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1 Introduction

Gauss’s pentagon relation says that the map

G5(x1, x2) =
(

x2,
1− x1

1− x1x2

)

(1)

has order 5. That is, G5
5 = I, where I is the identity map. This fact is closely

related to Napier’s rule from spherical geometry, and it is also related to the
projective geometry of pentagons. See [MOT], and also the discussion below.

Though it seems trivial, we point out that G10
5 = I as well. In this paper

we will show that G5 is the first map in a series of maps Gn : R2n−8 → R
2n−8,

for n = 5, 6, 7, ..., such that G2n
n

= I. The next two maps are

G6(x1, x2, x3, x4) =
(

x2, x3, x4,
1− x1 − x3 + x1x2x3

1− x1 − x3x4

)

(2)

G7(x1, x2, x3, x4, x5, x6) =
(

x2, x3, x4, x5, x6,
1− x1 − x3 − x5 + x1x2x3 + x3x4x5 + x1x5

1− x1 − x3 + x1x2x3 + x1x5x6 − x5x6

)

(3)

The reader who has a computer handy can check that G12
6 = I and G14

7 = I

on random inputs. The general equation has the form

Gn(x1, ..., x2n−8) =
(

x2, ..., x2n−8, Rn(x1, ..., x2n−8)
)

, (4)

where Rn is the rational function given in §23.
I discovered these maps when considering the projective geometry of poly-

gons, in connection with the pentagram map. The pentagram map has deep
connections to integrable systems and cluster algebras – see the references–
and perhaps there is some depth to the maps discussed here.
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2 Flag Invariants

We work in the projective plane. What we say works (with suitable interpre-
tations) over any field, though for concreteness we think of the action taking
place over R.

We list points in homogeneous coordinates. LL′ denotes the intersection
of lines L and L′, and PP ′ denotes the line containing P and P ′. We have
the inverse cross ratio

[a, b, c, d] =
(a− b)(c− d)

(a− c)(b− d)
. (5)

For the reader who wants to make their own experiments, we mention an
extremely useful calculation device. Given 4 collinear points A,B,C,D in
the projective plane, the quantity

(A× B) ∗ (C ×D)

(A× C) ∗ (B ×D)
(6)

is a vector of the form (x, x, x), where x is the inverse cross ratio. Here
(∗) denotes pointwise multiplication, and the division line denotes pointwise
division.

A polygonal ray is an infinite collection of points P−7, P−3, P+1, ..., with
indices congruent to 1 mod 4, normalized so that

P−7 = (0, 0, 1), P−3 = (1, 0, 1), P+1 = (1, 1, 1), P+5 = (0, 1, 1). (7)

These points determine lines

L−5+k = P−7+kP−3+k, (8)

We define

F−6+k = (P−7+k, L−5+k), F−4+k = (P−3+k, L−5+k) (9)

c(F0+k) = [P−7+k, P−3+k, L−5+kL3+k, L−5+kL7+k], (10)

c(F2+k) = [P9+k, P5+k, L7+kL−1+k, L7+kL−5+k], (11)

All these equations are meant for k = 0, 4, 8, 12, .... Finally, we define

xk = c(F2k); k = 0, 1, 2, 3... (12)

We have associated the flag invariants x0, x1, x2, ... to the polygonal ray. See
[Sch3] for more details.
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3 The Reconstruction Formula

Given a list (x0, x1, x2, ...), we seek a polygonal ray which has this list as its
flag invariants.

We repeat some definitions from [Sch3]. An odd block is a sequence either
of the form k or k, k+1, k+2, where k is odd. We say that two blocks are well
separated if there are at least 3 integers strictly between them. For instance
1 and 3, 4, 5 are not well separated, but 1 and 5, 6, 7 are well separated.

We say that an admissible sequence is a finite increasing sequence of
integers that decomposes into pairwise well-separated blocks. We define the
sign of an admissible sequence to be (+) if there are an even number of
singles and (−) if there are an odd number of singles. The emptyset counts
as an admissible sequence, and its sign is (+).

We attach a monomial to each admissible sequence I, as follows.

m(I) = sign(I)xI . (13)

For instance, when I = (1, 5, 6, 7, 11) we have m(I) = +x1x5x6x7x11.

Given odd integers a < b we define Sb

a
to be the set of admissible sequences

which only use integers in the open interval (a, b). So, a and b themselves
cannot appear in members of Sb

a
. Finally, we define

Ob

a
=

∑

I∈Sb
a

m(I). (14)

These polynomials are some of the building blocks for the integrable structure
of the pentagram map; see [Sch3], [OST1], [OST2], and [Sol].

For the purposes of giving a recursive definition of these polynomials, we
define O−1

−1 = 1 and Ob

b+2 = 0. We then have

Ob

b
= Ob

b−2 = 1, Ob

a
=







1
−xb−2

xb−4xb−3xb−2





 ·







Ob−2
a

Ob−4
a

Ob−6
a





 , a = b− 4, b− 6, ...

(15)
Taking [Sch3, eq. 20] and applying a suitable projective duality, we get

the reconstruction formula

P9+2k =







1 −1 x0x1

1 0 0
1 0 x0x1













O3+k

−1

O3+k

+1

O3+k

+3





 , k = 0, 2, 4, ... (16)
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4 Closed Polygons

Multiplying through by the matrix M−1, where M is in the matrix in Equa-
tion 16, we get an alternate normalization. Setting

Q−7 =







0
x0x1

1





 , Q−3 =







0
0

x0x1





 , Q1 =







1
0
0





 , Q5 =







1
1
0





 (17)

we have

Q9+2k =







O3+k

−1

O3+k

+1

O3+k

+3





 , k = 0, 2, 4, ... (18)

In case we have a closed n-gon, we have






0
0
1





 = [Q−3] = [Q4n−3] = [Q9+2(2n−6)] =







O2n−3
−1

O2n−3
+1

O2n−3
+3





 . (19)

Here [·] denotes the equivalence class in the projective plane. Equation 19
yields O2n−3

−1 = O2n−3
+1 = 0. Shifting the vertex labels of our polygon by 1

unit has the effect of shifting the flag invariants by 2 units. Doing all cyclic
shifts, we get

Ob

a
= 0 b− a = 2n− 4, 2n− 2, a, b odd. (20)

This last equation is consistent with Equation 17.
We can get even nicer relations if we consider projective duality. Given

a polygon P with flag invariants x1, x2, ... we consider the dual polygon P ∗.
The polygon P ∗ is such that a projective duality carries the lines extending
the edges of P ∗ to the points of P , and vice versa. When suitable labeled,
the flag invariants of P ∗ are x2, x3, .... Equation 20 also holds for P ∗.

We defined Ob

a
with respect to the odd parity. We can make the same

definition with respect to pairs a < b when both have even parity. Since
Equation 20 also holds relative to P ∗, we do not need to take a and b odd in
Equation 20. In particular, we have the 2n relations

Ob

a
= 0 b− a = 2n− 4 (21)

The fact that we can reconstruct a polygon from these relations alone can be
interpreted as a proof that the relations in Equation 21 imply the relations
in Equation 20.
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5 The Rational Maps

Equation 21 tells us that O2n−5
−1 = 0. But now Equation 15 gives

x2n−7x2n−8x2n−9O
2n−11
−1 − x2n−7O

2n−9
−1 +O2n−7

−1 = 0. (22)

note that x0 does not occur in this equation. Solving for x2n−7, we get

x2n−7 = Rn(x1, ..., x2n−8),

where

Rn(x1, ..., x2n−8) =
O2n−7

−1

O2n−9
−1 − x2n−8x2n−9O

2n−11
−1

(23)

Thanks to Equation 21, these equations hold when we shift the indices cycli-
cally by any amount. Thus

x2n−7+k = Rn(xk+1, ..., x2n−8+k), k = 1, ..., 2n. (24)

In particular, if we define Gn as in Equation 4, relative to Rn from Equation
23, then we have G2n

n
= I.

Just to see that Gauss’s relation comes out of this, consider the case
n = 5. In this case

R5(x1, x2) =
O3

−1

O1
−1 − x2x1O

−1
−1

=
1− x1

1− x1x2

(25)

The case n = 6 yields

R6(x1, x2, x3, x4) =
O5

−1

O3
−1 − x4x3O

1
−1

=
1− x1 − x3 + x1x2x3

1− x1 − x3x4

(26)

This agrees with what we advertised in the introduction.
One might wonder why Gn

n
= I for n = 5 but not for higher values of n.

It turns out that the flag invariants for a pentagon satisfy xk+5 = xk for all
k. See [FT] for a proof. This explains why, in fact, G5

5 = I. In general, there
is no such symmetry, and we have to double the period to get the identity.
The special points on which Rn

n
is the identity correspond to polygons with

2-fold projective symmetry when n is even, and certain self-dual polygons
when n is odd. See [FT] for a detailed discussion of self-dual polygons.
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