orbit of the 2-singularities of φ1 that lie on Ξ – the black
points in Figure 3. The restriction of φ1 to O1 is 2-to-1 on all but 2
points of this orbit. the image φ1(O1) consists of (n/2) + 1 points.

2. O2 is the Dn-orbit of the 2-singularities of φ2 that lie on Ξ – the white
points in Figure 3. In this case, φ1(O1) maps this orbit to C1 in a 2-to-1
fashion.

Given the folding nature of φ1, Figure 4 shows a fairly accurate picture of
one end of φ1(O1) and φ1(O2). The other end is the mirror reflection. The
points in the middle are not really of interest to us. In the first case, the
point labelled 5 is the branch point.

O O21

1 2
3

5
6 4

3
7

8

21

9 10 9 8
7

4

6
5

Figure 4: local picture of the degenerate polygons

For small ǫ, the Dn-orbit Oǫ
j that is ǫ away from Oj is obtained from Oj

by replacing each point of Oj by two points, on either side, that are 2ǫ apart.
The picture of φ1(O

ǫ
1) corresponding to Figure 4 is obtained by replacing the
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points commonly labelled (1, 9) (2, 8), (3, 7) and (4, 6) each by two points
that are between C−1ǫ and Cǫ apart. Here C is a positive constant that only
depends on n. For O2 the picture is similar, except that all points are split
apart. The estimate on the spacing comes from the bi-lipschitz nature of φ1

away from the singularities.
We find it convenient to apply a projective transformation that moves C1

to the standard parabola

Π = {(x, y)| y = x2} (6)

carries the rightmost points in our pictures to (0, 0). Such a projective trans-
formation is bi-lipschitz. To draw pictures in Π, we consider the projection
onto the first coordinate. Figure 6 shows a fairly accurate picture of one end
of (the renormalized image of) φ1(O

ǫ
j).

origin

4 6 73 82 915

12456 7 38 9 10

Figure 6: local model of the degenerations

The left endpoint is the origin. The only point we have not justified is
the ordering of the points in Figure 6. The order we have drawn follows
from the way Dn acts on Ξ. Alternatively, this order can be determined
experimentally in one case; then the order remains unchanged in all cases by
continuity. Again, we are showing the first coordinates of our points. They
really lie on the parabola Π. Whether we consider the points on Π or just
the first coordinates, the spacing between nearby points is between C−1ǫ and
Cǫ, and the spacing between all other pairs of points is at least C−1. Here
C only depends on n.

Figure 6 gives us our local model for the way the Poncelet polygons de-
generate at one end. The other end, halfway around in terms of the ordering
on the points, is similar. The points in the middle play little role in the
analysis, though sometimes we will have to consider these points in a very
general sort of way.
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4 Proof of Lemma 1.4

4.1 Reduction to Three Estimates

Let

χ(a, b, c, d) =
(a − b)(c − d)

(a − c)(b − d)
. (7)

Here χ is the inverse of the cross ratio. We define the corner invariants of
interest to us by example.

χ1 = χ(V (1), V (2), L(12) ∩ L(34), L(12) ∩ L(45)) (8)

Here L(ij) is the line through V (i) and V (j). The corner invariant χ2 is
obtained by shifting all indices by 1. And so one. Our function En is the
product

∏
χj .

For ease of exposition, we will just consider the orbits Oǫ
1. The orbits Oǫ

2

have an almost identical treatment. Referring to our model in Figure 6, we
just have to show that χ2χ3χ4 remains bounded as ǫ → 0. For other nearby
indices, the corner invariants involve 5 points that remain in general position
even in the limit. The singularity at the other end has the same analysis.

4.2 The First Estimate

Figure 7 shows the situation for χ2. This invariant computes the inverse
cross ratio χ(a, b, c, d). From our model, we get

‖c − d‖ = O(ǫ); ‖x − y‖ = O(1); x ∈ {a, b} y ∈ {c, d}. (9)

Hence χ2 = O(ǫ). Our notation f = O(g) means that f/g lies between two
positive constants that depend only on n.
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2(a)

c

3(b)

5

4
6

d

L(23)
Figure 7: Estimating χ2.

4.3 The Second Estimate

Figure 8 shows the situation for χ3. The points of interest to us are

a = V (3); b = V (4); c = L(56) ∩ L(34); d = L(67) ∩ L(34).

The (inverse) cross ratio is taken in the order we have listed the points. There
is an O(1)-bilipschitz projective map that carries V (3), V (7), V (4), V (6) to
the vertices of a rectangle. (We mean that the transformation is O(1)-
bilipschitz on the convex hull of these points.) From this, we conclude that

‖d − b‖ = O(1); ‖d − a‖ = O(1).

But then ‖d − c‖ = O(1) as well. Also, ‖a − b‖ = O(1) and ‖a − c‖ = O(1).
Hence χ3 = O(1).
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d
7

L(34)
c

3(a)

6
5

4(b)

Figure 8: Estimating χ3.

More is true in this case, since ‖b − c‖ = O(ǫ) we conclude that

∣∣∣1 −
‖a − b‖

‖a − c‖

∣∣∣ = O(ǫ);
∣∣∣1 −

‖d − b‖

‖d − c‖

∣∣∣ = O(ǫ).

From this, we see that ∣∣∣1 − χ3(P
ǫ)

∣∣∣ = O(ǫ). (10)

4.4 The Third Estimate

Figure 9 shows the situation for χ4. The points of interest to us, in order,
are

a = V (4); b = V (5); c = L(67) ∩ L(45); d = L(68) ∩ L(45).
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In the same sense as the previous case, there is a uniformly bilipschitz pro-
jective map that carries V (5), V (6), V (4), V (7) to a trapezoid whose 3 long
sides have length 1 and whose short side has length ǫ. From this, we get

‖c − a‖ = O(ǫ). (11)

Consider the triangle (V (4), V (7), d). The small angles of this triangle are
all O(1). Also, one side of this triangle, namely the one connecting V (4) to
V (7), has length O(1). Hence all sides have length O(1). In particular,

‖d − a‖ = O(1) (12)

But then we have ‖c−d‖ = O(1) and ‖b−d‖ = O(1). Finally, ‖b−a‖ = O(1).
Hence χ4 = O(ǫ−1).

L(45)

5(b)

dc

4(a)
7

8

6
Figure 9: Estimating χ4.

Putting everything together, and slightly abusing the notation, we have

χ2χ3χ4 = O(ǫ)O(1)O(ǫ−1) = O(1).

This completes the proof of Lemma 1.2.
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5 Variation of Pentagons

As preparation for proving Lemma 1.5, we establish a fact about the corner
invariants. Given a pentagon with vertices V (1), ..., V (5), we define

χ+
1 = χ(V (1), V (2), L(12) ∩ L(34), L(12) ∩ L(45)) (13)

χ−

5 = χ(V (5), V (4), L(54) ∩ L(32), L(54) ∩ L(21)) (14)

We now consider a family {Pt} of pentagons with t a parameter near 1.

Lemma 5.1 Let P be a strictly convex pentagon and let {Pn} be a sequence

of strictly convex pentagons such that

1. Vn(k) → V (k) for k = 1, 2, 3, 4.

2. χ+
1 (Pn) → χ+

1 (P )

3. χ−

5 (Pn) → χ−

5 (P )

Then Vn(5) → V (5)

Proof: We normalize so that the vertices V (1), V (2), V (4), V (5) are the ver-
tices of a unit square, as in Figure 10. Let Tn be a projective transformation
such that Tn(Vn(k)) = V (k) for k = 1, 2, 4, 5. Referring to Figure 10, we have

a = χ+
1 ; b = χ−

5

But a and b determine the location of V (3). From these facts, and from our
hypotheses, we see that Tn(Vn(3)) → V (3).

Now we see that Vn(k) → V (k) for k = 1, 2, 3, 4 and Tn(Vn(k)) → V (k)
for k = 1, 2, 3, 4. Since these points are all in general position, this forces
Tn → I, the identity transformation. Hence Pn → P . ♠

T

n

3
2

45

1
a

n

b

Figure 10: compactness argument
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5.1 Lemma 1.5 Modulo a Detail

We fix some large value of n. As in the proof of Lemma 1.4, we will just
deal with the degenerations associated to the orbit O1. The proof for the
degenerations associated to O2 is essentially the same.

Let P ǫ denote the Poncelet polygon associated to the perturbed orbit Oǫ
1.

In constructing P ǫ
t we normalize so that the vertices labelled 2, 3, 4, 5 are in-

dependent of t. Let P denote the degenerate Poncelet polygon corresponding
to ǫ = 0. We use our model from Figure 6. The purpose of this section is to
prove the following result

Lemma 5.2 (Variation) Suppose that {(ǫn, tn)} is any sequence converging

to (0, 1). Then

V ǫn

tn (k) → V (k); k = 6, 7, 8

We prove this result in the next section. In the following lemma, we take
the indices mod n on the right hand side of the main equation.

Corollary 5.3 Suppose that {(ǫn, tn)} is any sequence converging to (0, 1).
Then

V ǫn

tn (k) → V ([k]); k ≥ 6.

Proof: Let χ+
k = χk, the invariants we considered in the proof of Lemma

1.4. We let χ−

−k denote the invariant obtained by negating all the indices
used in the definition of χ+

k . Then χ+
k and χ−

k To summarize our proof of
Lemma 1.4, we showed

χ+
2 (P ǫ

1 = O(ǫ); χ+
4 (P ǫ

1 = O(ǫ−1) (15)

and χ+
k (P ǫ

1) = O(1) for all nearby k. The same argument shows that

χ−

6 (P ǫ
1) = O(ǫ−1); χ−

8 (P ǫ
1) = O(ǫ) (16)

and χ−

k = O(1) for all nearby k. For convenience, we repeat the relevant half
of Figure 6.

5 4 6 73 82 91

Figure 11: local model of the degeneration
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For convenience, we use the notation

Vn(k) = V ǫ
tn(k).

We focus our attention on the pentagon

Vn(5), ..., Vn(9) (17)

From the Variation Lemma and our normalization, which takes care of Vn(5),
we see that Vn(k) → V (k) for k = 5, 6, 7, 8. The pentagon made from V (k)
for k = 5, 6, 7, 8, 9 is strictly convex, and both χ+

5 (P ǫ) and χ−

9 (P ǫ) exist, are
finite, and are continuous at ǫ = 0. Hence

χ+
5 (Pn) → χ+

5 (P ); χ−

9 (Pn) → χ−

9 (P ).

By Lemma 5.1, we now see that the conclusion of the Variation Lemma holds
for k = 9.

Now we can repeat this argument, shifting the indices by 1. hence, the
conclusion of the Variation Lemma holds for k = 10. Continuing in this way,
we see that Variation Lemma holds for all k = 5, ..., (n/2) + 5.

We have made our analysis under the assumption that the vertices Vn(k)
are fixed, for k = 2, 3, 4, 5. However, we would get the same conclusion is
these vertices varied in a way such that Vn(k) → V (k) for k = 2, 3, 4, 5. We
could adjust the picture, for each n, by a projective transformation Tn that
converges to the identity.

We have established that

Vn(k + n/2) → V (k + n/2); k = 2, 3, 4, 5

Our analysis in the proof of Lemma 1.4 works equally well for the degeneracy
corresponding to the index (n/2)+5. We conclude that the Variation Lemma
holds when we shift indices by n/2. But then we can repeat our argument
above. We conclude that the Variation Lemma holds for k = (n/2)+6, ...n+5.
Now we can repeat the argument and take care of the next n/2 vertices, and
so on. ♠

Proof of Lemma 1.5: If Lemma 1.5 is false, then for every ǫ > 0, we can
find some t, arbitrarily close to 1, such that P ǫ

t does not converge to P on
the first n vertices. But the contradicts the result we just established. This
proves Lemma 1.5 modulo the Variation Lemma. ♠
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6 Some Auxilliary Cross Ratios

We need to understand the geometry of some of other cross ratios before
making out estimate. Let sij denote the slope of the line contaiing V (i) and
V (j). Let

χ̂5 = χ(s35, s45, s65, s75). (18)

Normalizing as in Lemma 5.1, we compute easily that

χ̂5 = χ+
3 χ−

7 . (19)

Therefore
χ̂(P ǫ

t ) = χ̂(P ǫ). (20)

This particular invariant does not change under the rescaling. Equation 10
says that χ+

3 (P ǫ) → 1 as ǫ → 0. The symmetric argument gives the same
result for χ−

7 (P ǫ). Hence χ̂5(P
ǫ) → 1 as ǫ → 0.

Lemma 6.1 χ̂5(P
ǫ) < Cǫ2 for some constant C that only depends on n.

Proof: Let T denote the complex torus of flags, constructed above. Let
τ(z) denote the function that computes the first corner invariant of P z, the
Poncelet polygon corresponding to z. We put local coordinates on the cen-
terline so that it is the x-axis, and the black singular point corresponds to 0.
From the way we have set things up, we have

χ+
3 (P ǫ) = τ(ǫ); χ−

7 (P ǫ) = τ(−ǫ).

Therefore
χ̂5(P

ǫ) = τ(ǫ)τ(1 − ǫ).

Equation 10 says that we can write the Taylor series expansion

τ(z) = 1 + C1z + C2z
2 + ...

Therefore

τ(ǫ) = 1 + C1ǫ + C2ǫ
2...; τ(−ǫ) = 1 − C1ǫ + C2ǫ

2...

Multiplying these two expressions, the coefficient of ǫ cancels, and we get

τ(ǫ)τ(−ǫ) = 1 + C ′

2ǫ
2 + C ′

3ǫ
3...

This proves what we want. ♠
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7 Proof of the Variation Lemma

7.1 The First Estimate

We treat the case k = 6 of the Variation Lemma. First of all, we have

χ̂4(Pn) = χ̂4(P
zn

tn ) = χ̂4(P
zn). (21)

The first equality is just a definition. The second one says that the given
cross ratio is independent of t.

It follows from Equation 21 that

Ln(4, 6) → L(46). (22)

Here L(46) is the tangent line to the parabola Π at V (4) = V (6). Referring
to Figure 12, the points cn and cn depend on n. But χ+

2 (Pn) = tnǫn → ǫn.
But this forces

‖Vn(6) − V (6)‖

‖V (6) − V (4)‖
→ 0 ‖Vn(6) − V (4)‖ = O(ǫn). (23)

The first equation implies the second. The second restates the Variation
Lemma for k = 6.

2(a)

c

3(b)

5

4
6

d

L(23)
Figure 12: Estimating χ2.
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7.2 The Second Estimate

Now we consider the case k = 7 of the Variation Lemma. We will establish
two results.

1. As n → ∞, the line Ln(67) converge to the line L(67).

2. As n → ∞, the line Ln(57) converge to the line L(57).

Since the limiting lines have different slopes, and intersect only at V (7), these
two results combine to say that Vn(7) → V (7).

d
7

L(34)
c

3(a)

6
5

4(b)

Figure 13: The relevant points

The first statement above uses Figure 8, which we repeat here as Figure
13. From our analysis of the case k = 6, we get

‖Vn(6)−V (4)‖ = O(ǫn); Ln(64) → L(64); Ln(63) → L(63). (24)
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Suppose that Ln(67) 6→ L(67). Passing to a subsequence, we can assume

angle(Ln(67), Ln(63) > C

But, referring to Figure 13, this big angle combines with Equation 24 to give

‖d − c‖ = O(ǫn)

But then χ+
3 (Pn) does not converge to 1. This contradicts Equation 10.

The second statement also uses Figure 13. We consider the cross ratio
from the previous subsection. We have

χ̂5(Pn) = O(ǫ2
n). (25)

It follows from our analysis in the case k = 6 that

angle
(
Ln(45), Ln(56)

)
= O(ǫn). (26)

The first of these lines is independent of n. Suppose that Ln(57) 6→ L(57).
Passing to a subsequence, we can assume

angle(Ln(57), Ln(53) > C

But then
χ̂5(Pn) > Cǫn,

contradicting Equation 25.

7.3 The Third Estimate

Now we consider the case k = 8 of the Variation Lemma. We will establish
two results.

1. As n → ∞, the line Ln(68) converge to the line L(68).

2. As n → ∞, the line Ln(78) converge to the line L(78).

Since the limiting lines have different slopes, and intersect only at V (8), these
two results combine to say that Vn(8) → V (8).

Our arguments refer to Figure 9, which we reproduce here as Figure 14.
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L(45)

5(b)

dc

4(a)
7

8

6
Figure 14: The relevant points

For the first statement, note that χ̂6(P ) exists because the lines L(6k)
are distinct for k = 4, 5, 7, 8. Moreover,

χ̂6(Pn) =→ χ̂6(P ); Ln(6k) → L(6k); k = 4, 5, 7. (27)

This forces Ln(68) → L(68).
The last estimate is delicate. We consider the cross ratio χ+

4 (Pn), as
shown in Figure 14. In Figure 14, the points a and b are independent of n
and c = cn and d = dn depend on n. To show that Ln(78) → L(78) it suffices
to show that dn → d. We introduce the auxilliary points

c′n = c(P ǫn); d′

n = d(P ǫn). (28)

That is, we reconsider the picture when tn is replaced by 1. Since d′

n → d, it
suffices to prove that

(‖dn − b‖

‖dn − c‖

)/(‖d′

n − b‖

‖d′

n − c‖

)
→ 0. (29)
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Since tn → 1, we have
χ+

4 (P ǫn)

χ+
4 (Pn)

→ 1. (30)

Recalling the definition of these invariants, and recalling that a and b are
independent of n, we see that Equation 29 is equivalent to the statement
that

‖cn − a‖

‖c′n − a‖
→ 1. (31)

This last equation follows from elementary geometry and three basic facts.

1. L(45) and L(67) are not parallel.

2. Letting V ′

n(7) denote Vertex 7 for P ǫn, we have

‖V ′

n(7) − Vn(7)‖

‖Vn(7) − Vn(4)‖
→ 0.

3.
‖V ′

n(6) − Vn(6)‖

‖Vn(6) − Vn(4)‖
→ 0.

This completes our proof.
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