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1 Introduction

The rank one symmetric spaces of negative curvature come in three infi-
nite families: real hyperbolic space Hn; complex hyperbolic space CHn;
and quaternionic hyperbolic space QHn. (The Cayley plane is the remain-
ing example.) Aside from the obvious embeddings Hn ↪→ CHn ↪→ QHn

the three geometries seem fairly unrelated to each other. For instance, Hn

admits non-arithmetic lattices in all dimensions [GrP] while QHn only ad-
mits arithmetic lattices [GrS]. (See [C] for a related result.) The question
of non-arithmetic lattices in CHn is a basic unsolved problem [DM]. For
a representation-theoretic comparison of discrete subgroups in the different
rank one spaces, see [Sh].

In this paper we make a new connection between H3 and CH2. We
construct a closed hyperbolic 3-manifold which (as a diffeomorphic copy) is
the ideal boundary of a complex hyperbolic 4-manifold.

Up to index 2, the isometry group of CH2 is PU(2, 1), the group of com-
plex projective automorphisms of the unit ball in C2. The ideal boundary
of CH2 is the unit 3-sphere S3. A spherical CR structure on a 3-manifold
is a system of coordinate charts into S3 whose transition functions are re-
strictions of elements of PU(2, 1). While plenty of closed Seifert fibered
manifolds admit spherical CR structures [KT], our example gives the only
known spherical CR structure on a closed hyperbolic 3-manifold.
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1.1 Statement of Results

A complex reflection is an element in PU(2, 1) conjugate to the mapping
(z, w) → (w, z). See §2 for more details. Let G(4, n) be the abstract group
with presentation

G(4, n) = 〈i1, i2, i3| i2i = (iiij)
4 = (iiijiiik)

n = e〉 (1)

(All possible pairwise unequal indices are meant to occur.) We will construct,
for each n = 5, 6, 7..., a representation ρ(4, n) : G(4, n) → PU(2, 1) such that
Ij = ρ(ij) is a complex reflection. Let Γ(4, n) = ρ(4, n)(G(4, n)). Assuming
that ρ(4, n) is discrete, let Ω(4, n) ⊂ S3 be the domain of discontinuity and
let Λ(4, n) = S3 − Ω(4, n) be the limit set. Let A and B be the standard
generators of the 3-strand braid group, shown in Figure 5.10.

Theorem 1.1 (Main Theorem) ρ(4, 7) is discrete and Ω(4, 7)/Γ(4, 7) is
the hyperbolic orbifold whose underlying space is S3 and whose singularity
locus is the closed braid (AB)15(AB−2)3, equipped with a Z/2 cone structure.

Passing to a torsion-free finite index subgroup of Γ(4, 7) we produce the
closed hyperbolic 3-manifold which bounds a complex hyperbolic 4-manifold.
The orbifold from Theorem 1.1 is double covered by a manifold M7 which is
an integer slope Dehn-filling of the once-punctured torus bundle with mon-
odromy matrix [

3 1
2 1

]
(2)

Our example is a finite sheeted cover of M7.
There is some literature on 3-orbifolds whose singularity locus is a par-

ticular link in S3. See, for instance, [MV] and [MW]. As far as we know,
this literature does not cover our specific example.

It seems that Theorem 1.1 is true for all n ≥ 7. In general, the braid
seems to be (AB)15(AB5−n)3. The group Γ(4, 6) has a cusp and the group
Γ(4, 5) does not fit the general pattern.

Λ(4, n) is a nice limit set. An R-circle is the ideal boundary of a totally
real, totally geodesic plane in CH2. These curves are simple analytic loops
in S3, integral to the standard contact structure. See §2 for details.

Theorem 1.2 Λ(4, n) is the closure of a countable, connected, invariant,
nonplanar union of R-circles, each of which is stabilized by a subgroup of
Γ(4, n) conjugate to the standard (2, 4, n)-reflection triangle group.
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We think that Λ(4, n) is homeomorphic to the Menger curve. (See the remark
at the end of §3.3.) In light of [KK] such a result would not be too surprising.
Note that Theorem 1.2 only has content when we know Ω(4, n) is nonempty,
as we do in the case n = 7.

Theorem 1.3 Let τ be the trace of an element in Γ(4, n). Then 2<(τ) and
|τ |2 both belong to the ring Z[2 cos(2π/n)].

All nontrivial Galois conjugates of cos(2π/n) are negative if n = 5, 6, 7, 8, 12.
As we will see in §3, this fact combines with Theorem 1.3 to prove

Corollary 1.4 ρ(4, n) is discrete for n = 5, 6, 7, 8, 12.

Theorem 1.1 and Corollary 1.4 give two logically independent proofs that
our main object of study, ρ(4, 7), is a discrete representation.

1.2 Some History

While self-contained, this paper fits into a progression of papers. In [GP]
Goldman and Parker introduced the complex hyperbolic deformations of the
ideal triangle group−the complex hyperbolic ideal triangle groups−and par-
tially classified them with respect to discreteness.

In [S1] we proved the Goldman-Parker Conjecture, which settles the dis-
creteness question for these groups. It turns out that the moduli space of
discrete complex hyperbolic ideal triangle groups is an interval. All the rep-
resentations in this interval are also faithful.

In [S2] we analyzed the complex hyperbolic ideal triangle groups which lie
at the endpoints of the discreteness interval. (The two groups are conjugate.)
We showed that the corresponding orbifold at infinity is commensurable to
the Whitehead link complement, a familiar manifold which admits a complete
hyperbolic metric of finite volume.

In his thesis [W-G], Justin Wyss-Gallifent discovered a great surprise
in connection with deformations of the (4, 4,∞)-reflection triangle group.
In addition to the expected interval of discrete faithful representations, there
seems to be an extra countable collection of representations which are discrete
but not faithful.

Motivated by [S2] and [W-G], I guessed that there should exist extra
deformations for the (4, 4, 4)-reflection triangle group, and that these defor-
mations should have closed hyperbolic orbifold quotients at infinity. This
paper works out the example which seemed the most amenable to analysis.
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Java Applet 29 on my website [S3] lets the user explore the complex
hyperbolic deformations of the hyperbolic (p, q, r) triangle groups. Operat-
ing this program, I can see that the extra deformations always exist when
min(p, q, r) ≤ 9 and never exist when min(p, q, r) ≥ 14. The situation is
rather complicated between these two ranges. I would love to understand
these examples systematically.

Given the vast number of closed hyperbolic 3-manifolds, and the vast
number of discrete groups acting on the complex hyperbolic plane, I think
that the example in this paper must be common−though perhaps all exam-
ples are fairly intricate. We certainly have no general theory. The subject of
complex hyperbolic Kleinian groups is still a young subject. (For other pa-
pers on complex hyperbolic Kleinian groups, see [FZ], [GKL], [GuP], [S1],
[S2], [Tol] and [W-G], as well as the the bibliography in [G].)

1.3 Overview of the Paper

In §2 we will give some standard background material.
In §3 we give straightforward proofs of Theorem 1.2, Theorem 1.3, and

Corollary 1.4. The rest of the paper is devoted to proving Theorem 1.1.
The proof of Theorem 1.1 centers around the construction of a simplicial

complex Z ⊂ C2,1. The vertices of Z are canonical lifts to C2,1 of fixed points
of certain elements of Γ(4, 7). The tetrahedra of Z are Euclidean convex hulls
of various 4-element subsets of the vertices. Comprised of infinitely many
tetrahedra, Z is invariant under an element K which has the property that
K3 = −I2I1I3. Modulo K, our complex Z has finitely many tetrahedra.

Let [ ] : C2,1 − {0} → CP 2 be the projectivization map. (See Equation
5 for a formula.) Let [Z0] = [Z] ∩ S3. Let [E0K] and [E∞K] be the two
fixed points, in S3, of K. (These points are the projectivizations of the null
eigenvectors E0K and E∞K of K.) The proof of Theorem 1.1 relies on two
facts which we call the tiling hypotheses .

1. [Z0] ∪ [E0K] ∪ [E∞K] is an embedded 2-sphere.

2. One of the two components ∆0 of S3 − ([Z0]∪ [E0K]∪ [E∞K]) is such
that Ω(4, 7) is tiled by the Γ(4, 7)-orbit of ∆0 ∪ [Z0].

In §4-5 we establish Theorem 1.1 assuming the tiling hypotheses. The
simplicial structure of Z gives rise to a tiling of [Z0]. In §4 we define Z and
work out the combinatorics of the tiling on [Z0]. Figures 4.1 and 4.9 show
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pictures of this tiling drawn in coordinate systems which are adapted to the
CR geometry of S3. The various tiles of [Z0] are paired together by certain
elements in Γ(4, 7).

In §5 we construct a lattice Γ∗(4, 7) ⊂ PSL2(C) and a surjective ho-
momorphism h : Γ∗(4, 7) → Γ(4, 7). We use this lattice to build an infinite
polyhedron Z∗0 ⊂ H3 that serves as a kind of hyperbolic transcription of [Z0].
The various tiles of Z∗0 are paired together by certain elements in Γ∗(4, 7) and
one of the components ∆∗0 of H3−Z∗0 plays the role of ∆0. Compare the plot
of Z∗0 shown in Figure 5.6 with the plot of [Z0] shown in Figure 4.1. There is a
“symmetry respecting” homeomorphism h′ : (∆∗0, Z

∗
0) → (∆0, [Z0]) and a uni-

versal covering map h′′ : H3 → Ω(4, 7). The three maps h, h′, h′′ are all com-
patible, and we use them to put the hyperbolic structure on Ω(4, 7)/Γ(4, 7).
At the end of §5 we analyze the topology of Ω(4, 7)/∆(4, 7).

Here is an alternate approach to much of §5. Once we analyze the topol-
ogy of Ω(4, 7)/∆(4, 7), it might be possible to show that the orbifold is hy-
perbolic by combining results in [FH] with Thurston’s Orbifold Theorem
[BLP], [CHK]. We do not attempt this.

In §6-10 we establish the tiling hypotheses. In §6 we develop a combina-
torial picture of [Z]. We will build [Z] in 3 concentric layers. The outer layer
of [Z] is a thickening of [Z0]. We also analyze how the reflection pairings act
on [Z]. Our picture of [Z] depends on several assumptions we make, which
we list in §6.1. The most important assumption is that the map Z → [Z] is
a homeomorphism.

Let [Z−] = [Z] ∩ CH2. In §7 we will use the material in §6 to show
that there is a component ∆− of CH2 − [Z−] such that the Γ(4, 7) orbit of
∆−∪ [Z−] tiles CH2. Once we know this, the tiling hypotheses follow readily
from standard material on ends of Kleinian groups. We emphasize that our
results in §6-7 depend on the assumptions listed in §6.1.

In §8 we will see that, unfortunately, the map Z → [Z] is not a home-
omorphism. To fix the problem we create Z ′, a sensible but non-canonical
replacement for Z, by adding extra vertices to Z and perturbing slightly.
The perturbation takes place entirely within the set of negative vectors in
C2,1 so that [Z0] = [Z ′0]. All the arguments for Z go through for Z ′ with only
trivial modifications.

To complete the proof of Theorem 1.1 we need to verify that Z ′ satisfies
the hypotheses listed in §6.1. Our main task is showing that the projectiviza-
tion map [ ] is injective on all pairs of tetrahedra within a large but finite
portion of Z ′. Roughly, we need to check about 1.3 million tetrahedra. The
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sheer number of checks forces us to bring in the computer.
In §9 we develop a technique for proving, with rigorous machine-aided

computation, that [ ] is injective on a given pair of tetrahedra. To deal
with potential roundoff error in the computations we implement interval
arithmetic, as we did in [S1].

We discuss the implementation of our code in §10. The successful running
of our code, which takes about 12 hours on a Sparc Ultra 10, is a vital
component of our proof.

For the convenience of the reader we include a list of symbols in §11.
We wrote the small amount computer code pertaining to §5 in Mathe-

matica [W]. Otherwise, we wrote the code in C [KR]. We also wrote an
extensive graphical user interface in Tcl/Tk [O] which checks that the com-
putations operate as intended. We have tested the code extensively. As a
further sanity check, have used the code, in conjunction with the graphical
user interface, to generate the many computer plots in the paper. One can
download all the computer code from our website [S3].

Our proof of Theorem 1.1 uses plenty of complex affine geometry, but
essentially no complex hyperbolic geometry. The reader may wonder if there
is a more intrinsically hyperbolic approach to proving Theorem 1.1. Could we
construct an object like [Z] using patently complex hyperbolic objects? We
think that such an approach should be possible, but we simply do not know
how to verify that it works. For instance, it seems to us that a computer-
aided proof would require far too much computation to be practical.
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2 Background Information

We try to keep our conventions consistent with [G], which is our main refer-
ence for the material in this chapter. [E] is another excellent reference.

Complex Hermitian Space: Cn,1 is a copy of the vector space Cn+1

equipped with the Hermitian form

〈U, V 〉 = −un+1vn+1 +

n∑

j=1

ujvj (3)

Here U = (u1, ..., un+1) and V = (v1, ..., vn+1). Vectors in the sets

N− = {V ∈ Cn,1| 〈V, V 〉 < 0};

N0 = {V ∈ Cn,1| 〈V, V 〉 = 0};

N+ = {V ∈ Cn,1| 〈V, V 〉 > 0} (4)

are respectively called negative, null , and positive.

Complex Hyperbolic Space: Cn includes in complex projective space
CP n as the set of vectors with nonzero last coordinate. We call this copy
of Cn the affine patch. Let [ ] : Cn,1 − {0} → CP n be the projectivization
whose formula, expressed in the affine patch, is

[(v1, ..., vn+1)] = (v1/vn+1, ..., vn/vn+1) (5)

Complex hyperbolic space, CHn, is the projective image of the set of negative
vectors in Cn,1. That is, CHn = [N−]. The ideal boundary of CHn is the
unit sphere S2n−1 = [N0]. If [X], [Y ] ∈ CHn the complex hyperbolic distance
%([X], [Y ]) satisfies

%([X], [Y ]) = 2 cosh−1
√

δ(X, Y ); δ(X, Y ) =
〈X, Y 〉〈Y, X〉
〈X, X〉〈Y, Y 〉 . (6)

Here X and Y are arbitrary lifts of [X] and [Y ]. See [G, p. 77]. Until §9 we
will take n = 2. Thus the model for CH2 is the open unit ball in C2 and
the ideal boundary is S3.
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Isometries: SU(2, 1) is the group of 〈, 〉 preserving complex linear transfor-
mations. PU(2, 1) is the projectivization of SU(2, 1) and acts isometrically
on CH2. Explicitly, given T ∈ SU(2, 1) and v = (v1, v2) ∈ CH2 we define
T ∈ PU(2, 1) by the action

T (v) = [T (v1, v2, 1)]. (7)

The map SU(2, 1) → PU(2, 1) is a 3-to-1 Lie group homomorphism. The
group of holomorphic isometries of CH2 is exactly PU(2, 1). The full group
of isometries of CH2 is generated by PU(2, 1) and by the antiholomorphic
map (z1, z2, z3) → (z1, z2, z3).

An element of PU(2, 1) is called elliptic if it has a fixed point in CH2.
It is called hyperbolic (or loxodromic) if there is some ε > 0 such that every
point in CH2 is moved at least ε by the isometry.. An element which is
neither elliptic nor hyperbolic is called parabolic. See [G, §6.2] for more
details.

A loxodromic element of SU(2, 1) has two null eigenvectors U and V ,
and these correspond to its unique two fixed points [U ], [V ] ∈ S3. The vector
U � V ∈ N+ is also an eigenvector. Here

U � V = (u3v2 − u2v3, u1v3 − u3v1, u1v2 − u2v1). (8)

This vector is such that 〈U, U � V 〉 = 〈V, U � V 〉 = 0. See [G, p. 45].

Complex Reflections: Let C ∈ N+. Given any U ∈ C2,1 define

IC(U) = −U +
2〈U, C〉
〈C, C〉 C. (9)

IC is an involution fixing C and IC ∈ SU(2, 1). See [G, p. 70]. Such maps
are called complex reflections. The complex reflections generate SU(2, 1).

Every complex reflection is conjugate to the following simple example:
Setting C = (−1, 1, 0), we get IC(u1, u2, u3) = (−u2,−u1,−u3). The projec-
tive action is just IC(z, w) = (w, z). One of the eigenspaces of IC corresponds
to the eigenvector −1. This space is spanned by (0, 0, 1) and (1, 1, 0). We
call this the negative eigenspace. The eigenspace corresponding to the eigen-
vector 1 is spanned by (−1, 1, 0). We call this the positive eigenspace. Note
that all vectors in the positive eigenspace belong to N+.
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Totally Geodesic Slices: CH2 has two different kinds of totally geodesic
subspaces, complex slices and real slices. A complex slice is the intersection
of a complex line in CP 2 with CH2. Complex slices are the fixed point
sets, in CH2, of complex reflections. A real slice in CH2 is the fixed point
set of an anti-holomorphic isometry of CH2. Every real slice is isometric to
R2 ∩ CH2. The ideal boundary, on S3, of a real slice, is called an R-circle.
The subgroup of PU(2, 1) stabilizing a given real slice is isomorphic to the
isometry group of H2. See [G, §4] for more details.

Selection Criterion: We shall have many occasions to pick out one vec-
tor in C2,1 amongst several closely related ones. We will make the selec-
tion based on the real parts of the third coordinates of the vectors. Given
X = (x1, x2, x3) and Y = (x1, y2, y3) we say that X is higher than Y if
<(x3) > <(y3). At the same time we say that Y is lower than X. Given
a finite collection {X1, ..., Xk} of vectors we can define the highest and the
lowest in the obvious way. As one more bit of terminology, we say that X is
high if <(x3) > 0 and low if <(x3) < 0.

Notational Convention: We adopt the convention that an element of
SU(2, 1) is given the same symbol as the corresponding element of PU(2, 1).
Correspondingly, we make the implicit assumption that elements of SU(2, 1)
act on CP 2 via their projectivizations. At first glance, this practice seems to
introduce some ambiguity, because the natural map SU(2, 1) → PU(2, 1) is
3-to-1. However, every element in PU(2, 1) we actually consider comes with
a preferred lift in SU(2, 1).
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3 The Group

3.1 Basic Formulas

Suppose that r, s, t ∈ (0, 1) are variables such that r2s2 + t2 < 1. We define

V1 = κ1(rs
√
−1, t, 1); V2 = κ2(−r, 0, 1); V3 = κ2(r, 0, 1). (10)

The constants κ1 and κ2 do not play a role in this section. We will specify
them in the next section.

Using Equation 8 as a guide we define

C1 = (0, 1, 0); C2 = (t, r + rs
√
−1, rt); C3 = (−t, r − rs

√
−1, rt), (11)

so that 〈Ci, Vj〉 = 0 if i 6= j. We set Ij = ICj
, as in Equation 9.

Let tr denote trace. To make IiIj be a rotation by π/2 we set tr(IiIj) = 1.
Alternatively, we require that

δ(Ci, Cj) = 1/2 (12)

Here δ is as in Equation 6. This last equation forces the complex lines fixed
by Ii and Ij to meet at an angle of π/4. See [G, p. 100]. Solving for s and t
in terms of r we get:

s2 =
1 − 2r2 − r4

1 + 2r2 − r4
; t2 =

2(r2 + r4)

1 + 2r2 − r4
. (13)

To make I1I2I1I3 a rotation by 2π/n we set tr(I1I2I1I3) = 1+2 cos(2π/n)
and solve for r:

r2 =
cos(π/n) − cos(π/4)

cos(π/n) + cos(π/4)
. (14)

The other relations tr(IiIjIiIk) = 1 + 2 cos(2π/n) follow from symmetry.
Fixing n ∈ {5, 6, 7...} we let G(4, n) be the group in Equation 1. We

define ρ = ρ(4, n) by the equation ρ(ij) = Ij, where Ij is defined in terms of
r, s, t, as above. (Any nonzero choices for κ1 and κ2 lead to the same complex
reflections.) We set Γ(4, n) = ρ(G(4, n)).

Independent of κ1 and κ2 the triangle {V1, V2, V3} satisfies

δ(Vi, Vj) = 1 + cos(2π/n); δ(Vk, Ik(Vk)) = (1 + cos(2π/n))2. (15)

The action of Γ(4, n) on CH2 is determined by the equilateral triangle with
vertices [V1], [V2], [V3].
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3.2 Some Auxilliary Elements

We now explain how to choose κ1 and κ2 so that

〈V1, V2〉 = 〈V2, V3〉 = 〈V3, V1〉; 〈V1, V1〉 = 〈V2, V2〉 = 〈V3, V3〉 = −1. (16)

First, let

κ1 =
1√

−〈V1, V1〉
=

1√
1 − r2s2 − t2

, (17)

so that 〈V1, V1〉 = −1. To make 〈Vj, Vj〉 = −1 for j = 2, 3 we choose κ2 so
that |κ2|2 = (1 − r2)−1. Since κ1 ∈ R we have 〈V1, V2〉 = 〈V3, V1〉. Setting
〈V1, V2〉 = 〈V2, V3〉 and rearranging slightly we have

κ3
2 = κ1|κ2|2

1 + r2s
√
−1

1 + r2
= κ1

1 + r2s
√
−1

1 − r4
. (18)

From Equation 13 and Equation 18 we compute that |κ2|6 = (1 − r2)−3, so
that Equation 18 is compatible with the condition we placed on |κ2|2. Of the
three possibilities for κ2, we choose so as to make V2 as high as possible, in
the sense of §2. (We only care about this choice when n = 7.)

Now we define some auxilliary elements. Let

J(z1, z2, z3) = (−z1, z2, z3). (19)

From Equation 10 we can see that

J(V1, V2, V3) = (V1, V3, V2). (20)

We define J ′ to be the unique linear transformation such that

J ′(V1, V2, V3) = (V2, V3, V1). (21)

It follows from Equation 16 that J ′ ∈ SU(2, 1).
We now define an element which turns out to be extremely important for

our purposes:
K = −I2 ◦ (J ′)−1. (22)

In §11.2 we give an approximate numerical value for K, in the case n = 7.
The minus sign is introduced for technical purposes which have to do with
the construction in §4.
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Lemma 3.1 We have the following relations:

1. K ◦ I1 ◦ K−1 = I2I3I2.

2. K ◦ I2 ◦ K−1 = I2I1I2.

3. K ◦ I3 ◦ K−1 = I2.

4. K3 = −I2I1I3.

5. J ◦ K ◦ J−1 = K−1.

Proof: Recall from §2.2 that the negative eigenspace of a complex reflection
is the one corresponding to the eigenvector −1. By construction, the −1
eigenspace of Ij is spanned by Vj−1 and Vj+1.

For the first relation, we observe that I2I3I2 is a complex reflection whose
negative eigenspace is spanned by I2(V1) = −V1 and I2(V2). On the other
hand, KI1K

−1 is a complex reflection whose negative eigenspace is spanned
by K(V2) and K(V3). Using the definition of K, we have

K(V2) = −I2(V1) = V1; K(V3) = −I2(V2).

The two complex reflections in question have the same fixed sets. Hence they
coincide. The second and third relations have essentially the same proofs.

For the fourth relation, we use the first three relations to compute that

K3 ◦ Ij ◦ K−3 = (I2I1I3) ◦ Ij ◦ (I2I1I3)
−1.

This implies that K3 maps that points [Vj ] ∈ CH2 to the point I2I1I3([Vj ]).
Hence, there is some constant λj such that K3(Vj) = λjI2I1I3(Vj). We
compute explicitly that K3(V2) = −I2(V2) = −I2I1I3(V2). Hence λ2 = −1.
Similar calculations show that λ1 = λ3 = −1. Hence K and −I2I1I3 agree
on a basis.

The fifth relation follows from symmetry. For a direct calculation, we
have

K−1(V1) = −J ′(I2(V1)) = J ′(V1) = V2;

J(K(J−1(V1))) = −J(K(V1)) = JI2J
′−1(V1) = JI2(V3) = J(V3) = V2

Similar calculations show that the two sides of the relation have the same
action on V2 and V3. ♠
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3.3 Proof of Theorem 1.2

We begin with a result which is probably well known:

Lemma 3.2 Let H be a group generated by complex reflections γ1, γ2, γ3 such
that γiγj has finite order pij ∈ N for all i 6= j. If p12 = 2 then H preserves
a real slice Π and H|Π is the (p12, p23, p31)-reflection triangle group.

Proof: Let lj be the complex slice fixed by γj. Let xij = li ∩ lj ∈ CH2

be the fixed point of the element γiγj. We normalize by an isometry so that
x12 = (0, 0) and x23 = (0, t) for some t ∈ (0, 1). Then l2, which contains
these two points, is the complex slice {(z, 0)}. Since p12 = 2 the two slices
l1 and l2 are perpendicular. There is a unique slice perpendicular to l2 and
containing (0, 0), namely l1 = {(0, w)}. The point z13 ∈ l1 has the form
(0, α) for some α ∈ C. We can further normalize by an isometry of the form
(z, w) → (z, wu), where u is unit complex, to arrange that α ∈ (0, 1).

We have normalized so that all three points xij are contained in R2. It fol-
lows from symmetry that lk is perpendicular to the real slice Π = R2∩CH2.
Hence, the restriction of γj to Π is a reflection in the real geodesic λj = lj∩Π.
The angle between λi and λj is the same as the angle between li and lj , since
li and lj are perpendicular to Π. This forces H|Π to be the (p12, p23, p31)-
reflection triangle group. ♠

For pairwise unequal indices i, j, k ∈ {1, 2, 3}, let Hjk ⊂ Γ(4, n) be the
subgroup generated by the three complex reflections

γ1 = IkIiIk; γ2 = Ii; γ3 = Ij; (23)

γ1γ2 = IiIkIiIk has order 2 and γ2γ3 = IiIj has order 4 and γ1γ3 = IkIiIkIj

has order n. By Lemma 3.2, Hjk stabilizes a real slice Πjk and acts as the
(2, 4, n)-reflection triangle group on Πjk. The points [Vj ] and [Vk], respec-
tively, are the fixed points of γ1γ2 and γ2γ3. Hence

[Vj ], [Vk], Ij([Vj]) ∈ Πjk. (24)

Let Π∞jk be the R-circle which is the ideal boundary of Πjk. Since Πjk/Hjk

is compact, Π∞jk ⊂ Λ(4, n). Let Υ =
⋃

Πij and Υ∞ =
⋃

Π∞ij . The orbit

ΓΥ∞ = {g(Υ∞)| g ∈ Γ(4, n)} (25)
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is a countable invariant union of R-circles which is contained in Λ(4, n). Since
Λ(4, n) is the minimal Γ(4, n)-invariant set, ΓΥ∞ is dense in Λ(4, n).

Equation 24 shows that Πjk ∩Πkj contains two distinct points, and hence
an entire geodesic. Therefore, Π∞jk ∩Π∞kj 6= ∅. Similarly, Π∞jk ∩Π∞ji 6= ∅. Since
these two facts hold true for all relevant indices, Υ∞ is connected. Since
Ij(Υ

∞) ∩ Υ∞ 6= ∅ we have that Υ∞ ∪ Ij(Υ
∞) is connected. Here j = 1, 2, 3.

It now follows, from induction on word length, that ΓΥ∞ is connected.
It only remains to show that ΓΥ∞ is nonplanar. The points [V1], [V2], I2[V2]

form a right angled geodesic triangle T ⊂ Π12. Let γ1, γ2, γ3 be the real
geodesics extending the sides of T . The planes of Υ are all distinct, for oth-
erwise Γ(4, 7) would stabilize a real slice, and this does not happen. It follows
from this fact, and from symmetry, that there are real slices S1, S2, S3 ⊂ ΓΥ,
such that Sj ∩ Π12 = γj . Figure 3.2 shows a set homeomorphic to the union
Π∞12 ∪S∞1 ∪S∞2 ∪S∞3 . The hexagon represents Π∞12. The drawing contains the
complete bipartite graph K3,3 and hence is not planar.

Figure 3.2

The accuracy of the picture depends on the fact that S∞i ∩ S∞j = ∅, or
equivalently, Si ∩ Sj = γi ∩ γj. If this is false, then Si ∩ Sj is a geodesic, and
Si ∩ Sj ∩ Π12 is a single point. Translating this point to the origin in C2

we produce three totally real 2 dimensional subspaces of C2 which pairwise
intersect in a line, but which triply intersect only at the origin. This is a well
known impossibility.

Remark: It is not hard to deduce from what we have done that Λ(4, n)
is connected and locally connected, and that Λ(4, n) has no planar neighbor-
hoods. If we knew that Λ(4, n) was 1-dimensional (in the sense of [A]) we
could conclude from [A] that Λ(4, n) is homeomorphic to the Menger curve.
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3.4 Proof of Theorem 1.3

Let τ3 = tr(I1I2I3) and τ4 = tr(I1I2I1I3). Let R = Z[τ3, τ 3, τ4]. We compute

τ4 = 1+2 cos(2π/n); τ3+τ 3 = −2−2 cos(2π/n); τ3τ 3 = 5+6 cos(2π/n).
(26)

Equation 26 tells us that every element of R is an algebraic integer over
Z[2 cos(2π/n)] and that R is contained in a non-real quadratic field extension
of Q[2 cos(2π/n)]. Moreover, R is closed under complex conjugation. Every
x ∈ R satisfies the polynomial P (y) = (y−x)(y−x) = 0. The coefficients of
this polynomial, 2<(x) and |x|2, both belong to Z[2 cos(2π/n)]. To complete
the proof of Theorem 1.3 we show that tr(γ) ∈ R for all γ ∈ Γ(4, n).

Lemma 3.3 Let A, X ∈ PU(2, 1). If tr(A), tr(X), tr(AX), tr(A−1X) ∈ R.
then tr(A2X) ∈ R. If tr(A) = 1 and tr(X), tr(A−1X) ∈ R then tr(AX) ∈ R
iff tr(A2X) ∈ R.

Proof: The characteristic polynomial of A is t3 − tr(A)t2 + tr(A)t − 1. See
[G, p. 206]. By the Cayley-Hamilton theorem, we can set t = A. We do this,
then right-multiply the resulting equation by A−1X, then take the trace of
both sides. One gets tr(A2X) = tr(A)tr(AX)− tr(A)tr(X)+tr(A−1X). The
lemma is obvious from this equation. ♠

Say that γ ∈ Γ(4, n) is critical if tr(γ) 6∈ R and if no shorter word has
this property. We will suppose the existence of a critical word γ and derive
a contradiction. To streamline our notation we set γ = i1...im, provided that
γ = Ii1 ...Iim . We write γ1 → γ2 to denote the sentence “γ1 is critical implies
γ2 is critical.”

Lemma 3.4 UijiV → UjijV for arbitrary words U and V .

Proof: Assume UijiV is critical. This word cannot be written in shorter
form. It suffices to prove that tr(UjijV ) 6∈ R. Define A = ij and X = iV U .
Note that tr(A) = 1. Obviously, UijiV → ijiV U , so that tr(AX) 6∈ R. Since
X and A−1X = jV U are shorter than UijiV , we get tr(A−1X), tr(X) ∈ R.
By Lemma 3.3 we have tr(A2X) = tr(ijijiV U) 6∈ R. Since ijiji = jij we
have tr(UjijV ) = tr(jijV U) = tr(ijijiV U) 6∈ R. ♠
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If γ is critical then any conjugate of γ is also critical. Also, by Lemma 3.3,
a critical word cannot have the reduced form A2X. These observations imply
that a critical word must contain the string ...kijik.... Using the symmetry of
the generators, and conjugating, we can assume that our critical word begins
31213.... Note that this word cannot end in a 3. We will use the notation Y ! to
mean that Y obviously cannot be critical. Here are the nontrivial reductions.
We have underlined portions of our words, to indicate applications of Lemma
3.4.

•31213!
•312131 → 312313!
•3121312 → (312)21!
•31213121... = (3121)2...!
•31213123... → 31231323... → 31231232... = (312)232...!
•3121313... → (13)2...!
•312132 → 321232 → 321323!
•3121321 → (213)21!
•31213212... → 32123212... = (3212)2...!
•31213213... = 31(213)2...!
•3121323... → 3212323... → (23)2...!

In short, there is no critical word, and Theorem 1.3 is true.

3.5 Proof of Corollory 1.4

Let αn = 2 cos(2π/n). Define

M =




1 0 0
0 1 0
0 0 αn



 (27)

Let ΓM = MΓM−1. Note that ΓM preserves the Hermitian form L, where

L(Z, W ) = z1w1 + z2w2 − α−2
n z3w3 (28)

and the matrix coefficients for all elements of ΓM lie in a finite field extension
E of Qαn. Let ρ be the extension to E of any nontrivial Galois automor-
phism of αn. For n = 5, 6, 7, 8, 12, all nontrivial Galois conjugates of αn are
negative. Hence ρ(ΓM ) preserves the definite Hermitian form ρ(L). That is,
the trace of any element of Γ(4, n) is an algebraic integer, all of whose non-
trivial Galois conjugates are uniformly bounded. Indiscrete groups cannot
have this property.
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4 The View from the Outside

4.1 Overview

We use the notation from §3.1 and §3.2. For the rest of the paper we concern
ourselves only with the case n = 7 considered in §3.1 and §3.2. We define

Z =
∞⋃

m=−∞

A(m) ∪ B(m) (29)

Here A(m) and B(m) are finite unions of tetrahedra in C2,1. We call them
pieces . The pieces have the property that A(k + 2m) = Km(A(k)) and
B(k + 2m) = Km(B(k)) for all k and m. Thus, K(Z) = Z. Here K is
the element defined in Equation 22. The tetrahedra in each piece are convex
hulls of various 4-element subsets of their vertices. To take these convex hulls
we only use the real affine structure of C2,1. The main object of study in this
chapter is [Z0] = [Z] ∩ S3, which turns out to be an infinite tiled cylinder.

To help understand the combinatorial structure of the tiling on [Z0] we
will plot (portions of) [Z0] in two coordinate systems, as we now explain.
Let E0K and E∞K be the null eigenvectors of the element K, normalized to
have third coordinate 1. See §10.2 for numerical approximations. A positive
eigenvector of K is given by

E+K = E0K � E∞K, (30)

where � is as in Equation 8. Given any point [X] ∈ S3 − [E0K]− [E∞K] we
choose some lift X ∈ N0 and define

Ψ([X]) =
(

arg
〈X, E+K〉√

〈X, E0K〉〈X, E∞K〉
,
1

2
log

∣∣∣
〈X, E0K〉
〈X, E∞K〉

∣∣∣
)
. (31)

Our definition of Ψ(X) is independent of lift of [X]. The domain of Ψ is
S3 − [E0K] − [E∞K] and the range is the flat cylinder R/2πZ × Z. We
discussed Ψ in detail in [S1] and [S2], where we called it the elevation map.
In particular we proved that Ψ has a globally well-defined branch.

Figure 4.1 shows the a large portion of exp ◦Ψ([Z0]). The tiling on [Z0]
is actually a refinement of what is shown in Figure 4.1, and the grey lines of
Figure 4.1 are images of lines of symmetry rather than edges of the tiling.
The edges of the refinement, which we have hidden, are shown in Figures 4.4,
4.6 and 4.8.
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Figure 4.1

Compare Figure 4.1 with Figure 4.9, which shows Ψ([Z0]). The picture
is combinatorially equivalent to Figure 4.1, but the labels of the pieces have
been added in. The goal of this chapter is to build up to Figures 4.1 and 4.9.

Remark: In this paper Ψ is just used to draw pictures. Our proofs do
not use the structure of Ψ. However, Ψ has a symmetry property which
makes the pictures look nice: Ψ conjugates the PU(2, 1)-centralizer of K to
the translation group of the flat cylinder R/2πZ × R.
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4.2 Notation

If g is an elliptic element of Γ(4, 7), and has a unique fixed point in CH2,
we let [g] be this fixed point. If h is a hyperbolic element, we let [h] denote
the fixed point of h which lies in [N+]. We call this the word notation. In
the word notation we have

[V1] = [23]; [V2] = [31]; [V3] = [12]. (32)

Here Vj is as in Equation 10. We have the general principle that a word and
its reverse denote the same point. Thus [12] = [21] and [1213] = [3121], etc.

It is easy to write down the action of the generators I1, I2, I3 of Γ(4, 7)
in this notation. The element Ij takes the point [a1, ..., an] to the point
[ja1, ..., anj]. If the symbol jj appears at either end, it is simply omitted.
For instance, I1([1213]) = [112131] = [2131] = [1312].

Let J and K be the extra elements defined in §3.2. If w = [...] is some
fixed point, then the J(w) is obtained by making the substitution 2 → 3 and
3 → 2. For instance J([1213]) = [1312]. It follows from Lemma 3.1 that
K(w) is obtained by making the substitutions

1 → 232 2 → 212 3 → 2 (33)

For instance K([12]) = [232212] = [2312]. It follows from the fifth relation
of Lemma 3.1 that K−1(w) is obtained by making the substitition

1 → 323 3 → 313 2 → 3 (34)

For instance K−1([12]) = [3233] = [32].
The vertices of our complex Z are certain lifts of the K-orbits of the 4

points
[12]; [121312]; [1213121312]; [12131213121312]; (35)

The first two of these points lie in CH2. The last two lie in [N+].
Using Equations 33 and 34 we can work out these orbits. We arrange

them in a table, shown below. The action of K maps each word to the one
below it in the same column. The action of J reverses each column, about
the middle of the column.
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• • ◦ ◦

-9 [32123213] [31323132313213]
-8 [31213213] [31323123212323]
-7 [131213] [321232123213]
-6 [312313] [321231213121]
-5 [313232] [1312131213]
-4 [3123] [2313231323132131]
-3 [1213] [3132313232]
-2 [13] [32321232123212]
-1 [3132] [12132123]
0 [23] [12131213121312]
1 [2123] [13123132]
2 [12] [23231323132313]
3 [1312] [2123212323]
4 [2132] [3212321232123121]
5 [212323] [1213121312]
6 [213212] [231321312131]
7 [121312] [231323132312]
8 [21312312] [21232132313232]
9 [23132312] [21232123212312]

The middle of the last column looks like it is not symmetric with respect
to J . However, the relation (I1I2I1I3)

7 = e implies that

[12131213121312] = [13121312131213],

so the chart is symmetric after all.
As an alternate system of notation, we let [•j] be the vector which is in

one of the first two columns, and in the jth row. For instance [•4] = [2132]
and [•3] = [1312]. We let [◦j] be the vector which is in one of the last two
columns and in the jth row. We will use the notation [∗j] when it does not
matter if we are speaking about [•j] or [◦j]. We call this the chart notation.
It follows immediately from our definitions that

J([∗j]) = [∗(−j)]; K([∗j]) = [∗(j + 2)]. (36)

By construction [•j] ∈ [N−] = CH2 and [◦j] ∈ [N+].
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4.3 Canonical Lifts

In this section we construct a canonical lift for [∗j]. We call this lift ∗j. We
require that

〈◦j, ◦j〉 = −〈•j, •j〉 = 1. J(∗j) = ∗(−j); K(∗j) = ∗(j + 2); (37)

Compare Equation 36.
We claim that Equation 37 determines our lifts uniquely, up to sign. To

see this, suppose for example that P1 and P2 are both lifts of ∗0. We have
P2 = λP1, where |λ| = 1. From equation 19 and J(P2) = P2 we have

λP1 = J(λP1) = λJ(P1) = λP1. (38)

Hence λ = ±1. At the same time, we can take any lift P1 of ∗0 which satisfies
the first equation in Equation 37, and then adjust λ so that λP1 satisfies the
second one as well. We can play a similar game for ∗1, using the symmetry
K ◦ J(∗1) = ∗1 to determine λ. We get the remaining lifts, up to sign, using
the action of K.

It remains to determine the signs. Referring to Equation 10, we note that
V1 satisfies all the requirements for •0. Thus we set •0 = V1. A calculation
shows that this choice of sign makes the lift of [12] high, in the sense of §2.
For the remaining vectors we choose the signs so that the lifts of the points
of Equation 35 are high. See §10.2 for numerical values.

4.4 The Join Construction

We think of C2,1 as an affine space. If S1, S2 ⊂ C2,1 are disjoint subsets of
C2,1, the join S1 on S2 is defined as the union of all line segments connecting
a point in S1 to a point in S2. For example, the join of two general position
line segments is a tetrahedron. In our constructions below it will be useful
to call S1 the axis and S2 the rim. See the pictures below.

Given a finite list of points P1...Pk we let

[P1, ..., Pk] = (P1 on P2) ∪ (P2 on P3)... ∪ ...(Pk−1 on Pk). (39)

[P1...Pk] is an open polygonal path in C2,1. We define the closed polygonal
path

[P1...Pk]� = (Pk on P1) ∪ [P1...Pk] (40)
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4.5 The Odd B Pieces

When j is odd we define

B(j) = [•(j − 3) • (j + 3)] on [•(j − 2) • (j − 1) • (j + 1) • (j + 2)]�. (41)

Figure 4.1 shows B(1). We label the points using both notations.

3

-1
0

4

-2

2

[12]

[13]

[2132]

[23]
[3132]

[1312]

Figure 4.2

Lemma 4.1 K ◦ J(B(1)) = B(1) and I2(B(1)) = −B(1).

Proof: The first equation is clear from Equation 37 and from the chart
notation in Figure 4.2. In the second equation we mean that the action of
I2 multiplies each vertex of B(1) by −1. Looking at the word notation in
Figure 4.2, it is easy to see that I2 fixes the projectivizations of the points
on the rim of B(1). Thus, the 4 points on the rim are all eigenvectors of I2.
These 4 points are all negative vectors, so they lie in the negative eigenspace
of I2. We now prove I2(•4) = −•(−2). This is the same as proving that
K3I2(•4) = −•4. From the word notation we work out that K3I2 fixes [•4].
Hence •4 is an eigenvector of K3I2 = −I2I1I3I2. This element has eigen-
values ±1. An easy calculation shows that K3I2 does not fix •4. Hence,
the eigenvalue corresponding to •4 is −1. Since I2 is an involution we get
I2(•(−2)) = −•4 as well. ♠

Similar results hold for the other odd B pieces.
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4.6 The Even A Pieces

When j is even we define

A(j) = [•(j − 3) • (j + 3)] on

[•(j − 2) • (j − 7) ◦ (j − 5) ◦ j ◦ (j + 5) • (j + 7) • (j + 2)]� (42)

Figure 4.3 shows A(0).

[1213121312]

[1312131213]

[1213]

[1312]

[121312]

[12]

[13]

[131213]

[12131213121312]=

5

0

3

-3

-5

7

[13121312131213]

-7

-2

2

Figure 4.3

Lemma 4.2 J(A(0)) = A(0) and I1(A(0)) = −A(0).

Proof: The first equality is obvious from Equation 37 and the chart no-
tation in Figure 4.3. For the second equality, it is easy to see that the 7
vectors in the rim are eigenvectors of I1. The negative vectors on the rim
must lie in the negative eigenspace of I1 and (as shown by a direct compu-
tation) so do the positive ones. It remains to show that •3 is an eigenvector
of K3I1 = −I2I1I3I1 corresponding to the eigenvalue −1. The argument is
similar to the one given in Lemma 4.1. ♠

Figure 4.4 shows Ψ([A(0)] ∩ S3). Here is a heuristic explanation. If a
tetrahedron τ of A(0) has 3 negative vertices and one positive vertex, then
one would expect (under suitable transversality hypotheses) that τ ∩S3 is an
embedded triangle. If τ has 2 negative vertices and 2 positive vertices, one
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would expect that τ ∩ S3 is an embedded quadrilateral. Looking at Figure
4.3, we see that there are 4 tetrahedra in A(0) which have both positive and
negative vertices. Two of these are of the 3+1 type and the other two are of
the 2 + 2 type. Thus, Figure 4.4 shows two triangles and two quadrilaterals.
The first equality of Lemma 4.2 accounts for the rotation symmetry.

Figure 4.4

4.7 The Even B Pieces

When j is even we define

B(j) = [◦(j − 3) ◦ (j + 3)] on [◦(j + 8) • (j + 5) • (j − 5) ◦ (j − 8)] (43)

Figure 4.5 shows B(0).

[313232]

[212323]

-5

5

8

-8

-3

3

[21232132313232]

[31323123212323]

[3132313232]

[2123212323]

Figure 4.5
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Lemma 4.3 J(B(0)) = B(0) and I2I3I2I3I1I3I2I3I2(B(0)) = −B(0).

Proof: The proof is essentially the same as in Lemmas 4.1 and 4.2. Let I ′ be
the complex reflection of the lemma. We use the fact that I2I3I2I3 = I3I2I3I2

and compute that I ′ fixes [•5]. We have

I ′([212323]) = [232313232.212323.323212323] =

[232313232323] = [323212] = [•5].

To show that I ′ fixes [◦(−8)] we compute

I ′([31323123212323]) = [232312323.31323123212323.323213232]

= [23231232132312323232] = [23231232132313] = [◦(−8)].

I ′ commutes with J and hence fixes ◦8 and •(−5) by symmetry. The re-
maining calculations are similar to what we have already done. ♠

Remark: The emacs word processor makes short work of calculations like
the ones we have just done.

Figure 4.6 shows Ψ([B(0)] ∩ S3).

Figure 4.6
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4.8 The Odd A Pieces

When j is odd we define

A(j) = [◦(j − 3) ◦ (j + 3)] on [◦(j − 8) • j ◦ (j + 8)]. (44)

Figure 4.7 shows A(1).

4

-2

[321232123213]

9

-7

1

[2123]

[32321232123212]

[3212321232123121] [21232123212312]

Figure 4.7

Lemma 4.4 K ◦ J(A(1)) = A(1) and
I3I2I1I2I3I2I1I2I3I2I1I2I3(A(1)) = −A(1).

Proof: The proof is essentially the same as in Lemmas 4.1 and 4.2. However,
one of the calculations is slightly nontrivial. Let I ′ be the complex reflection
listed in the lemma. We compute

I ′([◦(−2)]) = [3212321232123323212321232123212321232123] =

[32123212321233233212] = [32123212321212] = [321232123121] = [◦4].

The first equality comes from T3T2T1T2 = (T2T1T2T3)
6; the second is cancel-

lation; the third comes from T2T1T2T1T2 = T1T2T1. This calculation shows
that ◦4 is an eigenvector of K3I ′. An explicit calculation, using Lemma 3.3
for instance, shows that the only unit norm eigenvector of K3I ′ is −1. Since
◦4 6∈ N0, it must belong to the corresponding eigenspace. ♠

Figure 4.8 shows a plot of Ψ([A(1)] ∩ S3).
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Figure 4.8

4.9 The Whole Tiling

By Lemmas 4.1-4.4, there are complex reflections Am and Bm, henceforth
called reflection pairings, such that

Am([A(m)]) = [A(m)]; Bm([B(m)]) = [B(m)]. (45)

Explicitly:

A2m = KmI1K
−m; A2m+1 = KmI3I2I1I2I3I2I1I2I3I2I1I2I3K

−m

B2m+1 = KmI2K
−m B2m = KmI2I3I2I3I1I3I2I3I2K

−m (46)

Here is a table listing the first few reflection pairings. As in §3.4 we
use the notation ...ij... to denote ...IiIj .... The entries are computed using
Lemma 3.1.

A−4 131 B−4 321232123
A−3 12131213121 B−3 313
A−2 323 B−2 1312131
A−1 2313231323132 B−1 3
A0 1 B0 232313232
A1 3212321232123 B1 2
A2 232 B2 1213121
A3 13121312131 B3 212
A4 121 B4 231323132
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Figure 4.9

Figure 4.9 shows Ψ([Z0]), with the tiles labelled. We have erased some
of the lines in Figures 4.4, 4.6 and 4.8. The grey curves are images of C-
circles fixed by the reflection pairings. The vertical sides of the picture are
identified, so that the plot takes place on a cylinder.

We finish this chapter with a result which plays a key role in our analysis
of Ω(4, 7)/Γ(4, 7).
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Lemma 4.5 In PU(2, 1) we have the following relations:

1. Ak+2m = KmAkK
−m

2. Bk+2m = KmBkK
−m.

3. A−2B0A2 = K3.

4. B−2A3A0 = K3.

5. A1B6A−2 = K3.

Proof: The first 2 relations are restatements of Equation 46. For the third
relation:

A−2B0A2 = 323232313232232 = 323323213232232 = 213 = −K3.

Here we used 2323 = 3232 and, for the last equality, Lemma 3.1. So far we
have computed in SU(2, 1). When we projectivize, the minus sign goes away.
The fourth relation has a similar proof. For the fifth relation, we have

B6 = 213B0312 = 21232123212.

Hence A1B6A−2 expands as

3212321232123.21232123212.323 = (3212)6323 = 2123323 = 213 = −K3.

Here we used the fact that (3212)7 is the identity. Again, the minus sign goes
away when we projectivize. ♠
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5 The Hyperbolic Structure

5.1 Real Hyperbolic Space

We represent real hyperbolic 3-space, H3, as the upper half space C × R+.
We identify the ideal boundary of H3 with the Riemann sphere C ∪ ∞.
There is a natural projection from H3 to C given by the map π(z, t) = z.
We use this projection for many of the computer plots in this chapter.

The orientation preserving isometry group of H3 can be identified with
the projective special linear group PSL2(C). The group PSL2(C) acts on
C ∪∞ via Moebius transformations, in the usual way:

[
a b
c d

]
: z → az + b

cz + d
(47)

Such maps extend to give isometries of H3, though the formula for the
extension is somewhat involved. Below we sometimes specify isometries of
H3 by matrices in GL2(C), the general linear group, rather than by matrices
in SL2(C). One can always renormalize these matrices to have determinant
1, so that they lie in SL2(C).

A loxodromic element has two fixed points on C ∪∞ and stabilizes the
geodesic in H3 which has these two points as endpoints. For instance

K∗ =

[
λ 0
0 λ−1

]
; |λ| 6= 1 (48)

represents a loxodromic element whose fixed points are 0 and ∞.
A halfturn is an involution which rotates π degrees around a geodesic.

This fixed geodesic is called the axis of the halfturn. For instance

J∗ =

[
0 i
i 0

]
(49)

represents a halfturn whose fixed points are ±1. Halfturns are characterized
by the property the matrices representing them have trace 0.

We point out a certain analogy between halfturns and complex reflections.
If we consider H3 as a subset of S3, then the action of a halfturn naturally
extends to give a conformal isomorphism of S3. This conformal isomorphism
is topologically conjugate to the action of a complex reflection on S3.
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5.2 Some Special Halfturns

Let K∗ be as in Equation 48. In this section we will find, for all m, n ∈ Z,
halfturns A∗n, B∗2m ∈ GL2(C) whose projectivizations satisfy all the relations
of Lemma 4.5 (with the stars added). These halfturns will be used to define
the infinite hyperbolic polyhedron whose projection is shown in Figure 5.6
below.

Given |λ| > 1 and a0, b0, a1 ∈ C − {±1} we define the halfturn pairings

A∗2n = Kn
∗

[
a0 −1
1 −a0

]
K−n
∗ ;

B∗2n = Kn
∗

[
b0 −1
1 −b0

]
K−n
∗ ;

A∗2n+1 = Kn
∗

[
a1 −λ
λ−1 −a1

]
K−n
∗ . (50)

Define
λn = tr(Kn

∗ ) = λn + λ−n. (51)

Lemma 5.1 The halfturn pairings satisfy the relations of Lemma 4.5 only
if

2λ5 = λ7λ8; a2
0 =

λ7

λ3
; b2

0 =
λ2

5

λ7λ3
; a2

1 =
λ2

3λ7 + λ2
5λ7 − 2λ3λ

2
5

λ3λ2
7 − λ3λ2

5

.

Proof: If the halfturn pairings satisfy the third relation of Lemma 4.5 then
there is a constant constant z1 ∈ C such that

K3
∗ = z1A

∗

−2B
∗

0A
∗

2 = z1K
−1
∗ A∗0K∗B

∗

0K∗A
∗

0K
−1
∗ (52)

Rearranging, we get

z1B
∗

0 = K−1
∗ A∗0K

5
∗A
∗

0K
−1
∗ =

[
λ−7 − a2

0λ
3 a0(λ

5 − λ−5)
a0(λ

−5 − λ5) λ7 − a2
0λ
−3

]
(53)

Call the matrix on the right µ. Since B∗0 is a halfturn, tr(µ) = 0. This gives
the equation for a2

0. We have b2
0 = µ11µ22/µ12µ21. This gives the equation for

b2
0.
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If the halfturn pairings satisfy the fourth relation of Lemma 4.5 there is
some constant z2 ∈ C such that

K3
∗ = z2B

∗

−2A
∗

3A
∗

0 = z2K
−1
∗ B∗0K

2
∗A
∗

1K
−1
∗ A∗0. (54)

Rearranging, we get

z2A
∗

1 = K−2
∗ B∗0K

4
∗A
∗

0K∗ =

[
a0b0λ

3 − λ−5 a0λ
−7 − b0λ

−b0λ
−1 + a0λ

7 a0b0λ
−3 − λ5

]
(55)

Call this last matrix ν. Since A∗1 is a halfturn, tr(ν) = 0. This gives

a0b0 = λ5/λ3; b0/a0 = λ5/λ7. (56)

The second equation follows from the first and from the equation for b2
0.

If the halfturn pairings satisfy the fifth relation of Lemma 4.5 then there
is a constant z3 such that

z3A
∗

1 = η = K2
∗A
∗

0K
4
∗B
∗

0K
−3
∗ . (57)

We compute symbolically that

η11/ν11 = η22/ν22 = 1; η21/ν21 =
λ8(b0 − a0λ

8)

a0 − b0λ8
; η12/ν12 = ν21/η21. (58)

Setting η21/ν21 = 1 we get
2b0/a0 = λ8 (59)

Plugging in the second equation from Equation 56 we get the equation for λ.
Using the equation a2

1 = ν11ν22/ν12ν21 we get the equation

a2
1 =

1 + (a0b0)
2 − a0b0λ8

a2
0 + b2

0 − a0b0λ8

(60)

Plugging in the equations we already have for the quantities in the last equa-
tion, we get the equation for a2

1 listed in the lemma. ♠

Our derivation has one lucky accident. If our matrix ν is really a multiple
of A∗1 then we must have ν2

12 − λ4ν2
21 = 0. When we expand this out we get

the equation

0 = λ−14(a2
0 − 2a0b0λ

8 + 2a0b0λ
24 − a2

0λ
32) = R(λ)H(λ2). (61)
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R(λ) is a rational function which factors into cyclotomic polynomials and H
is the polynomial

H(z) = z6 + z5 − 4z4 − 3z3 + 4z2 − 2 (62)

The lucky accident is that H(λ2) and 2λ5 − λ7λ8 agree modulo cyclotomic
polynomials. Thus, what could have been a second equation for λ turns out
to be the same equation.

One of the roots of 2λ5 − λ7λ8 is within 10−15 of λ′, where

λ′ = −0.33965052546914795 + 1.0311113175790407
√
−1. (63)

Our choice of λ plugs into the other equations to determine a2
0, b2

0 and a2
1.

These numbers have square roots which are within 10−5 of the numbers

a′0 = 1.0408951341934188 + 0.29367056890017413
√
−1

b′0 = −1.1705635976637505 + 0.1147136622789418
√
−1

a′1 = 1.0776479366167730− 0.1141865540435569
√
−1 (64)

We choose these square roots.
When we plug in the above values we find that our matrices satisfy the

relations of Lemma 4.5 to high precision. We omit the proof that the matrices
satisfy the relations exactly. Most of the proof consists in running the proof
of Lemma 5.1 backwards. The only nontrivial part of the proof is taken care
by the lucky accident for ν.

5.3 The Polyhedron

We are going to build a triangulated complex Z∗0 in H3. First we will specify
the vertices of Z∗0 and then we will specify a triangulation by taking the
hyperbolic convex hulls of various 3-element subsets of the vertices. Figure
4.9 is our constant guide during our construction.

Let αn be the axis of A∗n. Let βn be the axis of B∗n. We orient αn so that
it runs from its endpoint of smaller norm to its endpoint of larger norm. We
orient βn in the same way. Certain subarcs of αn and βn will play the role of
the grey arcs in Figure 4.9.
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A∗n and B∗n commute with the halfturn

C∗n =

[
0 λni

λ−ni 0

]
(65)

and so the corresponding axes intersect. Let γn be the axis of C∗n. Let
α0

n = αn ∩ γn and β0
n = βn ∩ γn. These symmetry points are the analogues of

the centers of the grey arcs in Figure 4.9.
We introduce some notation by way of example. We write A∗0(α10) |= α−3

if A∗0(α10) = α−3 in such a way that the orientation on α10 is carried to the
orientation on α−3 and the point A∗0(α

0
10) occurs after the point α0

−3 in the
orientation on α−3.

Lemma 5.2 We have the following relations:

1. A∗0(α3) |= α−10 and A∗0(α10) |= α−3

2. B∗0(α5) |= α−2 and B∗0(α2) |= α−5.

3. A∗1(β6) |= β−4.

Proof: We check all the relations numerically, on the endpoints and on the
symmetry points. Thus, it suffices to establish the equality of sets in each
of the relations. The numerical checks ensure that the orientations are not
reversed and that the relevant symmetry points do not come in the wrong
order.

Proving that A∗0(α3) = α−10 is the same as proving that A∗0A
∗
3A
∗
0 = A∗−10.

The fifth relation of Lemma 4.5, rearranged, gives A∗3A
∗
0 = B∗−2K

∗
3 . Thus

A∗0A
∗
3A
∗
0 = A∗0B

∗
−2K

∗
3 . Reversing and shifting the indices on the fourth re-

lation, we get A∗0B
∗
−2 = K−3

∗ A∗−4. So, A∗0A
∗
3A
∗
0 = K−3

∗ A∗−4K
3
∗ = K−10

∗ . The
relation A∗0(α−10) = α3 has a similar proof.

Proving that B∗0(α5) = α−2 is the same as proving that B∗0A
∗
5B
∗
0 = A∗−2.

Using the third and fourth relations in Lemma 4.5, and shifting indices ap-
propriately, we have B∗0A

∗
5A
∗
2 = A∗−2B

∗
0A
∗
2. Rearranging this equality gives

us the desired relation. The relation B∗0(α2) = α−5 has a similar proof.
Proving that A∗1(β6) = β−4 is equivalent to proving that A∗1B

∗
−4A1 = B∗6 .

From the relations in Lemma 4.5, the element (A∗1B
∗
6A
∗
−2)(A

∗
−2A

∗
1B
∗
−4) is triv-

ial. Simplifying, this gives us the desired relation. ♠
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We remark that all the relations in Lemma 5.2 remain true if we shift
the indices by an even number. For instance, A∗10(α13) |= α0. Also, we can
use the fact that our halfturns are involutions to get other relations. For
instance, A−10(α−13) = α0.

Looking at Figure 4.9 we see that each grey arc contains two vertices of
the tiling. These grey arcs are parts of the complex lines fixed by the pairing
reflections. By analogy we would like to select two points on each halfturn
axis which will serve as vertices for our tiling.

If p and q are two points on a geodesic γ, we write p →t q to denote the
point (1 − t)p + tq, computed using the linear structure of γ induced by the
hyperbolic metric. For instance p →1/2 q is the hyperbolic midpoint of the
geodesic segment joining p to q. As another example (relevant to the way we
compute things)

p →3/4 q = (p →1/2 q) →1/2 q. (66)

We define

α−0 = α0 →3/4 A∗−10(α
0
−13) α+

0 = α0 →3/4 A∗10(α
0
13)

β−0 = β0
0 →1/2 A∗−5(β

0
−10) β+

0 = β0
0 →1/2 A∗5(β

0
10)

α−1 = α0
1 →1/4 A∗−2(α

0
−12) α+

1 = α0
1 →1/4 A∗4(α

0
14) (67)

By Lemma 5.2 the points α−0 , α0
0, α

+
0 appear in order on α0, in terms of the

orientation. By symmetry, these points are evenly spaced in the hyperbolic
metric. Indeed, J∗ swaps α−0 with α+

0 and fixes α0
0. See Figure 5.1.

10 (α
13

)A*α
−13

( )
-10

A* −
α +α0α

J*

Figure 5.1

The other points have similar properties.

Remarks:
(i) In defining our points we favored the action of the A-halfturns. We could
have used some of the B-halfturns. The various relations imply that we
would get the same result. We will see this below in a key case.
(ii) The choice of 3/4 and 1/4 is somewhat arbitrary. We could take any t
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and (1−t) and get the same symmetries. We choose t = 3/4 because it makes
the picture look nice and because the relevant point is easy to compute, by
taking successive midpoints, as in Equation 66.

Now we are ready to define our tiles. We define the join operation in
H3 using geodesic segments. As in §4 the notation [...]� means the geodesic
polygon whose vertices are the points listed. We define

Z∗0 =
⋃

A∗(n) ∪ B∗(2m),

where

A∗(0) = α0
0 on [α−0 , α+

−10, β
+
−8, α

+
−3, α

+
0 , α−10, β

−

8 , α−3 ]�.

B∗(0) = β0
0 on [α+

−5, β
−

0 , α−2 , α−5 , β+
0 , α+

−2]�.

A∗(1) = α0
1 on [α−1 , β−6 , α+

1 , β+
−4]�

A∗(n + 2k) = Kn
∗ (A

∗(k)); B∗(2m) = K−∗ (B∗(0)). (68)

In making our definitions, we looked at each relevant tile in Figure 4.9
and listed out the labels of the grey curves which attach to its vertices, using
− and + depending on whether or not the attaching point is at the top or
the bottom of the grey curve. Figure 5.2 shows a schematic picture.

A1

B-4

B6

-8

-3

-10

10A

A

B

B 8

A

A 3

0A 0B

A-5

A5

A-2

A2

Figure 5.2

Lemma 5.3 Equation 45 holds (with the stars added) for our tiles.
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Proof: Our constructions are symmetric with respect to J∗ and K∗. Using
this symmetry, and the fact that the halfturns are involutions, it suffices to
prove that

A∗1(β
−

6 ) = β+
−4; A∗0(α

−

3 ) = α+
−10; A∗0(β

−

8 ) = β+
−8; B∗2(α

−

7 ) = α+
0 . (69)

The first two relations follow from Lemma 5.2 and from the definitions.
For the third relation, we first establish an auxilliary identity. We know

that B∗−2A
∗
3A
∗
0 = K3. This is the fourth relation in Lemma 4.5. Thus

A∗3A
∗
0 = B−2K

3. Thus K−3A∗3A
∗
0 = K−3B−2K

3 = B−8. This last relation is
equivalent to A∗3A

∗
0B
∗
−8 = K3. Therefore,

β+
−2 = K3

∗ (β
+
−8) = A∗3A

∗

0B
∗

−8(β
+
−8) = A∗3A

∗

0(β
+
−8). (70)

It follows from our definitions that A∗3(β
+
−2) = β−8 . (This is just the first

relation in Equation 69, with the indices shifted by 4.) Combining this with
Equation 70 we get the third relation in Equation 69.

A rearranged version of the second relation of Equation 69 gives the
relation A∗4(α

+
−6) = α−7 . Also, B∗2A

∗
7A
∗
4 = K3. Thus

α+
0 = K3(α+

−6) = B∗2A
∗

7A
∗

4(α
+
−6) = B∗2A

∗

7(α
−

7 ) = B∗2(α
−

7 ). (71)

The last equality comes from the fact that α−7 is fixed by A∗7. ♠

By construction Z∗0 is an immersed infinite cylinder, invariant under the
elements K∗ and J∗. We will draw pictures of Z∗0 and argue that it is in fact an
embedded cylinder which links the axis of K∗. The logic behind our pictorial
proof runs as follows: We think of Z∗0 as the image of a combinatorially

defined cylinder Z̃0 under a map φ : Z̃0 → Z∗0 . It suffices to prove that

the composition π ◦ φ maps Z̃0 homeomorphically onto the punctured plane.
This is true iff π(Z∗0) is a triangulation of the punctured plane. (Recall that
π maps geodesics to straight line segments.) By looking at the pictures we
can see that this is the case. We omit the straightforward numerical analysis
which shows that our pictures are accurate enough. In §10.3 we will sketch
our method for drawing these pictures.

Figures 5.3, 5.4 and 5.5 respectively show A∗(0), B∗(0) and A∗(1). In all
the figures, the darkest line is the projection of halfturn axis.
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Figure 5.3

Figure 5.4

Figure 5.5
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Figure 5.6 shows the whole tiling. We have erased most of the lines which
lie inside the tile, leaving only the lines of (hyperbolic) bilateral symmetry,
which are drawn in grey.

Figure 5.6

Looking at Figure 5.6 we can see that Z∗0 is an embedded cyclinder which
links the axis of K∗. Let ∆∗0 be the component of H3 − Z∗0 which contains
this axis. Then ∆∗0 is an infinite open solid cylinder with boundary Z∗0 . The
quotient (∆∗0 ∪ Z∗0)/K

3
∗ is clearly compact.
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5.4 The Transcription

Each face of Z∗0 is paired to itself by one of the halfturn pairings. The grey
lines are the projections of the axes of these halfturn pairings. Being equiv-
ariant under the action of K∗, the action of the halfturn pairings descents
to the quotient Q∗0 = (∆∗0 ∪ Z∗0 )/K3

∗ , which is a solid torus with polyhedral
boundary. Let Q∗0/∼ be the identification space obtained by folding each tile
in half, via the relevant halfturn pairing. The relations satisfied by the half-
turn pairings, given in Lemma 4.5, imply that the edges of Q∗0 are identified
in groups of 3, and that the dihedral angle around each edge (away from a
vertex) is 2π. The dihedral angle around the axes of the halfturn pairings is
π. Everywhere else, the quotient is a manifold. In short, Q∗0 is a compact
hyperbolic orbifold.

Let Γ∗(4, 7) be the group generated by the halfturn pairings. The fact
that Q∗0 is a compact orbifold implies that Γ∗(4, 7) is a co-compact lattice in
Isom(H3) and that every relation in Γ∗(4, 7) is a consequence of the ones
in Lemma 4.5. These facts are typically established in connection with
Poincarè’s theorem on fundamental polyhedra [B]. In particular, there is
a homomorphism h : Γ∗(4, 7) → Γ(4, 7) which extends the obvious map
sending A∗n to An and B∗n to Bn.

Lemma 5.4 h is surjective.

Proof: Looking at the chart in §4.8 we see that I1, I2I1I2 and I2I3I2 are all
in the image of h. Note that I2 = (I2I3I2)(I2I1I2)(I2I1I3). Hence I2 is in the
image of h. By symmetry, so is I3. ♠

Let [Z0] be as in §4. Recall from §4.1 that [E0K] and [E∞K] are the two
fixed points of I2I1I3. In §6-10 we will prove that [Z0] ∪ [E0K] ∪ [E∞K] is a
tamely embedded 2-sphere and that one of the complementary components
∆0 is such that the Γ(4, 7)-orbit of ∆0∪ [Z0] tiles the domain of discontinuity
Ω(4, 7). Moreover, we will show that Ω(4, 7)/Γ(4, 7) = Q0/∼, a space defined
just as above, but with the stars left off. Modulo these details, there is a
homeomorphism h′ : ∆∗0 ∪ Z∗0 → ∆0 ∪ [Z0] which intertwines the halfturn
pairings of this chapter with the reflection pairings of §4.

It follows formally from all of this that h′ extends to a universal cover-
ing map h′′ : H3 → Ω(4, 7) which is compatible with the homomorphism h.
Thus h′′ (or h′) induces an orbifold homeomorphism from Q∗0/∼ to Q0/∼.
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This puts the hyperbolic orbifold structure on Ω(4, 7)/Γ(4, 7).

Remarks:
(i) H3 contains a network of geodesics, the axes of halfturns which are
Γ∗(4, 7)-conjugate to the halfturn pairings. h′′ maps each geodesic in this
network to an arc of a C-circle. The endpoints of this arc are contained in
the limit set Λ(4, 7) and the rest of the arc is contained in Ω(4, 7). There is
a second network of geodesics in H3, corresponding to elements which are
Γ∗(4, 7)-conjugate to the axes of the C∗n halfturns. h′ can be chosen so as
to respect the dihedral symmetry of the domain and range, meaning that h′

conjugates the C∗n halfturns to the antiholomorphic symmetries of [Z0]. Thus
h′′ maps each geodesic in the second network to an R-circle, necessarily con-
tained in Ω(4, 7). The model for the map is the univeral covering from the
line to the circle. Considering the two networks at the same time, it seems to
us that there is a kind of fibered quality to the covering h′′ : H3 → Ω(4, 7).
Geodesics in the first network are never wrapped up and geodesics in the
second network are always wrapped up.
(ii) In [K] one can read how the usual covering of the modular surface by
H2 is given as a ratio of modular forms. We wonder if there is a similar
description for a covering map H3 → Ω(4, 7) which is isotopic to h′′.

5.5 Topology of the Quotient

Let Nε be the ε-neighborhood of the axis of K∗ in H3. If ε is small then Nε

is contained in the interior of ∆∗0. Choose such an ε and let Q∗01 = Nε/K
3.

Let Q∗02 be the closure of Q∗0 − Q∗01. We have Q∗0 = Q∗01 ∪ Q∗02. The common
boundary is a torus.

Q∗02 is product of a torus with an interval. The outer boundary component
of Q∗02 has the tiling Z∗0/K

3
∗ on it. We can foliate each tile of this tiling by line

segments, running transverse to the line of bilateral symmetry of the tile, in
a way which respects the bilateral symmetry. Figure 5.7 shows a schematic
picture. (The tiling in Figure 5.7 is locally equivalent to the ones in Figures
4.1, 4.9 and 5.6.) The dark arrow in Figure 5.7 indicates the action of K3

∗ .
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Figure 5.7

The foliations on each tile piece together to give a circle foliation of the
outer boundary component of Q∗02. Using the product structure on Q∗02 we
obtain an annulus foliation of Q∗02. Here is the key observation: By construc-
tion, the identifications on Q∗02 induced by ∼ respect this foliation.

Let T1 be a torus of revolution in R3. Let T2 be a thinner torus of
revolution contained in the interior of T1. Note that ∂Q∗01 inherits a circle
foliation from the circle foliation on the inner boundary of Q∗02. We identify
Q∗01, a solid torus, with (R3 ∪∞) − T1 in such a way that each circle in the
foliation on ∂Q∗01 is trivial in the first homology group H1(T1). We idenfity
Q∗02 with T1 − T2. This region is obtained by revolving an annulus about the
z-axis, and the obvious foliation by annuli is identified with our foliation of
Q∗02.

The first half of Figure 5.8 shows a generic leaf of our annulus foliation.
The three white points are the intersections of the boundary of the annulus
with the edges of the tiles. The three black points are the intersections of the
same boundary with the lines of symmetry of the tiles. The curved arrows
indicate the identifications to be made from the folding. The second half
of Figure 5.8 shows what happens when the identifications are made. The
result is simply a disk with 3 cone points labelled by Z/2.
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Z/2
Z/2

Z/2

Figure 5.8

There are 9 exceptional fibers in our annulus foliation; these are the ones
which intersect vertices of the tiling. It is easy to see that the exceptional
fibers have the same quotients, topologically speaking, as the generic ones.
Hence Q∗02/∼ is a solid torus with a 3-strand braid of Z/2 cone singularities.
We identify this solid torus with T1. All in all, Q∗0/∼ has underlying space S3,
and singularity locus a 3-strand braid equipped with a Z/2 cone singularity
structure.

We can draw the braid. The key to doing this is to make the right hand
side of Figure 5.8 vary canonically, and hence continuously, with the left
hand side. We parametrize the inner boundary of the annulus on the left
by θ ∈ [0, 2π]. To each black point p on the left we can assign the pair
(θ(p), d(p)). Here θ(p) is the coordinate of p on the circle and d(p) is the
distance between the white points which flank p. On the right, we place a
black point p′ at the point

d(p)

10
exp(iθ(p)). (72)

The semi-arbitrary factor of 1/10 is present to keep p′ inside the disk at right.
In an exceptional fiber, one of the d-values is zero. Note that p′ = 0 when

d(p) = 0. This phenomenon allows our placement to vary continuously even
when we pass through a singular fiber. What happens is that one of the cone
points passes through the origin and then continues on its way.

When we perform this construction for each of the fibers (or, more prac-
tically, for 1000 sample fibers) we obtain three curves which run through T2.
Projecting these curves to a plane we get the braid shown in Figure 5.9.

43



Figure 5.9

The standard generators of the braid group are given by

A B

Figure 5.10

We can identify A (or A−1) with the crossings that occur near the outside
of Figure 5.9, and B (or B−1) with the crossings that occur near the inside.
For instance, the crossing closest to the top edge of Figure 5.9 counts as an A.
In this way, the braid in Figure 5.9 can be interpreted as a word in positive
powers of A and B.

This braid in Figure 5.9 is rather too complicated for our taste. When
we perform 5 Dehn twists of T1 (respecting the annulus foliation) we get the
braid shown in Figure 5.11.
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Figure 5.11

This braid has representation (AB−2)3. A single Dehn twist introduces
the element (AB)−3. Thus, (AB)−15 times the braid in Figure 5.9 is the braid
in Figure 5.11. Hence, the braid in Figure 5.9 is equivalent to (AB)15(AB−2)3,
the braid mentioned in connection with Theorem 1.1.
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6 The View from the Inside

6.1 Overview

We defined Z in Equation 29 of §4. Figure 6.0, which is a compendium of
pictures from §4, shows the building blocks of Z. We have left off the word
notation, as we will not need it below.
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Figure 6.0

We also worked out the symmetries of these pieces. These symmetries are
given in Lemmas 4.1-4.4. In this chapter we will analyze how these pieces fit
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together. That is, we will analyze the combinatorics and topology of Z and
[Z]. During our analysis we will make 3 assuumptions:

Combinatorial Assumption: We assume that the intersection of any pair
of tetrahedra in Z is exactly the convex hull of the set of vertices common
to both. This assumption allows us to piece Z together simply by looking at
the vertices.

Homeomorphism Assumption: We assume that the projectivization map
Θ : Z → [Z] is a homeomorphism.

Purity Assumption: We say that a pure simplex in Z is one whose ver-
tices all have the same type, positive or negative. For example •0 on •5 is a
pure negative edge. We make the assumption that all the vectors in a pure
simplex have the same type. This assumption allows to predict the types of
all the vectors in a simplex just by looking at the dots in the Figure 6.0.

In this chapter we will not dwell on the validity of the assumptions. (It
turns out that the second one is flawed, and we will patch this up in §8.)
The point is that we want to analyze everything combinatorially first.

We define A(2n,±) = KnA(0,±), where

A(0,−) = [•3 • (−3)] on [•(−7) • (−2) • 2 • 7];

A(0, +) = [•3 • (−3)] on [•7 ◦ 5 ◦ 0 ◦ (−5) • (−7)] (73)

Note that A(2n) = A(2n, +) ∪ A(2n,−). We split this tile apart for
the purposes of visualization only. We will build Z in three layers, writing
Z = Z1 ∪ Z2 ∪ Z3, where

Z1 =
∞⋃

m=−∞

B(2m + 1); Z2 =
∞⋃

m=−∞

A(2m,−); Z3 = Z − (Z1 ∪ Z2). (74)

Looking at the vertices in Figure 6.0 we see that Z1 ∪ Z2 ⊂ N−. All the
pictures from §4 come from Z3. Informally speaking, Z2 fits around Z1 like
an infinite sheath fits around an infinite sword. Z3 fits around Z1 ∪ Z2 in
the same way. Figure 6.1 shows a schematic picture, both from the side and
from the front.
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Z0

Z1
Z2

Z3

Figure 6.1

It is useful to make a small modification of Z. Henceforth we delete from
Z all the pure positive simplices. The maximum dimension of such a simplex
is 2. Given the purity assumption, this causes no harm: We only care about
Z ∩ (N− ∪ N0). The reason that we delete the positive simplices is that it
simplifies the topology of Z. It will allow us to write Z3 = Z0× (−1, 1). Here
Z0 is the set of null vectors in Z.

Let D be the open disk of radius 2 centered at the origin in the plane.
Let S1 ⊂ D be the unit circle. One main goal of this chapter is to prove

Lemma 6.1 (Combinatorial Lemma) The pair ([Z], [Z0]) is homeomor-
phic to the pair (D, S1) × R.

Following the proof of the Combinatorial Lemma we will analyze the
action of the reflection pairings on the triangles of [Z]. For reference these
reflection pairings are shown in the chart in §4.9.

6.2 Building Z

Looking at Figure 6.0, and recalling Equation 37, we see that B(1) and
B(3) share the vertices •0, •2 and •4. Likewise B(1) and B(5) share the
vertices •2 •3 and •4. Finally, B(1) and B(2m + 1) have no vertices in
common if |m| ≥ 3. Hence B(2m + 1) ∩ B(2m + 3) is a triangular face,
B(2m + 1) ∩ B(2m + 5) is a triangular face, and all other intersections are
empty.

Z1 is built from an infinite supply of “octahedra” as follows: First, glue
the octahedron corresponding to B(2m + 1) to the one corresponding to
B(2m + 3) along the common face. The result is a solid cylinder. After this
step, glue the face on the octahedron corresponding to B(2m + 1) to the
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corresponding face on B(5m + 1). These two faces share a common edge,
one the gluing merely folds the faces together across this edge, like a hinge
closing. It is not hard to see (especially if one builds a model) that the
resulting space is homeomorphic to a solid cylinder.
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Figure 6.2

∂Z1 is tiled by triangles. Figure 6.2 shows the lift to R2 of this tiling.
The dotted line segment connects a point to its image under the generator
of the deck group. We have labelled each triangle by the integer k if that
triangle is a face of B(k). We have also indicated the action of K and K3.
The action of J , defined in Equation 19, has the effect of rotating the figure
by 180 degrees about its center. The circular dot labelled k represents the
point •k.

Before we start building Z2 we want to bring up a different analogy, which
may help with the visualization. Suppose we are construction workers and
we have just built an infinite cylindrical tower. We would like to add a layer
of bricks around the outside of the tower, so as to thicken it. The shaded par-
allelogram in Figure 6.2 indicates the location of one of the attaching-spots.
(The whole surface of Z1 is tiled by translates of this parallelogram.) The
brick we attach to the shaded parallelogram is A(0,−). The only misleading
part of our analogy is that Z1 is not contained in the interior of Z1 ∪ Z2.
The boundaries ∂Z1 and ∂(Z1 ∪Z2) share all the vertices •(2m+1), and the
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edges joining these vertices. Thus, our bricks are rather peculiar; the top
and bottom faces are not completely separated by the sides, but rather taper
down towards each other and meet along a pair of opposite edges. In Figure
6.3 these opposite edges are •7 on •3 and •(−7) on •(−3).
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Figure 6.3

The middle of Figure 6.3 shows a side view of A(0,−). The right hand
side of the figure shows the front of A(0,−), from the point of view of the eye.
We think of this as the top of A(0,−1). The left hand side shows a (slightly
distorted) view of what we think of as the bottom of A(0,−). Note that the
shaded part on the left is just a distorted copy of the shaded parallelogram
in Figure 6.2. Thus, the bottom of A(0,−) attaches onto Z1. The unshaded
part on the left is what we call the sides of A(0,−).

Anyone who lays bricks around a tower would know that it is not enough
to attach the bricks to the tower itself. The bricks have to be attached to
each other, on their sides. Looking at the labelling of A shown in Figure 6.2,
we can see that A(2m,−) and A(2n,−) share a common triangular side iff
|m − n| = 2. For instance, A(0,−) and A(4,−) share the vertices •2, •(−3)
and •7. These relations are what glue the sides of the bricks together.

The pieces A(2m,−) fit around Z1 to make a fatter solid cylinder. Figure
6.4 shows ∂(Z1∪Z2) in the same way that Figure 6.2 shows ∂Z1. The vertices
are labelled as in Figure 6.2.
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Figure 6.4

Before we put the third layer together, we analyze an example. One of
the tetrahedra in Z3 has vertices •(−3), •3, ◦0, ◦5. Call this tetrahedron
T . The maximal positive simplex of T is T+ = ◦0 on ◦5. We have already
deleted this edge from Z. Thus T does not contain this edge. The maximal
negative simplex is T− = •(−3) on •3. But this edge lies in ∂Z2. It is the bold
edge shown in Figure 6.4. In short, T does not contain its pure simplices.
We think of T as the open join of T+ and T−. That is, T is the union of the
open line segments which connect T− to T+. Under the purity assumption,
every such segment joins a point in N+ to a point in N−.

Lemma 6.2 Let l be a line segment which joins a point in N− to a point in
N+. Then the projectivization [l] intersects S3 once, transversally. Hence l
intersects N0 once.

Proof: The projectivization [l] is a circular arc, one of whose endpoints lies
outside S3 and one of whose endpoints lies inside S3. Such a circular arc
intersects S3 exactly once, transversely. This intersection point corresponds
to l ∩ N0. ♠

Let T0 = T ∩ N0. It follows from Lemma 6.2 that

T = T0 × (−1, 1), (75)
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By “equal”, we mean homeomorphic.
Every tetrahedron in Z3 is the open join of its maximal positive and nega-

tive sub-simplices. Equation 75 holds for every tetrahedron in Z3. Therefore

Z3 = Z0 × (−1, 1). (76)

Given a tetrahedron T , the cross section T0 depends on the way the vertices
are partitioned. If T has 2 positive vertices and 2 negative vertices then T0

is a quadrilateral. If T has 3 vertices of one type and 1 vertex of the other
type then T0 is a triangle. Compare the heuristic comments at the end of
§4.6.

The inner boundary of Z3 is Z0 × {−1}, which we can identify with
∂(Z1 ∪Z2). Thus Z is obtained from Z1 ∪Z2 simply by adding on a “collar”
neighborhood. Thus Z is homeomorphic to D×R. We can identify Z0 with
Z0 ×{0} ⊂ Z3, a set which is homeomorphic to S1 ×R. This establishes the
Combinatorial Lemma.

As one more piece of information we show that (under our three assump-
tions) [Z] is transverse to S3. Under the purity assumption [Z1] ∪ [Z2] ⊂
CH2. To show that [Z] is transverse to S3 it suffices to show that [Z3]
is transverse to S3. Recall that Z3 is homeomorphic to Z0 × (−1, 1), and
[Z0] = [Z] ∩ S3. It suffices to prove that [T ] is transverse to S3 for any
individual simplex T in Z3. But this follows immediately from Lemma 6.2.

6.3 Pairing the Triangles

In this section we analyze how the reflection pairings act on the triangles of
[Z]. First we will see what happens to triangles in [Z1] ∪ [Z2] and then we
will see what happens to triangles in [Z3].

Say that a border triangle is a triangle which is contained in two distinct
pieces of [Z]. Say that an internal triangle is one which is contained in
a single piece. For instance, the triangle with vertices [•(−3)], [•3], [•7] is
contained only in [A(0)]. This triangle is paired to itself by A0, but no other
pairing reflection acts on it. All the internal triangles have this property.

Lemma 6.3 (Triangle Pairing Lemma) Modulo K3, every border trian-
gle of [Z] is paired to two other border triangles.

Proof: Figure 6.5 shows the action of the reflection pairings on the vertices
of ∂[Z1]. The double arrow labelled by a j shows the pairing action of the
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complex reflection which stabilizes Aj and also the pairing action of the
complex reflection which stabilizes Bj. (They both have the same action
on these points.) Based on Figure 6.5 we deduce the action on the border
triangles of Z which are contained in [Z1] ∪ [Z2]. Note that all the triangles
on ∂([Z1]∪ [Z2]) are actually internal triangles, considered as triangles of [Z].
These triangles sit inside the even [A] pieces, and are only exposed during
our construction for the purposes of visualization.
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Figure 6.5

Since any border triangle belongs to two tetrahedra of Z, it is paired two
other border triangles. Thus, we get a chain of pairings. Here we list 3
chains, using column vectors to represent triangles. Modulo K3, which shifts
the indices by +6, the chains all have period 3.




•2
•0

•(−2)


 ←→

B1



•2
•0
•4


 ←→

B3



•2
•6
•4


 ←→

B5



•8
•6
•4


 ... (77)




•(−2)
•2
•3



 ←→

B1




•4
•2
•3



 ←→

B5




•4
•8
•3



 ←→

A6




•4
•8
•9



 ... (78)



•(−1)
•(−2)
•3


 ←→

B1



•(−1)
•4
•3


 ←→

A6



•(−1)
•4
•9


 ←→

A2



•5
•4
•9


 ... (79)
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All the other chains can be deduced from the action of K, which shifts
the indices forward by +2. In all, every border triangle in [Z1]∪ [Z2] fits into
7 chains, each of which is equivalent via K or K2 to the ones listed. Here is
an important conclusion for us: Modulo K3 the border triangles in [Z1]∪ [Z2]
are identified in triples.

Every border triangle in [Z3] has vertices of both types. Thus, each bor-
der triangle in [Z3] corresponds to an edge of [Z0]. These edges, of course,
are plotted in Figure 4.9. The pairing reflections preserve the types of the
vertices and thus respect the product structure of [Z3]. Hence, the border
triangles are paired together in precisely the same way that the edges of [Z0]
are paired together. One can see from Figure 4.9 that the edges of [Z0] are
paired together in triples, mod K3. This follows from the relations in Lemma
4.5, as we pointed out in §5. This completes the proof of the Pairing Lemma.
♠

Corollary 6.4 The product of three consecutive pairings in any of our chains,
considered as an element of PU(2, 1), is either K3 or K−3.

Proof: There are two ways to see this. First of all, we would do direct com-
putations, referring to the chart in §4.9. For example: B−1B1B3 = 3.2.212 =
312 = K−3. Alternatively, the action of such a product on a border triangle
moves the border triangle by a power of K3. It is easy to see that no border
triangle is totally geodesic, and an element of PU(2, 1) is determined by its
action on a non-totally-geodesic triangle. ♠

The reader should compare Lemma 6.4 to Lemma 4.5.

6.4 Pairing the Edges

We define border edges and internal edges exactly we we did for triangles,
with the change that a border edge belongs to 3 distinct pieces rather than
2. To justify this, we prove

Lemma 6.5 Every edge of [Z] is contained in either 1 or 3 pieces.

Proof: For the edges in [Z1] ∪ [Z2] this statement can be gleaned from the
chains listed in the previous section. For instance the first chain shows that
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[•0 • 4] belongs to B1 and B3. The second chain shows that [•4 • 8] belongs
to A6 and B5. Hence [•0 • 4] belongs to A2 in addition to B1 and B3. A
routine inspection shows that this is it for [•0 • 4]. The other edges have
similar treatments. We omit the tedious details. Recall that we have deleted
the pure simplices from [Z3]. Similar to the situation for triangles, the edges
of [Z3] are in bijection with the vertices of [Z0]. Looking at Figure 4.9 we can
see that each vertex belongs to three tiles. Hence, each edge of [Z3] belongs
to 3 pieces. This covers all the cases. ♠

Lemma 6.6 (Edge Pairing Lemma) Modulo K3, every border edge of [Z]
is paired to one other order edge.

Proof: The proof is essentially the same as for the case of triangles. For
the case of border edges in [Z1] ∪ [Z2] we can get the information from our
chains. For instance, looking at the top line of the first chain, we see that
[•2 • 0] is paired to itself and to [•2 • 6]. This edge is paired to itself and to
[•8 • 6], but this last edge is equivalent to [•2 • 0]. To figure out the pairings
of edges in [Z3] we just have to look at the pairings of the vertices in Figure
4.9. ♠

We say that two edges e1, e2 ∈ Z are equivalent if there is some γ ∈
SU(2, 1) such that γ(e1) is a multiple of e2.

Lemma 6.7 Every edge of Z3 is equivalent to one of the three edges
[

•1
◦(−7)

]
;

[
•1
◦4

]
;

[
•1
◦9

]

These three edges are pairwise inequivalent.

Proof: Each edge of Z3 is contained in three pieces, and one of them has
the form A(2m+1). (Compare the vertices in Figure 4.9.) Hence, each edge
of Z3 is equivalent to an edge which is contained in A(1). In Figure 6.0 we
see that there are 4 edges of Z3 contained in A(1). (Recall that the pure
edges have been deleted.) Three of the edges are the ones listed above, and
the fourth one is paired to [•1 ◦ 4] by the pairing reflection A1. As for the
inequilvalence, we compute explicitly that the values δ(•1, ◦j) are pairwise
unequal for j = −7, 4, 9. Here δ is as in Equation 6. ♠
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7 The Proof Modulo the Assumptions

7.1 Overview

We continue to work with the complex Z. As in §6 we assume that Z satisfies
the 3 assumptions listed in §6.1.

The Combinatorial Lemma of §6 says that ([Z], [Z0]) is homeomorphic to
(D, S1) ×R. Here D is the open disk of radius 2. Recall that K([Z]) = [Z].
Being loxodromic, K acts properly on S3−[E0K]−[E∞K], so that [E0K] and
[E∞K] are the two accumulation points of [Z0] which are not contained in
[Z0]. It follows from the piecewise analytic nature of the projectivization map
that [Z0]∪ [E0K]∪ [E∞K] is a tamely embedded 2-sphere whose complement
consists of two components, both 3-balls.

Using the fact that [Z] is homeomorphic to D×R, together with the fact
that [Z] has a product structure in the neighborhood of [Z0], we see that [Z−]
is an open, tamely embedded 3-ball. Moreover, CH3 − [Z−] consists of two
open components, both 4-balls. Each component of CH2 − [Z−] extends to
one of the components of S3 − [Z0], in an obvious way. In the next section
we will choose the “correct” component ∆− of CH2 − [Z−]. Let ∆0 be the
corresponding component of S3 − ([Z0] ∪ [E0K] ∪ [E∞K]).

We define
Q− = (∆− ∪ [Z−])/K3. (80)

We let ∼ be the equivalence relation on Q− induced by the reflection pairings.
We define

O = Q−/∼ . (81)

It is easy to see that O is a Hausdorff space. Since ∼ introduces no rela-
tions on ∆−/K3, the space O contains an open dense subset which is locally
isometric to CH2. We put a metric on all of O by taking the completion of
the complex hyperbolic metric defined on this subset. We have the quotient
map Z → O. Let O0 be the image of the 0-skeleton of Z in O. It is not hard
to see that O0 consists of the 6 points, the images of •1, ..., •6.

Lemma 7.1 (Orbifold) Given the assumptions, the following is true: Ev-
ery point of O − O0 has a neighborhood which is locally isometric either to
CH2 or to CH2/I, wnere I is a complex reflection.

The Orbifold Lemma implies that O is a complex hyperbolic orbifold.
Each of the finitely many unanalyzed points is the apex of a cone on a
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compact spherical orbifold; and the orbifold structure extends right across
the apex. A vastly more general result is established in [T2, Codimension 2
Conditions Suffice].

The following corollary fits into the context of fundamental domains for
coset decompositions. Compare [B, §9.6].

Corollary 7.2 Given the assumptions, the following is true:

1. O = CH2/Γ(4, 7).

2. CH2 is tiled by Γ(4, 7)-translates of Ω.

3. The stabilizer subgroup of Ω, in Γ(4, 7), is generated by K3.

Proof: Every complex hyperbolic orbifold is the quotient of CH2 by a
discrete group. (This is generally true for orbifolds modelled on analytic
spaces. See [T2].) Thus, O = CH2/Γ′. It is easy to see that Γ′ is generated
by the reflection pairings, and these in turn generate Γ(4, 7). Hence Γ′ =
Γ(4, 7).

Let π : CH2 → O be the universal covering map. Since ∼ makes no
identifications on ∆−, we have an embedding ∆−/K

3 ↪→ O. Since ∆− is
simply connected we can identify one component of π−1(∆−/K

3) with ∆−
itself. Moreover, every element of Γ(4, 7) either stabilizes ∆− or moves it
disjointly from itself. By construction, the translates of ∆− are dense in
CH2. Hence, the translates of ∆− ∪ [Z−] tile CH2.

Since K3 is the product of reflection pairings−see Lemma 4.5−we know
that K3 is contained in the stabilizer subgroup of ∆−. By construction, the
stabilizer subgroup of ∆− in PU(2, 1) is the cyclic subgroup generated by
K. If K ⊂ Γ(4, 7) then ∆−/K3 would not embed into O. In summary, the
stabilizer subgroup of ∆− is exactly the cyclic subgroup generated by K3. ♠

Under our assumptions, the tiling of CH2 by translates of ∆− ∪ [Z−]
extends to a tiling of Ω(4, 7) by translates of ∆0∪ [Z0]. This follows from the
fact that [Z] has a product structure in a neighborhood of [Z0].

We have stated our results in a conditional way because Z does not sat-
isfy the Homeomorphism Assumption, as we will see in §8. However, the
replacement Z ′ satisfies all the assumptions and the proofs for Z ′ work the
same way they (would) work for Z.
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7.2 Proof of the Orbifold Lemma

We first explain how to pick the “correct” component of CH2 − [Z−]. Our
definition requires us to choose a border triangle σ but we will see that our
definition is independent of this choice.

σ

R
P

P

P3

σ 1

σ 2

P4

P2

P1

Figure 7.1

Let P and P1 be the two pieces containing σ. Let RP be the reflection
pairing associated to P . Let σ1 = RP (σ) ⊂ P . Let P3 be the other piece
which contains σ1. Let P2 = RP (P3). See Figure 7.1. We define ∆− to be
the component of CH2 − [Z−] which is separated from P2 by [Z]. This is
the shaded region in Figure 7.1.

Lemma 7.3 Switching the roles of P and P1 does not change the definition
of ∆−.

Proof: If we interchanged the roles of P and P1 then we would get P2 =
RP1

(P4), where P4 ∩P1 = σ2, as shown in Figure 7.1. It suffices to show that
P2 = RP RP1

(P4). We compute

RP RP1
(P4) = RP RP1

RP4
(P4) = K−3(P4) = P1.

This follows from Lemma 6.4 or Lemma 4.5, depending in the choice of σ. ♠

Lemma 7.4 The definition of ∆− does not depend on the choice of σ.

Proof: For the sake of argument let’s write ∆−(σ), etc. to denote the
dependence on σ. Every two border tiles σ and τ can be joined in a finite
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sequence σ = σ0, ..., σn = τ such that σj and σj+1 share an edge. Thus, it
suffices to consider the case when two border triangles share an edge.

If σ and τ share an edge, then so do σ1 and τ1. Hence, so do P3(σ) and
P3(τ). Hence, so do P2(σ) and P2(τ). But then both of these sets lie in the
same component of CH2 − [Z]. ♠

Note that the map RP locally interchanges the two sides of [Z ′]. For this
reason, ∆− has the following property. For each piece [P ] there is an open
neighborhood UP such that [P−] ⊂ UP and

RP (UP ∩ ∆−) ∩ ∆− = ∅. (82)

This is one of the hypotheses of the Poincarè’ theorem on Fundamental Poly-
hedra. See [B].

Now that we have chosen ∆− we define

O2 = ∆− ∪ [Z−]; O1 = O2/K
3. (83)

We have quotient maps

O2
−→

π2 O1
−→

π1 O. (84)

We want to analyze the neighborhood of a point x ∈ O. We choose lifts
xj ∈ Oj so that π2(x2) = x1 and π1(x1) = x.

π2 is a covering map and π1 is an injection on π2(∆−). Hence, x has a
neighborhood locally isometric to CH2 if x2 ∈ ∆−. If x2 is contained in
the interior of a piece of [Z1] then only one reflection pairing acts on x2.
Therefore, the neighborhood of x in O is locally isometric either to CH2

or to CH2/I. Here I is a complex reflection. Henceforth we assume x2 is
contained in more than one piece of [Z]. There are two cases, the first of
which is crucial.

Case 1: Suppose that x2 is contained in the interior of a border triangle
σ. Let β be a small metric ball in CH2 centered at x2. We choose β so
small that it is disjoint from all its K-translates. The argument in the proof
of Lemma 7.3 shows that P and P1 are both pieces of RP1

([∆−]). Hence, the
sets

S1 = [∆−] ∩ β; S2 = RP ([∆−]) ∩ β; S3 = RP1
([∆−]) ∩ β. (85)

partition β exactly, as shown in Figure 7.2.
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From the Triangle Pairing Lemma there are three triangles in O1, one of
them π1(σ), which are paired together by the equivalence relation ∼. The
three sets

S ′1 = π2(S1); S ′2 = π2(R
−1
P (S2)); S ′3 = π2(R

−1
P1

(S2)) (86)

are neighborhoods of our three triangles in O1. Moreover, π1 maps S ′1∪S ′2∪S ′3
onto an isometric copy of β, and this isometric copy is a neighborhood of x
in O.

Case 2: In this case x2 is contained in the interior of a border edge of
[Z−]. We remark that this challenging case is probably unnecessary. With
small modifications, our situation probably would fit into the machinery of
[T2, Codimension Two Conditions Suffice], and Case 1 is enough.

Rather than work out the general case in the abstract we will work out the
particular example where the border edge is [•2, •7]. Every other example
has the same analysis, on account of the uniformity of the results in the Edge
Pairing Lemma, the Triangle Pairing Lemma, Lemma 4.5 and Lemma 6.4.

Looking at Figure 7.0, we see that

[•2, •7] = [A(0)] ∩ [A(4)] ∩ [B(5)]. (87)

Modulo K3 the only edge paired to [•2, •7] is [•1, •2]. The pairing is effected
by A4. Looking at Figure 7.0 we see that

[•1, •2] = [A(4)] ∩ [B(3)] ∩ [B(−1)]. (88)
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The pairing A0 fixes [•2, •7] and the pairing B3 fixes [•1, •2]. We have
A0A4B−1 = K−3 = A4B3B−1, from Equations 78, 79 and Lemma 6.4. Hence
A0A4 = A4B3.

Let β be a small metric ball about x2, as in the previous case. [•2, •7]∩β
is contained in the boundary of the pieces:

S1 = β ∩ [∆−]; S2 = β ∩ A0([∆−]);

S3 = β ∩ A4([∆−]); S4 = β ∩ A4B3([∆−]). (89)

Let’s compute the intersection Sij = Si ∩ Sj :

S12 = β ∩ [A(0)]; S13 = β ∩ [A(4)]; S14 = β ∩ [B(5)];

S23 = β ∩ A4([B(5)]) S24 = β ∩ A0([A(4)]) S34 = β ∩ A4([B(3)]). (90)

The third equation is the most complicated. It follows from

A4B3([B(−1)]) = A4B3B−1([B(−1)]) = K3([B(−1)]) = [B(5)],

which in turn follows from Lemma 6.4. To summarize, our calculations show
that Si ∩ Sj = β ∩ [P ], where [P ] is either a piece of [Z] or the translate of
a piece. This pattern of intersection implies that the pieces S1, S2, S3, S4 fit
together to exactly partition β.

There is a nice 3-dimensional model of the partition of β. Let τ be a
tetrahedron. Let s1, s2, s3, s4 be the cones to the barycenter of the faces
of τ . Thus τ = s1 ∪ s2 ∪ s3 ∪ s4. The pattern of intersection of the sj is
the same as the pattern of intersection of the Sj. The complex reflection
A0 interchanges S1 and S2, and also interchanges S3 and S4. In our 3-
dimensional combinatorial model, this reflection corresponds to a 180 degree
rotation about the edge joining the midpoint of ∂s1 ∩ ∂s2 to the midpoint of
∂s3 ∩ ∂s4. To get the actual 4-dimensional picture, we take the product of
the three dimensional model with an interval.

Define

S ′12 = S1 = A0(S2); S ′34 = A4(S3) = B3A4(S4). (91)

The images π2(S
′
12) and π2(S

′
12) respectively are neighborhoods of π2([•2, •7])

and π2([•1, •2]). Hence N = π1(S
′
12 ∪S ′34) is a neighborhood of x in O. From

everything we have said, there is a degree 2 branched covering β → N which
commutes with A0, maps S1 and S2 to π1(S

′
12) and maps S3 and S4 to π1(S

′
34).

This shows that N is isometric to β/A0.
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8 Refining the Complex

8.1 The Flaw

The Homeomorphism Assumption, used in §6 and §7, is flawed. It turns
out that [T ] is not embedded for some of the tetrahedra T in Z. Figure 8.1
illustrates the flaw. Let α1 be the complex line fixed by the reflection pairing
A1, acting projectively. Looking at Figure 7.0, we see that α1 contains the
points [•1], [◦ − 7] and [◦9], and bisects [A(1)] in a pair of triangles. Figure
8.1 shows a computer plot of α1 ∩ [A(1)]. The grey circle is α1 ∩S3. If [A(1)]
was embedded then [A(1) ∩ L] would be a pair of embedded triangles.

Figure 8.1

In this chapter we will replace Z by Z ′. In §9 we will prove that Z ′

satisfies the three assumptions of §6.1. Figure 8.3 shows the slice of Z ′ which
corresponds to Figure 8.1.
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8.2 The Basic Constructions

We begin with two definitions which just use the real structure of C2,1. If
S ⊂ C2,1 is a finite polyhedron we let S0 be the set of vertices of S. We let
S be the average of the vectors in S0. We call S the barycenter of S. A map
φ : C2,1 → C2,1 is real affine if φ commutes with the operation of taking
barycenters.

Here is a canonical way to partition a 3-dimensional convex polyhedron
P ⊂ C2,1 into tetrahedra: Let σ be a face of P . If σ is a triangle, we do
nothing. If σ is not a triangle, we cone the edges of σ to the barycenter of σ,
thereby subdividing σ into triangular pieces. We subdivide all faces of ∂P in
this manner and then cone the union of all these triangles to the barycenter
of P . In one exceptional case, when P is a tetrahedron, we redefine P# = P .
In general, P# has as much symmetry as P does. (P# is closely related to
the barycentric subdivision of P , but has fewer tetrahedra. For details on
barycentric subdivision, see [Sp, p. 123].)

Suppose that φ : P 0 → C2,1 is any map. There is a unique extension
φ# : P# → C2,1 such that

1. φ#(P ) = φ(P 0).

2. If σ is a face of P then then φ#(σ) = φ(σ0).

3. The restriction of φ# to any simplex of P# is real affine.

The conditions above give the recipe for the construction of φ# from φ.
Suppose that T ⊂ C2,1 is a tetrahedron which has both positive and

negative vertices, but no null vertices. Let T− and T+ be the set of negative
and positive vertices respectively. Figure 8.2 shows two cases. The vertices
of T− are colored black and the vertices of T+ are colored white. Say that a
mixed edge of T is an edge which connects a black vertex to a white vertex.
Let e1, ..., ek be the mixed edges. Here k is either 3 or 4. Let Π0, Π1, Π2

be three parallel planes which separate T− from T+, ordered so that Π0 is
closest to T− and Π2 is closest to T+. The particular choice of these planes
is irrelevant for our combinatorial purposes.

For j = 0, 1, 2 we define

Tj =

k⋃

i=1

(ei ∩ Πj). (92)
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Figure 8.2

The point of Tj are coplanar. The grey dots in Figure 8.2 are the points
of T0∪T1∪T2. For j = −1, 0, 1 we let T j be the convex hull of Tj−1∪Tj . Here
T−1 is interpreted as T−. Combinatorially, T j is either a cube, a tetrahedron,
or the product of a triangle with an interval.

To each mixed edge ei we assign three complex numbers µj(ei), j = 1, 2, 3.
We define

φ(ei ∩ Πj) = (1 − |µj(ei)|)ei,− + µjei,+. (93)

Here ei,− is the negative endpoint of ei and ei,+ is the positive endpoint. We
also define φ to be the identity on T−. We let φj be the restriction of φ to
the 0-skeleton of T j, namely Tj−1 ∪ Tj. Finally, we define

T ′j = φ#
j (T j); T ′ =

2⋃

j=0

T ′j . (94)

The definition of T ′ depends on µ. By construction T ′ is a finite union of
tetrahedra. Note, however, that T ′ need not be a subset of T . Indeed, T ′

may not even lie in a 3-real-dimensional subspace of C2,1.
We will be interested in the case when

1. µ2(ei) and µ3(ei) are real for all i.

2. 0 < µ2(ei), µ3(ei) < 1 for all i.

In these cases, φ3 maps T 2 ∪ T 3 into T and T ′2 ⊂ T . The nontrivial part of
the perturbation in this case takes place in T ′0 and T ′1.
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8.3 Perturbing the Complex

Recall from §6 that Z = Z1∪Z2∪Z3. Our refinement of Z takes place entirely
within Z3. Recall that every tetrahedron of Z3 satisfies the hypotheses in the
previous section. We have deleted all the pure edges from Z3 and so every
edge of Z3 connects a negative vector to a positive vector.

To each edge e of Z3 we assign a vector µ(e) ∈ C×R2. Once we make this
assignment, we replace each tetrahedron T of Z3 by T ′. Here T ′ is defined
using the restriction of µ to the mixed edges of T . We obtain Z ′3 by replacing
each tetrahedron T of Z3 by T ′. As with Z3, we delete the pure positive
simplices from Z ′3. Finally, we let Z ′ = Z1 ∪ Z2 ∪ Z ′3.

For notational convenience we set T ′ = T if T is a tetrahedron of Z1 or
Z2. Thus, Z ′ is obtained from Z by replacing each tetrahedron T by T ′. If
P is a piece of Z we let P ′ be the corresponding union of tetrahedra in Z ′.
We call P ′ a piece of Z ′. Thus, the pieces of Z ′ are A′(n) and B′(n), where
n ranges in Z.

We would like to define µ so that Z ′ has all the same symmetries that Z
does. First of all, we must have µ(e1) = µ(e2) if e1 and e2 are equivalent in
the sense Lemma 6.7. This it suffices to specify µ on the three vectors listed
in Lemma 6.7. Up to a sign, the antiholomorphic map I1JB1 interchanges
the first and third vectors of Lemma 6.7 and preserves the second one. Thus,
we must take

µ

[
•1

◦(−7)

]
= µ

[
•1
◦9

]
; µ

[
•1
◦4

]
∈ R3. (95)

With δ as in Equation 6, the quantity δ(•1, ◦9) is not real, so there is no
antiholomorphic map which preserves [•1, ◦9] up to a sign. Thus, there is no
incompatibility in taking µ1([•1, ◦9]) ∈ C − R.

Here is the upshot: To define Z ′ in such a way that it retains all the
symmetries of Z we must

1. specify µ([•1, ◦2]) ∈ R3 and µ([•1, ◦9]) ∈ C × R2;

2. determine µ([•1, ◦(−7)] by Equation 95.

3. set µ([•1, ◦(−2)]) = µ([•1, ◦4]), because the reflection pairing A1 inter-
changes these two edges, up to sign.

4. extend µ to all the other edges of Z4 using the action of K.
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Compare the proof of Lemma 6.7.
We have 7 free parameters. A lot of trial and error led to the choices

µ

[
•1
◦4

]
= (.30, .55, .85) µ

[
•1
◦9

]
= (−.23 − .11

√
−1, .45, .92) (96)

8.4 The End of the Proof

We compute directly, for any tetrahedron T ∈ A(0) ∪ A(1) ∪ B(0) ∪ B(1),

1. All the vertices of T ′1 and T ′2 are negative.

2. All the vertices of T ′3 − T ′2 are positive.

There is not much to say about this computation. We just list out the vectors
and compute their norms, using interval arithmetic to control the round-off
error, as explained in §10.1. By symmetry every tetrahedron T of Z has
the two properties above. Compare Figures 8.3-8.5 below. We have already
remarked at the end of §8.2 that T ′3 ⊂ T . Combining this property with the
Purity Assumption, we see that T and T ′ agree in a neighborhood of N0.
Hence Z and Z ′ agree in a neighborhood of N0.

From a combinatorial point of view, Z ′ is just a refinement of Z. The
pieces fit together in exactly the same way. Lemmas 4.1-4.4 remain true for
Z ′ due to the symmetric way we picked µ. Because Z and Z ′ enjoy exacrly
the same symmetries, all the results go of §7 go through for Z ′ in place of Z.
In §9 we will prove that Z ′ satisfies the assumptions listed in §7.1. Combining
this fact with the results in §7 completes the proof of Theorem 1.1.

8.5 Some Pictures

Figure 8.3 shows a computer plot of [A′(1)] ∩ α1. All the triangles appear
to be (and are) embedded, indicating that all the tetrahedra in sight are
embedded. A comparison of Figures 8.1 and 8.3 shows that these figures
agree in a neighborhood of the grey circle, as desired.

66



Figure 8.3

Figure 8.4 plots [A′(0)] ∩ α0]. Here α0 is the complex line fixed by the
reflection pairing A0. Again, all triangles appear to be (and are) embedded.
Figure 8.5 plots [B′(0)] ∩ β0, where β0 is the complex line fixed by B0.
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Figure 8.4

Figure 8.5
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9 The Computations

9.1 The Purity Assumption and Affine Boundedness

In this section we verify that Z ′ satisfies the Purity Assumption, and make
an auxilliary calculation. We are interested in the three subsets: N−; N+;
and the affine patch. We first explain crude computational tests which can
verify that a simplex is contained in each of these three sets.

Given any simplex T , either in C2,1 or in C, let ρ(T ) be the maximum
Euclidean distance from the barycenter of T to a vertex of T . πj : C2,1 → C

be the jth coordinate projection. Let

Vj,±(T ) = |πj(T )| ± |ρ(πj(T ))|. (97)

For any vector X ∈ T we have the bounds Vj,−(T ) ≤ |πj(X)| ≤ Vj,+(T ). We
define

1. τ−(T ) = 1 if V 2
1,+(T ) + V 2

2,+(T ) < V 2
3,−(T ). In this case T is negative.

2. τ+(T ) = 1 if V 2
1,−(T ) + V 2

2,−(T ) > V 2
3,+(T ). In this case T is positive.

3. τa(T ) = 1 if V3,−(T ) > 0. In this case T is affinely bounded.

Otherwise we define τ∗(T ) = 0.
Our computational tests do not necessarily work right off the bat. The

simplices might be so big as to foil our crude tests. With a view towards
refining the tests, we explain how we subdivide simplices in half. If e is an
edge we define e′ = {e1, e2}, where e1 and e2 are the edges obtained by cutting
e in half. If T is a higher dimensional simplex, we choose an edge e of T and
let T e be the codimension 2 sub-simplex opposite e, so that T = T e

on e. We
define T ′ = {T1, T2} where Tj = T e

on ej . We can iterate this subdivision
process, and when we do so we cycle through the edges in such a way that
the diameters of the tetrahedra shrink to points as the process is iterated.

Here is our refined test. Suppose that τ is any of the three functions
defined above. We begin with the singleton list {T}. In general, suppose we
have a list of simplices, and S is the last member of the list. We compute
τ(S). If τ(S) = 1 we delete S from the list and repeat. If τ(S) = 0 we delete
S from the list and append to the list the two tetrahedra of the subdivision
of S. If the list becomes empty we have succeeded. Call this the subdivision
algorithm.

69



Let T1, ..., TN be the list of the N = 393 tetrahedra in the union of pieces
A′(0) ∪ B′(0) ∪ A′(1) ∪ B′(1). An arbitrary tetrahedron in Z ′ has the form
Ka(Tb) for some b ∈ {1, ..., N}. It suffices to verify the Purity Assumption
for T1, ..., TN . For each j, we compute the types of the vertices of Tj and
thereby identify T+ and T−, the maximal negative and positive simplices of
T . We then apply the subdivision algorithm, using τ− (respectively τ+), to
verify that T− (respectively T+) is negative (respectively positive). Using
this method, we prove

Lemma 9.1 (Computation 1) Tj satisfies the Purity Assumption for all
j = 1, ..., N .

For later use, we also compute

Lemma 9.2 (Computation 2) Ki(Tj) is affinely bounded for all |i| ≤ 5
and for all j = 1, ..., N .

9.2 Clarifying the Assumptions

In order to deal with the Combinatorial Assumption and the Homeomor-
phism Assumption efficiently we first need to clarify them.

We can assign a combinatorial code to each vertex of Z ′. First of all •m is
coded as (0, 1, m) ∈ Z3 and ◦n is coded as (0, 2, n). There are three vertices
on the edge [•m ◦ n]; these are coded as (j, m, n) for j = 1, 2, 3. Any other
vertex of Z ′ not already coded is the obtained as the barycenter of a finite
number of points already coded. We code the barycenter of k coded points
(ai, bi, ci) as the union

⋃
(ai, bi, ci). Two codes agree iff they are the same

subset of Z3.
We build an abstract simplicial complex Z̃ ′, as follows. Each tetrahedron

of Z ′ defines a 4-tuple of subsets of Z3. We take one tetrahedron for each
such 4-tuple, and glue two tetrahedra together along the convex hull of their
common vertices. We have a map Z̃ ′ → Z ′. Each coded point is mapped
to the point in C2,1 it represents and the tetrahedra are mapped in linearly.
The Combinatorial Assumption says that the map Z̃ ′ → Z ′ is a homeo-
morphism. The Homeomorphism Assumption says that the map Z ′ → [Z ′]

is a homeomorphism. We will prove that the composition Z̃ ′ → [Z ′] is a
homeomorphism, which establishes both assumptions at the same time.
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9.3 The Vertices

In this section we show that the map Z̃ ′ → [Z ′] is a homeomorphism when
restricted to the vertices. Our method in this baby case serves as the model
for what we do in general.

We define

CZ̃ ′ =

4⋃

a=−4

N⋃

b=1

Ka(Tb). (98)

We call CZ̃ ′ the computational portion of Z̃ ′. it contains 9 × 393 = 3537
tetrahedra. By a direct computation we show

Lemma 9.3 (Computation 3) Suppose v1 and v2 are two combinatorially

distinct vertices of CZ̃ ′. Then [v1] 6= [v2].

By symmetry, Lemma 9.3 takes care of all vertices v1 ∈ Ka(Tb) and
v2 ∈ Kc(Td) when |c − a| ≤ 8. We now establish a single estimate which
takes care of all remaining pairs of vertices.

Recall that E0K and E∞K are the null eigenvectors of K, normalized so
that their third coordinates are 1. Recall also that E+K = E0K � E∞K is
a positive eigenvector of K. Let EK ⊂ C2,1 be the C-linear span of E0K
and E∞K. Note that EK consists of those vectors which are 〈, 〉-orthogonal
to E+K.

We map EK into C1,1 using the linear map

Π1(zE∞K + wE0K) = (z, w) (99)

We define the projection map ΠK : C2,1 → EK

Π2(V ) = V − 〈V, E+K〉
〈E+K, E+K〉E+K. (100)

We define the composition

ΠK = Π1 ◦ Π2 : C2,1 → C1,1 (101)

and the projectivization of this composition

πK(v) = [ΠK(v)]. (102)
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Lemma 9.4 If |πK(v1)| < 1 then |πK(K−1(v1))| < 1. If |πK(v2)| > 1 then
|πK(K(v2))| > 1.

Proof: The action of Π2 ◦K ◦Π−1
2 has eigenvectors (1, 0) and (0, 1). Hence

the projective action of Π2 ◦ K ◦ Π−1
2 on C is simply a map of the form

z → µz for some constant. We check that |µ| > 1. This immediately implies
our lemma. ♠

We do another direct computation to show that

Lemma 9.5 (Computation 4) |πK(v1)| < 1 if v1 ∈ K−5(Tb) and
|πK(v2)| > 1 if v2 ∈ K4(Kd).

Combining the two previous results we see that πK(v1) 6= πK(v2) provided
that v1 ∈ Ka(Tb) and v2 ∈ Kc(Td) and |c − a| ≥ 9. But this implies that

[v1] 6= [v2]. We now know that the map Z̃ ′ → [Z ′] is a homeomorphism when
restricted to the vertices.

9.4 Reduction to a Finite Computation

Our problem is to show that the map Z̃ ′ → [Z ′] is a homeomorphism. It
clearly suffices to show that the map is an injection. At the end of the
chapter we prove

Lemma 9.6 [Ka(Tb)] ∩ [Kc(Td)] = ∅ provided that |a − c| ≥ 9.

Lemma 9.6 reduces our problem to the checking of tetrahedra within the
computational portion of Z̃ ′. Before we state exactly what needs to be done
we record a simple but powerful technical result.

Lemma 9.7 Suppose [X] = [Y ] then the line XY is a single point.

Proof: If [X] = [Y ] then X and Y are contained in the same 1-dimensional
complex linear subspace of C2,1. But then XY is also contained in this sub-
space. Hence, all points on XY are projectively equivalent. ♠

Now we get down to business. Say that a pair (Ka(Tb), K
c(Td)) of tetra-

hedra is a computational pair if

|a| ≤ 5; |c| ≤ 4; a + c ∈ {−1, 0}. (103)
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Every pair of tetrahedra in CZ̃ ′ is equivalent to a computational pair under
the action of J and K.

Given two simplices T and T ′ in Z̃ ′ we let T#T ′ denote the number of
vertices common to T and T ′. Let T�T ′ denote the convex hull of these
common vertices. Let T ↘ T ′ = T − (T�T ′).

Lemma 9.8 Suppose that [T ↘ T ′] ∩ [T ′] = ∅ and [T ′ ↘ T ] ∩ [T ] = ∅ for

every computational pair (T, T ′). Then the map Z̃ ′ → [Z ′] is an injection.

Proof: Suppose x, x′ ∈ Z̃ ′ are two distinct points such that [x] = [x′]. There
are two tetrahedra T and T ′ such that x ∈ T and x′ ∈ T ′. If there are several
choices for these tetrahedra, we choose so as to minimize T#T ′. By Lemma
9.6 we can assume that (T, T ′) is a computational pair.

Suppose that T#T ′ = 4. That is, T = T ′. Let I = xx′ ∩ T . By Lemma
9.7 the image [I] is a single point. If we want to get a contradiction in this
case, it suffices to consider the case when x and x′ are the endpoints of I.
Hence x, x′ ∈ ∂T . Both endpoints of I cannot be in the interior of a single
face. Hence, at least one of x or x′, say x, is not contained in the interior of a
pure positive face. But all other faces of Z ′ are contained in two tetrahedra.
Thus, there is a tetrahedron T ′′ 6= T such that x ∈ T ′′. In this way we reduce
the case T#T ′ = 4 to one of the cases when T#T ′ ≤ 3.

Suppose that T#T = 3. In this case the hypotheses imply that x and x′

are both contained in the triangle T�T ′. The same kind of argument as in
the previous case shows that we can assume that x and x′ are contained in
the boundary of T�T ′. If x and x′ are contained in the same edge of T�T ′

then this entire edge is mapped to a point, by Lemma 9.7. This contradicts
the fact that [ ] is injective on the vertices of Z. If x and x′ are contained
in different edges then we can find tetrahedra S and S ′ such that x ∈ S and
x′ ∈ S ′ and S#S ′ ≤ 2. This contradicts the our choice of T and T ′.

If T#T ′ = 2 then our hypotheses imply that x and x′ are contained in
the same edge of Z. This gives the same contradiction as in the previous
case. If T#T ′ = 1 then our hypotheses imply that x = x′. If T#T ′ = 0 we
contradict our hypotheses immediately. ♠

9.5 The Pseudorandom Projection Algorithm

Suppose that S and S ′ are two line segments in C1,1. The projective images
[S] and [S ′] are (generically) arcs of circles in C. We let I(S, S ′) denote the
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number of points in [S] ∩ [S ′]. In §10.4 we will explain how we compute
I(S, S ′).

Suppose that U is a tetrahedron in C1,1. (In practice U is the image of a
tetrahedron in C2,1 under a linear projection.) Let e1, ..., e6 be the edges of
U . The images [ei] is a (possibly degenerate) arc of a circle in C ∪∞. Let U
be the barycenter of U . Let 〈U〉 be the closure of the union of the bounded
components of C − ⋃

[ej ].

Lemma 9.9 If U is affinely bounded−that is, contained in the affine patch
defined in §2− then [U ] ⊂ 〈U〉.

Proof: First we claim that [U ] ⊂ [∂U ]. Let x ∈ T . The smooth map
U → [U ] has 3-dimensional domain and 2-dimensional range. Hence [ ] is
not injective in any neighborhood of x. There are sequences {am} and {bm}
such that am → x and bm → x and am 6= bm and [am] = [bm]. The line
ambm intersects ∂U in at least one point, which we call cm. The same ar-
gument as in Lemma 9.7 says that [cm] = [am]. Since ∂U is compact, we
can assume that {cm} → y ∈ ∂U . We have [y] = [x] by continuity. This
shows that [U ] ⊂ [∂U ]. Next, we claim that [σ] ⊂ 〈U〉, when σ is a face
of U . Otherwise, the boundary of [σ] contains a point p = [x] 6∈ 〈U〉. In
this case [ ] is not injective in any neighborhood of x and the same argument
as in the first step shows that [x] ∈ L(∂σ) ⊂ ⋃

[ej ]. This is a contradiction. ♠

Corollary 9.10 (Projection Test) If U and U ′ are affinely bounded tetra-
hedra of C1,1 and 1

1. U#U ′ ≤ 2.

2. [ei] ∩ [e′j ] = [ei�e′j ] for all i, j.

3. [T ] 6∈ 〈U ′〉 and [T ′] 6∈ 〈U〉.

Then [T − T�T ′] ∩ [T ′] = ∅.
1Even though we originally defined the listed quantities for tetrahedra in C2,1 we make

the same definitions in C1,1.
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Proof: There are three cases.

Case 0: Suppose that U#U ′ = 0. Then [ei]�[e′j ] = ∅ for all i, j. Hy-
pothesis 2 says that [ei] and [e′j ] are disjoint for all i, j. This means that 〈U〉
and 〈U ′〉 have disjoint boundaries. 〈U〉 cannot be contained in the interior
of 〈U ′〉 because [T ] 6∈ 〈U ′〉. Likewise 〈U ′〉 cannot be contained in the interior
of 〈U〉. The only possibility is that 〈U〉 ∩ 〈U ′〉 = ∅. Lemma 9.9 now applies.

Case 1: Suppose that U#U ′ = 1 and, for the sake of contradiction, that
there is some y ∈ U − x such that [y] ∈ [U ′]. From Lemma 9.9 we have
[U ] ∈ 〈U〉 and [U ′] ∈ 〈U ′〉. By Hypothesis 2, we have ∂〈U〉 ∩ ∂〈U ′〉 = [x].
Given Hypothesis 3, we must have 〈U〉 ∩ 〈U ′〉 = [x]. But this forces [y] = [x].
Let σ be the face of U opposite x. The point z = xy ∩ σ exists and the same
argument as in Lemma 9.7 says that [z] = [x]. Therefore [x] ∈ [σ]. From
Hypothesis 2, we have x ∈ [σ] − [∂σ]. The same argument as in Lemma 9.9
shows that [σ] ⊂ 〈σ〉. Thus [x] is contained in the interior of 〈σ〉 ⊂ 〈U〉. This
contradicts the fact that 〈U〉 ∩ 〈U ′〉 = [x].

Case 2: Suppose that U#U ′ = 2 so that U�U ′ = e, a common edge.
Let e1 = e and let e2, ..., e6 be the other edges of U . Suppose there is some
y ∈ U − e1 such that [y] ∈ [U ′]. An argument similar to the one given in
the previous case show that 〈U〉 ∩ 〈U ′〉 = [e1] and that [y] ∈ [e1]. There is
some point x ∈ e1 such that [y] = [x]. The line xy intersects ∂T in a point
z1 6∈ e1, and [z1] = [x]. The line xz1 intersects e2 ∪ .... ∪ e6 in a point z2,
and [z2] = [x]. If z2 lies on [ej ] than [ej ] ∩ [e′1] has too many intersections,
contradicting Hypothesis 2. This contradiction finishes the proof. ♠

We use the technique in §10.4 to verify Hypothesis 2. To verify Hypothesis
3, we let S ⊂ C1,1 be the line segment with endpoints U ′ and [1, 0]. Note
that [S ′] is an infinite ray emanating from [U ′]. The graph 〈U〉 has 4 length-3
circuits, one corresponding to each face of U . For each of these circuits σ we
compute

∑
e∈σ I(S ′, e). If all 4 sums are even then there our ray intersects

each length 3 circuit of U an even number of times. It follows from a degree
argument that the endpoint of the ray, namely [U ′], cannot belong to 〈U〉.
To verify that [U ] 6∈ 〈U〉′ we make the same computations, with the roles of
U and U ′ reversed.

The Projection Test is useful to us when we have a rich supply of projec-
tions at our disposal. We now define these projections. Given any r ∈ [0,∞)
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let d(r) ∈ [−1, 1) be twice the decimal part of r, minus 1. Given primes p, q
we define

z(p, q; n) = d(n
√

p) + id(n
√

q). (104)

Given a vector V = (V1, V2, V3) ∈ C2,1, and n ∈ N , we define

Projn(V ) = (z(2, 3; n)V1 + z(5, 7; n)V2, V3) ∈ C1,1. (105)

Projn is a pseudorandom projection from C2,1 into C1,1 which carries the
affine patch of C2,1 to the affine patch of C1,1. If (T, T ′) is a computational
pair of tetrahedra we define Un = Projn(T ) and U ′n = Projn(T ′). From Com-
putation 2, we know that Un and U ′n are affinely bounded for all n. When
T#T ′ ≤ 2 we attempt to verify the hypotheses of the Projection Test for
n = 1, 2, 3... until we meet with success or have 10000 failures in a row. We
call this the Pseudorandom Projection Algorithm.

Using the Pseudorandom Projection Algorithm we prove

Lemma 9.11 (Computation 5) Suppose (T, T ′) is a computational pair
and T#T ′ ≤ 1. Then [T ↘ T ′] ∩ [T ′] = ∅ and [T ′ ↘ T ] ∩ [T ] = ∅.

We know from Computation 4 that T#T ′ = 0 if T = K−5(Tb) and T ′ =
K5(Td). Therefore, we have a technical result which comes in handy in the
next section:

Corollary 9.12 For each j = 1, ..., N we have

[K−5(Tj)] ∩ [K4(Tj)] = ∅.

When we apply the Pseudorandom Projection Algorithm to the pairs
(T, T ′) such that T#T ′ = 2 we have about 4400 successes and 40 failures.
In the next section we introduce a new computational test which deals with
these failures.

9.6 The Edge Smash Test

Suppose that (T, T ′) is a computational pair of tetrahdedra such that T#T ′ =
2. Let v1 and v2 be the common vertices. Let e be the common edge. Let
−→e = v1 − v2. In other words −→e is just e, but interpreted as a vector. Let

Te = Proj1(T �
−→e ); T ′e = Proj1(T

′
�
−→e ). (106)
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Here � is as in Equation 8 and Proj1 is as in Equation 105. Essentially we are
“smashing” the edge e to a single point and then taking a generic projection
into C1,1.

The map v → Proj1(v �
−→e ) is complex linear. Moreover v1 �

−→e =
v2�

−→e . From these two properties it follows that (generically) Te is a triangle.
Generically [∂Te] is a union of 3 circular arcs, joined in a cyclic fashion. Let
e1, e2, e3 be the three edges of Te and let e′1, e′2 and e′3 be the three edges of
T ′e.

Lemma 9.13 (Edge Smash Test) Suppose that T#T ≥ 2 and

1. [ei] ∩ [e′j ] = [ei�e′j ] for all i, j.

2. β intersects [∂Te] and [∂T ′e] each an odd number of times.

Then [T − T�T ′] ∩ [T ′] = ∅ and [T ′ − T�T ′] ∩ [T ] = ∅

Proof: We consider the case T#T ′ = 2. The case T#T ′ = 3 is similar. In
general we write Se = Proj1(S �

−→e ) for any subset S ⊂ C2,1.
We will establish the first conclusion. The second one has the same proof,

with the roles of T and T ′ interchanged. Essentially the same argument as
in Lemma 9.9 shows that

[Te] ∩ [T ′e] = [ee]. (107)

Suppose x ∈ T − T�T ′ is such that [x] ∈ [T ′]. Since x is a multiple of a
vector in T ′, the vector xe is a multiple of a vector in T ′e. Hence [xe] ∈ [T ′e].
This means that [xe] = [ee]. On the other hand, xe 6= ee because x 6∈ e.
The line xeee intersects eop

e in a point ze. Here eop is the edge of T opposite
e. But then [ze] = [ee], contradicting the fact that [eop

e ] is disjoint from [T ′e]. ♠

We verify Hypotheses 1 and 2 using the technique of §10.4. Given T and
T ′ as above we first try to verify the hypotheses of the Edge Smash Test.
If the Edge Smash Test fails we then apply the Pseudorandom Projection
Algorithm. All but 3 pairs (T, T ′), with T#T ′ = 2, pass this combined test.

For the remaining three pairs, one of the graphs [Te] or [T ′e], lets say [Te],
is a lune rather than a triangle. Figure 9.1 shows one of the three cases.
The problem is that one of the faces σ of T is such that [σe] is a single point
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rather than a nontrivial circular arc. (e is an edge of σ.) A straightforward
variant of Lemma 9.13 shows, in these degenerate cases, that

[T ′ ↘ T ] ∩ [T ] = ∅; [(T − σ) ↘ T ′] ∩ [T ′] = ∅.

We just have to worry that the map [σ] → σ is not injective. If this is the
case, then the map ∂σ → [∂σ] is not injective either. We check explicitly
that [Proj1(∂σ)] is an embedded triangle. Thus the conclusion to Lemma
9.13 holds in the 3 degenerate cases as well.

Figure 9.1

We now come to the case when T#T ′ = 3. These tetrahedra have 3
edges in common and correspondingly we have three tries at verifying the
hypotheses of the Edge Smash Test. We compute that all but 30 pairs pass on
at least one try. For the remaining 30 pairs, the graphs [Te] and [T ′e] are lunes
which intersect in a single point, for all three edges e, as shown in Figure 9.2.
This derives from the face that T�T ′ is contained in a 2-complex-dimensional
subspace.
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Figure 9.2

A straightforward variant of Lemma 9.13 shows that the same conclusion
holds in these degenerate cases. Thus,

Lemma 9.14 (Computation 6) Suppose (T, T ′) is a computational pair
and T#T ′ ≥ 2. Then [T ↘ T ′] ∩ [T ′] = ∅ and [T ′ ↘ T ] ∩ [T ] = ∅.

9.7 Proof of Lemma 9.6

Let EK be the map defined in Equation 101.

Lemma 9.15 If T is any tetrahedron of Z ′ then [ΠK(T )] exists and is con-
tained in C − {0}.

Proof: Note that ΠK(V ) = 0 iff V is a multiple of E+K. For the first
part of this lemma is suffices to show that T ∩ CE+K = ∅. If this is false
then [E+K] ∈ [T ]. But K fixes [E+K]. Setting T = Ka(Tj) we see that
[E+K] ∈ Kc(Tj) for all c. In particular [K−5(Tj)] ∩ [K4(Tj)] 6= ∅. This con-
tradicts Corollary 9.12. Since T ∩ CE+K = ∅, the map ΠK is defined on T .
The same argument shows that T is disjoint from CE0K and CE∞K, the
sets which projectivize to 0 and ∞ respectively. ♠
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Lemma 9.16 If [ΠK(Ka(Tb))] is contained in the interior of the unit disk,
then so is [ΠK(Ka−1(Tb))]. If [ΠK(Ka(Tb))] is contained in the exterior of
the unit disk then so is [ΠK(Ka+1(Tb))].

Proof: Same argument as in Lemma 9.4. ♠

Suppose T is a tetrahedron of Z ′ and we want to prove that [ΠK(T )] is
contained in the interior of the unit disk. We let e1, ..., e6 be the 6 edges of
ΠK(T ). We let e′1 be the segment with endpoints (1, 1) and (i,−i). Let e′2
be the segment with endpoints (1, 1) and (−i, i). It is not hard to see that
[e′1]∪ [e′2] is the unit circle. The same argument as in Lemma 9.9 shows that
[ΠK ](T ) is contained in the closure of the union of the bounded components of
C−⋃

[ej ]. Hence, if I(ei, e
′
j) for all 12 pairs of indices we know that [ΠK(T )]

is disjoint from the unit circle. We then evaluate [ΠK(T )], the image of the
barycenter, to determine if our set is in the interior or exterior of the unit
disk.

Using this method we prove

Lemma 9.17 (Computation 7) [ΠK(K−5(Tb))] is contained in the inte-
rior of the unit disk and [ΠK(K4(Tb))] is contained in the exterior of the unit
disk.

Lemma 9.6 follows from Lemma 9.16 and Computation 8. This completes
our computer-aided proof.
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10 Some Computational Issues

10.1 Interval Arithmetic

Put in abstract terms, the main computational component of our proof be-
gins with a finite list r1, ..., rn of real numbers and establishes a finite list
of inequalities of the form f(r1, ..., rn) > 0. Here f only involves the arith-
metic operations and the square root function. The computer performs these
functions according to the IEEE standards [I].

To control round-off error, we implement interval arithmetic, essentially
as we described in [S1]. In brief, we find intervals I1, ..., In such that rj ∈ Ij

for all j. We perform operations on intervals in a manner which parallels
the way they are performed on reals. To control floating point errors, we
round outward after computing any interval. For instance, if I1 = [a1, b1] and
I2 = [a2, b2] then I1+I2 = [c1, c2], where c1 is the rounded-down computation
of a1 + b1 and c2 is the rounded-up computation of a2 + b2. In this way, we
have r1 +r2 ∈ I1 + I2. More generally we have f ∈ J , where J = f(I1, ..., In),
the interval version of our expression. To show that f > 0 it suffices to show
that both endpoints of J are positive.

It may happen during the running of our code that certain interval op-
erations are impossible. For instance, if endpoints of I2 have opposite signs
then we cannot compute I1/I2. In any situation like this, we terminate the
computation and declare it a failure. Our computations are such that we
have many chances to establish each inequality. We don’t care about the
number of failed attempts, as long as one attempt succeeds.

10.2 Important Approximate Values

The numbers r1, ..., rn, mentioned in the previous section, are the real and
imaginary parts of the entries of certain matrices and vectors. For each such
r, we compute a 16 digit approximation r′ and store it in an auxilliary file.
We replace r by the interval Ir = [r′ − 10−15, r′ + 10−15], so that r ∈ Ir.

The approximation r′ is computed using Mathematica [W] to evaluate
the relevant quantities defined in §3. We compute the desired quantity to
high precision (say 50 decimal places) and then truncate the answer to 16
decimal places. It doesn’t matter to us exactly how Mathematica computes
these quantities. We check that the computed quantities are close to the
actual quantities in an a posteriori manner. That is, we check that that the
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computed quantities satisfy their defining equations to sufficiently high preci-
sion. These a posteriori checks only involve the basic arithmetic operations,
and long experience tells us that Mathematica can perform basic arithmetic
well past our desired precision.

For example, we need to compute an approximation to the matrix K,
which has the property that K3 = I2I1I3. We compute K using the equations
in §3.2. We then check that K3 agrees to high precision with I2I1I3. We also
check that K, applied to several random vectors, preserves the Hermitian
product 〈, 〉 to high precision. Here is the approximation for K.

K11 = +0.6222788295504330− 0.3945932932722004
√
−1

K12 = −0.0450456615598452− 0.7300495221592298
√
−1

K13 = +0.2254792564437312 + 0.1646065920488111
√
−1

K21 = +0.0450456615598452 + 0.7300495221592298
√
−1

K22 = −0.7276904827471762− 0.5312357878085289
√
−1

K23 = +0.5389904853208957 + 0.2371404100806019
√
−1

K31 = +0.2254792564437312 + 0.1646065920488111
√
−1

K32 = −0.5389904853208957− 0.2371404100806019
√
−1

K33 = +1.1933916540738774 + 0.0223361272114748
√
−1 (108)

We need to compute quantities of the form Kn(v), where |n| ≤ 10 and v
is one of a finite list of vectors. In principle we make such a computation by
performing n actions of the matrix K on the vector v. That is, we compute
K(v), then K(K(v)), and so on. In practice, we reduce the round-off error
(or, rather, the size of the intervals produced by the computation) as follows.
We store 16-digit approximations to K3 = I2I1I3 and K−3 = I3I1I2 and
then compute K3(v) in place of K(K(K(v))) wherever possible. (Likewise
for K−3.) For instance, if we want to compute K10(v) we actually compute
K3(K3(K3(K(v)))).

The null eigenvectors of K are E∞K and E0K. These vectors projectivize
to give the two fixed points, on S3, of the elements I2I1I3 and I3I1I2, and are
also eigenvectors for these elements. We use the Mathematica Eigenvectors[]
command to compute the eigenvectors of I2I1I3 to high precision. As a check
we see that our computed E0K is null to high precision and nearly fixed by
the projective actions of I2I1I3 and I3I1I2. One of these two elements acts
quite expansively about the fixed point which is close to our approximation.
This fact guarantees that our approximation is extremely close to the actual
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fixed point, for otherwise it would be moved far away from itself by the
expansive action. Here is the 16 digit truncation of E0K.

0.5769388548583972− 0.5538518076110999
√
−1

0.5416441550538012 + 0.2588654906638812
√
−1

1.0000000000000000 + 0.0000000000000000
√
−1 (109)

To get E∞K we use E∞K = J(E0K), where J is in Equation 19.
The remaining quantities we list are computed in much the same way as

E0K.
The lift of (12) has 16 digit approximation

0.3700644371104598− 0.0115545886073811
√
−1

0.0000000000000000 + 0.0000000000000000
√
−1

1.0658206932269412− 0.0332783115708986
√
−1 (110)

The lift of (121312) has 16 digit approximation

0.6322009573071889− 1.5008461387048185
√
−1

0.0000000000000000 + 0.0000000000000000
√
−1

1.7123304263886281− 0.8486116269230751
√
−1 (111)

The lift of (1213121312) has 16 digit approximation

−0.6353698402242000− 2.1831056534717000
√
−1

0.0000000000000000 + 0.0000000000000000
√
−1

1.5937497983832000− 1.2765604992479000
√
−1 (112)

The lift of (12131213121312) has 16 digit approximation

0.0000000000000000− 1.8479830746078751
√
−1

0.0000000000000000 + 0.0000000000000000
√
−1

1.5540403611351847 + 0.0000000000000000
√
−1 (113)

10.3 The Pictures from Chapter 5

Since we ultimately project our picture of Z∗0 into the plane, and since the
formula for the action on the Moebius group on H3 is a bit complicated,
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we do all our calculations in the plane. We never actually need to consider
points in H3 at all.

We represent a point in H3 as the intersection of two geodesics. This
is natural from our point of view: The special points α0

n and β0
2m are the

intersection points of the axes of two halfturns. We store the geodesics as
pairs of complex numbers−namely, the endpoints of the geodesics. To recover
a point in H3 from the pair of geodesics, we find the planar intersection of
the two line segments bounded by the endpoints of the geodesics, and then
adjust the third coordinate, using the Pythagorean theorem. (Actually, we
never need to find that third coordinate.) If we want to figure out the action
of an element of PSL2(C) on one of our points, we move the endpoints of
the geodesics and then recompute the intersection.

We frequently need to find the midpoint of a geodesic segment in H3.
We will describe the situation when γ is the geodesic with endpoints −1 and
+1. The general case is similar. Let α and β be two points on γ. We assume
that the points are ordered as −1, α, β, 1. Let a and b be the corresponding
projections into the plane. We have −1 < a < b < 1. Let ξ be the point
on γ halfway between α and β. Let x be the projection into the plane. The
formula for x is:

x =
d1 − d2

d2 + d2
; d1 = (1 + b)

√
1 − a2; d2 = (1 − a)

√
1 − b2. (114)

One can verify this formula by showing that the cross ratio of the points
−1, a′, x′, 1 is the same as the cross ratio of the points −1, x′, b′, 1. Here
a′ = a +

√
a2 − 1, etc.

Let us explain how we find, say, the point α+
0 . First we take the point on

α0 which is halfway between A∗10(α
−

13) and α+
0 . Call this point ζ . Next, we

take the point on α0 which is halfway between ζ and A∗10(α
0
13). This gives

the point which is 3/4 of the way from α0
0 to A∗10(α

0
13), as desired. (Compare

equation 66.) We emphasize that all these calculations are done from plane
geometry. The points α−0 and α±1 and β±0 are computed similarly. Once we
have these 6 points, we get the remaining (plotted) vertices of Z∗0 using the
action of K∗.

10.4 Intersections of Circular Arcs

We now explain how to compute I(S, S ′), the intersection number of two
circular arcs [S] and [S ′]. Here S and S ′ are segments in C1,1. For ease of
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exposition we will assume that [S] and [S ′] only intersect at interior points.
The other cases are handled by similar methods. Our method does not work
on conceivable pair of segments. The code is written in such a way that
it either returns a guaranteed correct value for I(S, S ′), or it indicates that
the method fails. To rule out gross programming errors, we wrote a Tcl
program which allows us to specify two circular arcs graphically, compute
their intersection number, then check the result with our eyes.

We write S = (S1, S2) Here S1, S2 ⊂ C1,1 are the endpoints of S. We
write S1 = (S11, S12) and S2 = (S21, S22). We make the same definitions for
S ′. The matrix

TS =

[
S22 −S21

−S12 S11

]
(115)

has the property that the endpoints of TS(S) have the form (z, 0) and (0, z)
for some z ∈ C. Thus [TS(S)] = [0,∞]. We write S ′′ = TS(S ′). Clearly
I(TS(S), TS(S ′)) = I(S, S ′). Each interior point on S ′′ is projectively equiv-
alent to tS ′′1 + S ′′2 for some t > 0. Such a point projects to (0,∞) iff

(tS ′′11 + S ′′21)(tS
′′

12 + S
′′

22) ∈ (0,∞). (116)

Thus t must satisfy the relations

P (t) = a0t
2 + b0t + c0 = 0; t > 0; a1t

2 + b1t + c1 > 0. (117)

a0 = =(S ′′11S
′′

12); b0 = =(S ′′11S
′′

22 + S ′′21S
′′

12); c0 = =(S ′′21S
′′

22).

a1 = <(S ′′11S
′′

12); b1 = <(S ′′11S
′′

22 + S ′′21S
′′

12); c1 = <(S ′′21S
′′

22).

We need to say a word about how we check Equation 117 in the context
of interval arithmetic computations. When we write x = 0 we actually mean
that the interval representing x has endpoints with opposite signs. This is
to say that x is indistinguishable from 0. When we say x > 0 we mean that
both endpoints of the interval representing x are positive. And so on.

If b2
0 − 4a0c0 < 0 then the roots of P are imaginary and Equation 117 has

no solutions. If a0b0 > 0 and a0c0 > 0 then any real roots of P are negative,
so again Equation 117 has no solutions. If these two tests fail, we try more
specialized tests.

If a0 > 0 then Equation 117 is equivalent to

P (t) = 0; t > 0; a2t + b2 > 0; (118)

a2 = a0b1 − a1b0; b2 = a0c1 − a1c0.
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If either a2 = 0 or b2 = 0 we fail the computation. This leaves 4 cases,
depending on the signs of a2 and b2. For instance, if a2 < 0 and b2 > 0 then
t must lie in (0, x), where x = −b2/a2. From here, the number of solutions
can be determined from the signs of P (0), P (x), y, y − x, and P (y). (Here
y = −b0/2a0 is the critical point of P .) If P (0) and P (x) have opposite signs
then Equation 118 has one solution. If P (0) and P (x) have the same sign
and x0 6∈ [0, x] then Equation 118 has no solutions. And so on.

If a0 < 0 the computation is similar, except that a2 and b2 change sign.
If a0 = 0 and c0 6= 0 then we parametrize S ′′ by S ′′1 + tS ′′2 instead. This

leads to a variant of Equation 117 in which aj and cj are switched for j = 0, 1.
If a0 = c0 = 0 we try a completely different method. We compute the

midpoint m of the segment joining the two endpoints of [S ′′], and consider
the disk D centered at m and containing these two endpoints. The point
p = [S ′′1/2 + S ′′2/2] is an interior point of [S ′′]. If p ∈ D then [S ′′] ⊂ D. In
this case we try to show that the x-coordinate of m is more negative than
the radius of D is positive. This shows that D, and hence [S ′′], is disjoint
from [0,∞].

We fail the computation in all circumstances not already covered.

10.5 Record of the Calculatons

I ran all the computer experiments for this paper on my home computer,
which is a Sparc Ultra 10. The operating system for the computer is Solaris 7.
I used the GNU C compiler, and compiled the code without any optimization
flags. I ran the calculations, successfully, on 15 January 2002. To give
some statistics, the computer tested 1362633 pairs of tetrahedra which had 0
vertices in common, 21117 tetrahedra which had 1 vertex in common, 4440
tetrahedra which had 2 vertices in common, and 1458 tetrahedra which had
3 vertices in common.
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11 List of Important Symbols

symbol definition 1st mention lookup
Z, Q, R, C integers, rationals, reals, complexes
Hn real hyperbolic n-space §1.0
CHn complex hyperbolic n-space §1.0 §2
QHn quaternionic hyperbolic n-space §1.0
PU(2, 1) projective unitary group §1.0 §2
S3 unit 3-sphere §1.0
G(4, n) basic abstract group §1.1 §1.1
ρ(4, n) the basic representation §1.1 §3.1
Γ(4, n) image of G(4, n) under ρ(4, n) §1.1 §3.1
I1, I2, I3 generators of Γ(4, n) §1.1 §3.1
Λ(4, n) limit set of Γ(4, n) §1.1
Ω(4, n) domain of discontinuity of Γ(4, n) §1.1
Z the basic simplicial complex §1.1 §4
Z ′ refinement of Z §1.1 §9
[ ] projectivization map §1.3 §2
[Z], [Z ′], etc. projective images of Z, Z ′ etc. §1.3
[Z0] intersection of [Z] with S3 §1.3
[Z ′0] intersection of [Z ′] with S3 §1.3
∆0 component of S3 − [Z0]. §1.3
Z− negative part of Z §1.3
∆− component of CH2 − [Z−] §1.3 §8
E∗K eigenvectors of K §1.3 §4.1
Z∗0 K∗, etc. real hyp. analogs of Z0, K, etc. §1.3 §5
h homo from Γ∗(4, 7) to Γ(4, 7) §5.4 §5.4
h′ homeo from ∆∗ to ∆ §1.3 §5.4
h′′ covering map of h′ §5.4 §5.4
〈, 〉 Hermitian inner product §2 §2
N−, N0, N+ neg., null, pos. vectors §2 §2
% complex hyperbolic metric §2 §2
δ projective invariant related to % §2 §2
SU(2, 1) 〈, 〉-preserving group §2 §2
� Hermitian cross product §2 §2
IC complex reflection fixing vector C §2 §2
V1, V2, V3 vectors defining Γ(4, 7) §3.1 §3.1
C1, C2, C3 auxilliary vectors for Γ(4, 7) §3.1 §3.1
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symbol definition 1st mention lookup
κ1, κ2, r, s, t variables for the Vj §3.1 §3.1-3.2
J, J ′, K auxilliary elements of SU(2, 1) §3.2 §3.2
Υ network of real slices §3.3 §3.3
Υ∞ ideal boundary of Υ §3.3 §3.3
R the trace number ring §3.4 §3.4
A(m), B(m) pieces of Z §4.1 §4
Am, Bm pairing reflections of A(m), B(m) §4.9 §4.9
Ψ coordinate chart used for plotting §4.1 §4.1
[12], etc. word notation for fixed points §4.2 §4.2
•j, ◦j chart notation for fixed points §4.2 §4.2
on join operator §4.4 §4.4
λ, a0, b0, a1 variables in the def’n of Γ∗(4, 7) §5.2 §5.2
αn, βn axes for pairing halfturns §5.3 §5.3
α0

n β0
n centers of symmetry on halfturn axes §5.3 §5.3

α+
n , β−n , etc tiling vertices §5.3 §5.3

Q∗0, Q∗01, Q∗02 pieces used in defining orbifold §5.5 §5.5
Z1, Z2, Z3 layers of Z §6.1 §6.1
A(n,±) parts of piece A(n) §6.1 §6.1
T+, T− pos and neg parts of tetrahedron T §6.2 §6.2
Q− quotient of ∆− ∪ [Z−] by K3 §7.1 §7.1
O, O1, O2 spaces associated to Q−/∼ §7.2 §8.2
RP reflection pairing of piece P §7.2 §7.2
# conservative barycentric subdivision §8.2 §8.2
µ, µj perturbation data for Z ′ §8.3 §8.3
T1, ..., Tn basic list of tetrahedra §9.1 §9.1
T (m) mth subdivision of T §9.1 §9.1
(i, j, k), etc. code for vertices §9.2 §9.2

Z̃ ′ combinatorial version of Z ′ §9.2 §9.2

CZ̃ ′ computational part of Z̃ ′ §9.3 §9.3
Πj, ΠK , πK projections related to K §9.3 §9.3
T#T ′ number of common vertices §9.4 §9.4
T�T ′ convex hull of T#T ′ §9.4 §9.4
T ↘ T ′ T minus T�T ′ §9.4 §9.4
z(p, q, n) pseudorandom complex number §9.6 §9.6
Projn nth pseudorandom projection §9.6 §9.6
〈U〉 set based on 1-skeleton of [U ]. §9.6 §9.6
Te wedge of e and T §9.8 §9.8
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