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This note describes a nice thing I discovered experimentally about the
binary sequences associated to rotations of the circle. I’m asking around to
see if this is a new result.

1. Rotation Codings: Let R ∈ (0, 1/2) be irrational and let x ∈ (0, 1/2].
Define the binary sequence {an} as follows.

an = 1 ⇐⇒ Rn mod 1 ∈ [0, x). (1)

When x = R, the resulting sequence is called a Sturmian Sequence. When
x = 1/2, the sequence is called a Rote sequence. The general case is (I think)
called a rotation coding . These sequences are well-studied, especially the
Sturmian ones.

2. Derived Ternary Sequence: Given a binary sequence, one can record
the sizes of the gaps of 0’s between consecutive 1’s. For instance,

1010000010001100001001...  153042...

As is well known, for rotation codings, at most 3 different numbers arise in
this “gap sequence”. To tidy things up, we replace the smallest number with
1, the next smallest with 2, and the largest with 3. We call this the ternary

sequence derived from the rotation coding. For example, the rotation coding

1000010000000100000001000010000000100000000000010000000100001...

has the gap sequence 4, 7, 7, 4, 7, 12, 7, 4.... Changing (4, 7, 12) → (1, 2, 3)
gives us 12212321... as the derived ternary sequence.
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3. The Triangle Path: Let ∆ ⊂ R
3 denote the equilateral triangle con-

sisting of those points (x1, x2, x3) such that

x1 + x2 + x3 = 1; x1, x2, x3 ≥ 0. (2)

Fix R, as above. Let SR(x) denote the rotation coding based on (R, x).
Let S ′

R(x) denote the derived ternary sequence. Define

δR(x) = (x1, x2, x3); xj = density of(j) in S ′

R(x). (3)

Pat Hooper and Anatole Katok both pointed out to me that the dynamical
system defined by (R, x) is equivalent to a 3-interval interval exchange trans-
formation. The ternary sequence describes the visits to the three intervals of
the IET for a suitably chosen orbit point. By ergodicity, the function δR(x)
is just the triple of proportions of lenghs of intervals. This gives a way to get
an explicit formula for δR(x).

Consider the image of the path x → δR(x), namely

ΓR =
⋃

x∈(0,1/2]

δR(x) (4)

We’re interested in understanding the geometry of this path.

4. Basic Properties: It turns out that ΓR is a discontinuous union of
line segments. The discontinuities occur only at ∂∆, and they correspond to
the 2-gap rotation codings. We think of the parameterization as going from
x = 1/2 to x = 0. As x → 0, the speed of the parameterization tends to
∞, and one traces out an infinite number of line segments. In the quadratic-
irrational case, these line segments repeat in a periodic fashion, though they
are traced out at ever increasing speeds. That is, the path is periodic, mod-
ulo changing the speed of the parameterization. We will show pictures of
these paths in a moment.

5. Symmetrization: Before we show pictures, we will make the picture
nicer by symmetrizing. Let S3 denote the order 6 dihedral symmetry group
that acts on ∆. We define

Γ̂R =
⋃

σ∈S3

σ(ΓR) (5)
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6. Examples: In our pictures below, Γ̂R is the union of the white and blue
line segments and ΓR is the union of the white line segments. The yellow
triangle is ∆. We have also shown a red triangle, in which ∆ is inscribed in
the obvious way.

Figure 1 shows the simplest possible case,

R =
3 −

√
5

2

In this case, ΓR is a single white line segment and Γ̂R is the union of two
inscribed triangles. Notice that each line segment, when extended to a line,
contains a vertex of the red triangle.

Figure 1: The picture for R = (3 −
√

5)/2.
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Figure 2 shows the next simplest example,

R =
2 −

√
2

2

Notice again, that each line segment, when extended to a line, contains a
vertex of the red triangle.

Figure 2: The picture for R = (2 −
√

2)/2.
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Figure 3 shows a more complicated example,

R =
2 −

√
3

2

This time, we have zoomed in on the picture so that the red triangle is not
entirely visible.

Figure 3: The picture for R = (2 −
√

3)/2.

Γ̂R looks somewhat like a billiard path in the yellow triangle, but this is
not quite the case. It is a path based on a different kind of dynamical system.
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7. X-Ray dynamics: The triangle ∆ is inscribed in an obvious triangle ∆′

that is twice as large. This is the red triangle in the figures above. Figure 4
shows a dynamical system one can define in the interior of ∆. Technically,
the dynamical system is defined on ∂∆ (minus the vertices.) Let p0 ∈ ∂∆ be
some point, contained in the edge s0. Let q0 be the vertex of ∆′ closest to
p0. Now we define

p1 = −−→q0p0 ∩ (∂∆ − s0), (6)

The dynamical system is then p0 → p1 → p2...

p0

q0

q1

p2

p1

s1

s0

Figure 3: The X-ray dynamics in ∆.

One gets a polygon by connecting consecutive points in the orbit. We call
such a polygon an X-Ray polygon.

The yellow disk in Figure 3 shows the connection to hyperbolic geometry.
If one works in the Klein model, then ∆ becomes an ideal triangle. One can
consider a kind of billiards in the ideal triangle where one always bounces
off the sides at right angles. These paths are the same as the X-ray polygons.

8. The Main Observation: Γ̂R is contained in the S3-orbit of a single

X-ray polygon.
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9. Locally projective maps: To get a more complete picture, we would
like to say something about the parametrization of Γ̂. As a prelude to this
discussion, we need to make a formal definition.

Let L be an open line segment. Let φ : L → R be a map. We call φ
locally projective if φ is the restriction of a real projective transformation.
This is equivalent to the statement that φ preserves the cross ratio of all
4-tuples of points on which φ is defined.

Suppose now that φ : L → R
2 is a map and π : R

2 → R is a lin-
ear functional. We call φ locally projective relative to π if the composition
π ◦ φ : L → R is locally projective.

10. Global Projectivity We say first of all that the curve x → δ(x) is
locally projective (onto its image) away from the points that map to ∂∆.
However, we can make the stronger statement that our curve is actually
everywhere locally projective, provided we interpret things the right way.

Recall that δ : [1/2, 0) → Γ is the parameterization of Γ. Rather than
consider the curve x → δ(x), we can consider the curve

x → δ̂(x) = σx ◦ δ(x), (7)

where σx is a suitable permutation of the coordinates. Assuming that σ1/2

is the identity, there is a unique choice of σx such that δ̂(x) is smooth sway

from ∂∆. In this case, δ̂ necessarily traces out a single X-ray polygon.
We are interested in 2 consecutive segments of δ̂. Suppose that the first

segment connects p0 to p1 and the second one connects p1 to p2, as shown
in Figure 3. Let L be the open segment of (1/2, 0) that maps to the union
of these two line segments. We leave off the two boundary points of L. Let
σ2 be the side of ∂∆ containing p2. Let π2 be a projection whose kernel is
parallel to s2. Then

Main Observation: φ|L is locally projective on L relative to π2.

The map δ̂ is completely determined by its action on any neighborhood of
{1/2}. Once we know this, we can uniquely continue δ̃ all the way to 0 just
using the Main Observation.

7


