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Abstract

The evolute of a curve is the envelope of its normals. In this note
we consider a projectively natural discrete analog of this construction:
we define projective perpendicular bisectors of the sides of a polygon
in the projective plane, and study the map that sends a polygon to the
new polygon formed by the projective perpendicular bisectors of its
sides. We consider this map acting on the moduli space of projective
polygons.

We analyze the case of pentagons; the moduli space is 2-dimensional
in this case. The second iteration of the map has one integral whose
level curves are cubic curves, and the transformation on these level
curves is conjugated to the map x — —4x mod 1. We also present the
results of an experimental study in the case of hexagons.

1 Introduction

Given a k-sided polygon P, we define the projective normals nq,...,n; by
the construction shown in Figure 1 for £ = 5. Figure 1 just shows the
construction of n; but the other normals are constructed similarly.
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Figure 1: Constructing the projective normals

We get a new polygon T'(P) whose vertices are ny N ng, ny N ng, etc. Figure
2 shows an example.

Figure 2: P in black and T'(P) in blue.

The map T is projectively natural, since it is defined entirely in terms of
lines and their intersections. If P and () are projectively equivalent polygons,
then so are T'(P) and T'(Q)). In particular, the map 7" is well defined on the
moduli space M, of projective equivalence classes of k-gons in the projective
plane.

The case k = 5 is the first nontrivial case. It is specially attractive because
Ms is just 2 dimensional. On Mjs, the map 7?2 has a nicer action than 7. In



this note we will describe structural algebraic properties of 72 on Ms and
also describe the dynamics. We work over the reals.

Theorem 1.1 The map T? acts on Ms(R) in such a way as to preserve
a pencil of elliptic curves given by a single invariant rational function, I.

Moreover, T? is conformal-symplectic in the sense that there is an area form
w on My such that (T?)*(w) = —4w.

See Equations 3 and 4 for I and w respectively.

Theorem 1.2 The map T? preserves each unbounded component of each
invariant elliptic curve, and the restriction of T? to such a component, upon
completion, is conjugate to the map x — —4x on the circle R/ Z.

By unbounded we mean that the component intersects the affine plane
R? in an unbounded set. The level sets all have one unbounded component
and sometimes they have a bounded component as well. See Lemma 3.2 for
a precise statement. When there is also a bounded component, 72 maps the
bounded component to the unbounded component. The bounded compo-
nents consist of pentagons which are either convex or star-convex. See the
remark at the end of §3.1. Figure 2 shows this phenomenon in action: P is
convex and T'(P) is not. This situation explains how T2 “blows up” around
the regular pentagon. A nearly regular pentagon lies on a tiny bounded level
set, and then T2 stretches this tiny set all the way around the big unbounded
component.

Our motivation for studying 7" is two-fold. On the one hand, in [1] two of
us studied the dynamics of a related map defined in terms of the perpendic-
ular bisectors of the sides of P. This Euclidean-geometry construction is a
discrete analogue of the map that sends a smooth curve to its evolute. So, we
view the map here as a projectively natural analogue of the discrete evolute
map. On the other hand, in [5] one of us studied the map which sends the
polygon P to the new polygon P# whose vertices (referring to Figure 1) are
the intersection points n; Nej, ng MNesy,.... We called this map the projective
heat map to bring out some analogy with discrete heat flow.

In §2 we prove Theorem 1.1. We first derive the equation for the map
T in the most straightforward way. We then give a more general derivation
which relates nicely to Frieze patterns and cluster algebras and explains the
conformal symplectic nature of the map in conceptual terms. This second
derivation is not needed for the proof of Theorem 1.2 however.



In §3 we prove Theorem 1.2. This amounts to an analysis of the pencil
of elliptic curves and the geometry imposed on them by the pair (7,w).

In §4 we have a brief discussion of what we see for polygons with an even
number of sides, concentrating on hexagons.

2 Algebraic Structure

2.1 A Formula for the Map

Let RP? denote the real projective plane. The point [a : b : ¢] € RP?
denotes the scale equivalence class of vectors (ra,rb,rc) with r € R — {0}.
Dually, [a : b : ¢]| also represents the line given by ax + by + ¢z = 0. The
cross product (ag, by, c1) X (ag, by, c2) naturally represents the line through
lay : by 1 1] and [ag : bs @ co]. Dually, if these objects are interpreted as lines,
then the cross product represents their intersection.

The non-singular linear transformations induce automorphisms of RP?
which map lines to lines. These automorphisms are called projective trans-
formations. The projective transformations act simply transitively on the
set of general position 4-tuples of points.

Each element of M5 is uniquely projectively equivalent to one with vertices
Vi, ..., V5 given by

0:—-1:1], [1:0:0], [0:1:0], [-1:0:1], [z:y:1]. (1)
We call this equivalence class P(z,y). Let

n(Vi, Vo, V3, Vi) =V x V3,
Vi = (V1 x V) x (Vo x V),
Vo = (Vi x Vo) x (Vg x Vy).

Then n(Vi, Vo, V3, V) gives the vector representing the projective normal line
associated to the edge V5V5 of P. Let

Wl :n<‘/17‘/27‘/37‘/4)7 W2 :n(‘/Q7‘/é7‘/zl7‘/5)7

X1 =Wy x Wi, Xo = W3 x Wy,
The vectors Xj, ..., X5 represent the vertices of T'(P(z,vy)).



We normalize T'(P(x,y)) as in Equation 1 to get P(Z,7). We compute
that

(E_):( L+y)(+a—ay) (z—y*1+z+y) )
U+l —yrap(l+2—12) U+y—2)(1+z— 32 ’<2>
Our map is T'(z,y) = (T,7).

2.2 The Invariants

Some members of Ms are degenerate, namely the ones which have triples of
collinear points. In terms of our coordinates, this happens for the line at
infinity and for the lines

r+1=0, y+1=0, r+y+1=0, z =0, y = 0.

It turns out that a certain product of these defining equations is an invariant
for the map T?2. Define

Iry) = (x+1)(y+x1y)($+y+1)' 3)

A direct calculation in Mathematica shows that

I(a, ) I(7.7) = —1.

Hence I o T? = I. This is our invariant.
The conformally invariant area form is given by

1
w=—dzr A dy. (4)
Y

To verify this, we let J denote the Jacobian of T%. We compute that

W ay
This is equivalent to the statement that (7T?)*(w) = —4w.
This completes the proof of Theorem 1.1.




2.3 A Different Derivation

In this section we derive the equation for 7" in a different way. This derivation
is more elaborate, but it has two advantages. First, it generalizes more nicely
to polygons with more sides. Second, the derivation puts into perspective
the invariant quantities from Theorem 1.1, relating them to topics such as
the pentagram map and cluster algebras. This material is not needed for the
proof of Theorem 1.2.

It is convenient to work in R®. An n-gon in the projective plane can be
lifted to a polygon in R?. Such a lifting is not unique, but if n is not a multiple
of 3, we can normalize the lifting by requiring that the determinant of every
triple of its consecutive vertices equals 1, and this makes this lifting unique
(cf. [4], Proposition 4.1). We call the polygons satisfying this determinant
relation unimodular.

Let Pi...., P, be the vertices of the lifted unimodular n-gon. Since

det(Bfla P’ia PiJrl) =1

for all 7, we have
Piyo = ai1 Py — b P + Py, (5)

where a;, b; are two n-periodic sequences. These coordinates, a;, b;, are in-
variant under the diagonal action of SL(3, R) on polygons. The formulas
for the map given above are entirely in terms of cross products, so it make
sense to apply it to unimodular polygons. For the sake of getting the indices
correct, let us write it out again, using (P, @) in place of (V, X). We make
this change because the indices here are slightly different than the ones given
above.

Qi = [((P—2 X Pi_1) x (P, X P11)) x ((Pi—2 x B;) x (Pi—1 X Piy1))]
X[((Pi—1 X P) X (Pig1 X Pig2)) x ((P—1 X Pig1) X (B X Piy2))], (6)
From now on, we specialize to the case n = 5. In particular, we take
indices mod 5. Analogs of the three lemmas that follow exist for other values
of n not divisible by 3.
Since Mj is two-dimensional, the 10 coefficients a;, b;, t = 1,...,5, depend
on two parameters, as in Example 5.6 of [4].

Lemma 2.1 We have b; = a;y3, a; + 1 = a;10a;13.

6



Proof: Equation (5) implies
aip1 = det(Pi_1, Py, Piyo), b; = det(Pi_1, Pip1, Piyo),
therefore b; = a;;3. Also
Piy3 = (@ir2aip1 — biy1) Py + (1 — ai2bi) P + ai2 Py

Since det(P;y3, P;i_1, P;) = 1, we conclude that a;,2a;11 — b;11 = 1, therefore
a; +1 = ai2a;13. @

Set a3 = x,a; =y, then
1+y l+z+vy 1+=x
a4 = y A2 = —————, A5 = .
Y (Y
The coordinates x, y determine the projective equivalence class of a pentagon.
The numbers a; comprise the rows of a frieze pattern

1 1 1 1 1 1
. y+l ol sty+l
z+y+1 v v y+1 Y z+1 i
v T v R y
1 1 1 1 1 1

related to the Pentagramma Mirificum of Gauss, see [3].

Let {U;} be a (not necessarily unimodular) pentagon in R®. Let Q; =
t;U; be a rescaling, such that the pentagon () is unimodular. Set D; =
det(U;—1,U;, Uit1).

Lemma 2.2 One has

(L D)

t; = .
D; 1Dy
Proof: One needs to solve the system of five equations
.
tifltl'ti+1 = E, 1= 1,...,5,

which becomes a linear system after taking logarithms. Its solution is as
stated. &

The unimodular pentagon @) satisfies the recurrences
Qit2 = Git1Qit1 — biQ; + Qi1

where the coefficients satisfy the conditions of Lemma 2.1.
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Lemma 2.3 One has
_ det(Ui—1, Us, Uiya)
Qi1 = .
det(Ui—1, Uy, Uit1)

Proof: Since

A1 = det(Qi—1, Qi, Qiya) = ti_atitiyo det(Ui1, Ui, Uita),

the result follows by substituting the values of ¢; from from Lemma 2.2. &

Let  and ¥y denote the respective variables related to a; and b; as in
Lemma 2.1. We again write our map as T'(z,y) = (Z,y). A Mathematica
calculation using formula (6) and Lemma 2.3 yields the same equation for T’
as we got in Equation 2.

This alternate derivation puts the invariant quantities in perspective. The
integral I equals [[, a;. The product [], a; is a monodromy integral of the
pentagram map, see Example 5.6 in [4]. Curiously, we also can write

]:Zai—k?).

(]

This alternate form can be deduced from the relations from Lemma 2.1.

The symplectic form w is known in the theory of cluster algebras; the
spaces of frieze patterns of arbitrary width possess analogous (pre)symplectic
structures. The function I and the form w appeared in the study of the cross-
ratio dynamics on ideal polygons in [2]: in contrast with Theorem 1.1, both
are invariant under the cross-ratio dynamics in the case of ideal pentagons.
See Section 7.1.3 of [2].

3 The Dynamics
In this section we prove Theorem 1.2.

3.1 The Invariant Curves

For each real r, the map T? preserves the curve I(x,y) = r. The equation
for this curve is

(x+D(y+1)(x+y+1)—rzy =0. (7)
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This is an example of an elliptic curve. To understand it better, we homoge-
nize the curve and consider it as a projective variety in RP?. Homogenizing
Equation 7 we get:

Q(z,y,2) = v’y +ay® + 2?2+ y°2 + (3 — r)ayz + 2227 + 222 + 2%, (8)

Lemma 3.1 The elliptic curve in Equation 8 is nonsingular if r # 0 and

r# (11 £5/5)/2.

Proof: We consider the gradient. When z = 0 we have
VQ = (2xy + 32, 20y + 2%, (3 — r)ay + 2® + 7).

Suppose VQ = 0. If y = 0 then the second coordinate is x?, which forces
x = 0. Now assume that y # 0. Setting the first coordinate equal to 0, we get
xr = —y/2. But then the second coordinate is —3y?/4. This gives z =y = 0.
So, when z = (0 we have no singular points at all.

When z # 0 it suffices to set z = 1 and consider the gradient (Q.,Q,)
of the inhomogeneous equation. When z = 0 we have @, = 2 + 2y. This
vanishes only when y = —1. But then (), = r. This only vanishes if » = 0.
If x = —1 we have ), = r. Again this vanishes only if » = 0.

Let res(Q., @, y) denote the resultant of @, and @) with respect to y. Let

Rl = reS(Qx,Q,y), R2 = reS(QCU?Qay)‘

Since we have already analyzed the case x = —1, we can assume x + 1 # 0.
It turns out that x + 1 divides R; and R,, so we divide out by = 4+ 1 and
compute

res(Ry/(z + 1), Ry/(z + 1),2) = —r®(r* — 11r — 1)%

This only vanishes when 7 has one of the advertised values. #

Let E, be the level curve corresponding to the invariant I(z,y) = r. Let

~11£5V5
_T.

Here r_ ~ —.09 and r, ~ 11.09. Let R" = R — {0,r_,r,}. The set
{—1,—.05,1,12} intersects each connected component of R'. Figure 3 shows
plots of E, for r in this set.

T+
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Figure 3: E, for r = —1,—.05,1,12.

Lemma 3.2 For allr € R’ the curve E, has an unbounded component which
contains the points

[1:0:0], 0:1:0], [1:-1,0], [-1:0:1], [0:—=1:1]

and which is otherwise disjoint from the coordinate axes and the line at in-
finity. Whenr € (r_,0) the curve E, also has a bounded component that lies
in the (—, —) quadrant. When r € (ry,00) the curve E, also has a bounded
component that lies in the (+,+) quadrant.

Proof: We set (—1,0) = [-1:0: 1] and (0,—1) = [0: —1 : 1] for ease of
notation.
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We have Q(z,y,0) = zy(z +y), so E, intersects the line at infinity at the
three points [1: 0: 0] and [0:1:0] and [1: —1 : 0]. Now, the topological
type of E, cannot change, as a function of r, unless r passes through a value
where the curve is singular. Thus, the topological type does not change
within each of the 4 intervals of R'. We check, making an explicit plot for
each of these points, that the topology is as stated. Hence, it is always as
stated. See Figure 3.

We find that Q(0,y,1) = (1 + y)?. Hence Q(0,y,1) = 0 if and only if
y = —1. This means that our level sets intersect the z-axis only at (—1,0).
A similar argument establishes this result for the y-axis. When only the
unbounded components exist, they contain the points (—1,0) and (0, —1).
As r crosses into the regions which have bounded components, these compo-
nents appear at points that do not lie on the coordinate axes. So, at least
for some values in (r_,0) and (r, 00), it is the unbounded components that
contain these special points. But then the bounded components are always
contained in single quadrants. Two evaluations are sufficient to check that
the components are in the quadrants as stated. @

Remark: We reiterate what we said in introduction. The convex and star-
convex pentagon classes lie on the bounded components, and conversely the
bounded components consists of convex or star convex pentagon classes.
Thus, the unbounded components consist of projective classes of pentagons
which are neither convex nor star convex.

3.2 Intrinsic Boundedness

Let E be one of our elliptic curve level sets. Let X; denote the Hamiltonian
vector field with respect to the invariant I and the area form w. We get X7
by rotating VI by 90 degrees counterclockwise and then multiplying both
components by xy. That is

X, — ((1 +2)(1+z—9y?) 1+y)(-1 —y+x2))

Yy x
The vector field X is tangent to the level curves. If X is entirely defined
on some arc of a level set, X; defines a metric on this arc. The distance
between points on the arc is the time it takes to flow from one point to the
other along X;. More precisely, this defines a metric on all points of each
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nonsingular level curve away from the points (—1,0) and (0, —1), which are
the only points where the level curves intersect the coordinate axes.

Each bounded component B is disjoint from the coordinate axes and VI
is nonzero at all points of B. (This follows from the quotient rule and from
the non-singularity of B.) But then X is entirely defined and nonzero on B.
Hence B is isometric to R/AZ for some A that depends on the level set.

Now let us consider some unbounded component U. The vector field X;
is defined and nonzero at all points of U N R? except (—1,0) and (0, —1).
Since U has 3 points at infinity, our construction gives us a metric on U away
from 5 points. We show that this metric is bounded, so that the completion
is again isometric to R/AZ for some A that depends on the parameter. We
treat the points in turn.

Case 1: Consider the picture near (—1,0). We are going to restrict X;
to U and see what happens as we approach (—1,0). The z-axis is tangent
to U at (—1,0) and also intersects U at the point [1 : 0 : 0]. Since the
z-axis can only intersect U three times, counting multiplicity, we see that U
cannot have an inflection point at (0,0). So, we may write x = u — 1 and
y = au® + B(u)ud. Here a is a nonzero constant and 3 is a function that
remains bounded as u — 0. With these substitutions, we find that

1

A= T a1 B

2
5 X (1—2u—|—0(u )).
But this means that || X;|| — 1/|a| as u — 0.

Case 2: The argument for (0,—1) is the same as Case 1.

Case 3: Consider the picture near the point [1 : 0 : 0]. If we stay on
the level set E,. we have x — oo and y — —1. We have

25 + P(x,y)

Xr-X;=

I

where P(x,y) is a polynomial whose largest degree in x is 5. Therefore, as
we approach [1: 0 : 0] along E,, we have || X;|| ~ z* along E,. Starting near
the point (n, —1) we reach a point near (n + 1,—1) in 1/n? units of time,
Since Y 1/n? is a convergent series, we reach [1 : 0 : 0] by flowing along X;
for a finite time.

12



Case 4: The argument for [0 : 1: 0] is the same as Case 3.

Case 5: Consider the picture near the point [1 : —1 : 0]. If we stay on
the level set F, we have x +y+ 1 — r. This time we have |z|/|y| — 1 as we
approach [1: —1:0]. We have

22y + P(z,y)

X X; =
I I x2y2

)

where P is a polynomial whose monomials have maximum degree 7. From
this we see that again || X;|| ~ z* as we approach [1 : —1: 0] along E,. The
same analysis as in Case 3 works here.

This completes the analysis. Now we know that each component of FE,
has a metric completion which is isometric to R/AZ for some constant A
that depends on the value of r. In case E, works for both components, we
guess that the same A works for both but we don’t know how to prove this.

3.3 The Dynamics

We will prove Theorem 1.2 with respect to the space R/AZ. The final
conjugacy to R/Z is given by a similarity.

We first consider the cases when r € (—oo,7_) U (0,7,). In this case,
there is only the unbounded component to worry about. The vector field X;
gives a metric to F, which (upon completion) makes it isometric to R/\Z.
The map T2 preserves the level sets and multiplies the area form by —4.
From this we see that the differential d(T?) maps X; to —4X7.

Let ¢ : E. — R/\Z be an isometry. Consider the conjugate map

m=1oT?ot¢p ' : RINZ — R/)\Z.

From what we have just said, 75 acts as multiplication by —4 wherever it is
defined. Moreover, 7, is defined on all but finitely many points of R/A\Z.

The subset of R/\Z where 75 is defined is not connected; it consists of
a finite number of intervals. On each interval 75 acts as multiplication by
—4. We want to see that 75 is continuous across these undefined points. It
is more convenient to show that 72 is continuous across the points where it
is not defined. This is the same thing.
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Let ¢ be some point in E, where T2 is not defined. Let J C E, be some
small interval containing & such that T2 is entirely defined on J — {£}. Let
Ji, Jo be the two components of J — {{}. Restricting to J; for each j = 1,2
we get a limiting value

— : 2( ¢t

This follows from the fact that the restriction of 72 to J; is 4-Lipshitz.

Lemma 3.3 We have (; = (5.

Proof: We will suppose that (; # (» and we will derive a contradiction. The
idea is to work in local coordinates and hit the problem with some complex
analysis. Let 7 : R* — R be projection onto the first coordinate. We choose
real projective transformations ¥; and W, such that

1. ¥y(¢) = (0,0) and Wy (F,) is tangent to the z-axis at (0,0).
2. Wy 0T?(Jy U J,y) is contained in compact subset of R?.

3. m o Wy(¢h) # m o Uy(la).

The second property uses the fact that the limits (; and (, exist.

If we choose J small enough there is an algebraic (and hence analytic)
parametrization ¢ : (—¢, €) — Wy (J) which is the inverse of m;. We can write
o(x) = (z, P2(x)) where ¢y is an analytic function of one variable.

=moWy,0T?0 W o g.
1

By construction, f is discontinuous across 0. When we work over the complex

numbers, the restriction of m to a neighborhood of 0 in ¥ (F,) is a nonsin-

gular holomorphic map. But then ¢, is holomorphic in a neighborhood of 0

in C. In particular, ¢5 has a convergent power series in a neighborhood of 0.
Continuing to work over the complex numbers, we have

_ P(z,02(2)  pe et
IO = et~ it ama . 2 MO

Here P and () are polynomials in 2 variables. Let us explain the rest of Equa-
tion 9. Since ¢, has a convergent power series in a neighborhood of 0, the
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functions z — P(z,¢2(2)) and z — Q(z, ¢2(2)) also have convergent power
series near 0, as we have written. The quotient of these two series has the
given form, with A being a holomorphic function defined in a neighborhood
of 0. If k — ¢ < 0 then the restriction of f to (0,¢) would be unbounded.
This contradicts Item 2 above. Hence f has a removable singularity at 0. In
particular, f extends continuously to 0. This is a contradiction. &

This argument works for any missing point of E,.. We conclude that 7, is
globally the map z — —4z on R/\Z.

It remains to consider the cases when r € (r_,0) U (r4,00). We will
consider the case when r € (r,,00). The other case has the same treatment.
A single evaluation suffices to show that 72 maps the bounded component
to the unbounded component. For instance 1(3,4) = 40/3 and this point
lies on the bounded component. We compute that 72(3,4) and 7%(3,4) both
lie in the (—,+) quadrant. Hence both these points lie on the unbounded
component. Thus, 7? maps both the bounded and unbounded components
to the unbounded component. Dynamically, we could say that a pentagon
loses convexity (or star-convexity) immediately when the map is applied.

This completes the proof of Theorem 1.2.

4 Polygons with More Sides

Here we briefly discuss some things we observed for polygons with an even
number of sides. We say that a 2n-gon is axis aligned if its sides are alter-
nately horizontal and vertical. Let (25, denote the set of these. It is not hard
to see that T'(€Qs,) = Q. If the kth side of P € ), is vertical (respectively
horizontal) then the kth side of T'(P) is horizontal (respectively vertical).
For this reason, it makes good sense to reflect in the diagonal line y = x after
applying T'. The simplest conjecture is that {2, is a global attractor for 7.
This definitely appears to be the case for ()¢ and we have some numerical
evidence that this is also true for 2s. We hope to return to these kinds of
results in a later paper.

We first explain how Q¢ embeds in Mg. Letting (14, ..., Vs) be a hexagon,
we normalize so that Vi, ..., Vg are given by

(071)7 (_171)7 (_1’0)7 (0,0), (x5,y5), (x67y6)
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The coordinates (x5, ys, Tg, Ys) are coordinates for Ms.
We define

A:JI5+ZL’6+1, B:x5—x6—|—2y5—1, C:2y5—1, D:yﬁ_y5.

The set of equivalence classes in Mg which are represented by elements of (4
is given by
A - B*+(C* =1, D =0.
Now we discuss the dynamics of 7" on €2¢. For this purpose it is convenient
to change coordinates. We normalize a hexagon in () to have vertices

0,0), (a,0), (a,b), (1,b), (1,1), (0,1).

We call this hexagon H(a,b). We then apply 7', then reflect in the diagonal,
then apply an affine transformation which preserves the vertical and hori-
zontal directions and carries the hexagon back to the same form. The new
hexagon has the equation H(f(a), f(b)) where

2t — 1
)=

The map f is a degree 2 expanding map from R U oo to itself.

(10)

Figure 4: The orbit of a hexagon projected on the (A, C)- and the
(B, C)-planes, respectively.

We think that almost every orbit of the map (a,b) — (f(a), f(b)) has
dense orbits but we did not work out a proof. In short, it appears that for
hexagons, everything in Mg is attracted to the image of {25 in Mg and then
(after changing coordinates) the map on € is given by (a,b) — (f(a), f(b)).
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