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Abstract

We study the geometry of some proper 4-colorings of the vertices
of sphere triangulations with degree sequence 6, ..., 6, 2, 2, 2. Such tri-
angulations are the simplest examples which have non-negative com-
binatorial curvature. The examples we construct, which are roughly
extremal in some sense, are based on a novel geometric interpreta-
tion of continued fractions. We will also present a conjectural sharp
“isoperimetric inequality” for colorings of this kind of triangulation.

1 Introduction

1.1 Background

The Four Color Theorem, first proved (with the assistance of a computer)
by Wolfgang Haken and Kenneth Appel in 1976, is one of the most famous
results in mathematics. See [W] for a thorough discussion. Here is one
formulation. If you have any triangulation of the 2-sphere, it is possible to
color the vertices using 4 colors such that no two adjacent vertices have the
same coloring. This is called a proper vertex 4-coloring .

Certainly one can properly 4-color the vertices of a tetrahedron. A proper
vertex 4-coloring of a triangulation Z (with the same colors) canonically
defines a simplicial map f from the sphere to the tetrahedron: Just map
each vertex of Z to the like-colored vertex of the tetrahedron and then extend
linearly to the faces. The map f in turn defines a 2-coloring of the faces of
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Z. One colors a face of Z black if f is orientation preserving on that face,
and otherwise white.

The associated face 2-coloring has the property that around each ver-
tex the number of black faces is congruent mod 3 to the number of white
faces. This derives from the property that 3 triangles of the tetrahedron
meet around each vertex. We call a face 2-coloring with this property a good
coloring . Conversely, a good coloring for Z defines a simplicial map to the
tetrahedron and thus a proper 4-coloring of the vertices of Z. So, an equiv-
alent formulation of the 4-color theorem is that every triangulation of the
sphere has a good coloring.

So far, the Four Color Theorem only has computer-assisted proofs. Per-
haps one can get insight into the result by looking at examples of good
colorings. The good coloring version has a geometric feel to it, and so per-
haps some geometric insight might help. The purpose of this paper is to look
at the geometry of these good colorings in some special cases.

A triangulation of non-negative combinatorial curvature is one in which
the maximum degree is 6. All the vertices have degree 6 except for a list
v1, ..., vk which have degrees d1, ..., dk < 6. Euler’s Formula gives the condi-
tion on the degrees:

k∑
i=1

(6− di) = 12. (1)

In particular k ≤ 12. The quantity

π

3
× (6− di)

is the combinatorial curvature at vi. Equation 1 translates into a discrete
version of the Gauss-Bonnet theorem, which says that the total combinatorial
curvature is 4π.

The triangulations of non-negative combinatorial curvature form an at-
tractive family to study. In [T], William Thurston organized these triangu-
lations into moduli spaces. To give some idea of how this works, a triangula-
tion non-negative combinatorial curvature defines a flat cone structure on the
sphere with non-negative curvature: we just make all the triangles unit equi-
lateral triangles. The set of all triangulations with the same list d1, .., dk of
defects includes in the moduli space of flat cone structures on spheres with
appropriately prescribed singularities. So, even though the triangulations
don’t exactly vary continuously, one can think of them as special points in-
side moduli spaces consisting of structures which do vary continuously. Also,
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if the triangulations are large and the defects are well spread out, one can
imagine that the defects almost vary continuously.

Given the nice structure of the totality of such triangulations, it seems
like an interesting idea to study the space of good colorings as a kind of
partially defined bundle over these moduli spaces. Perhaps the structure
of such colorings is related somehow to the placement of the defects. As
the defects vary around, perhaps the good colorings vary in a nice way to
some extent. I imagine that the total picture, seen all at once, would be
spectacularly beautiful. All this is very speculative. In spite of making a lot
of computer experiments over the years – every time I teach the graph theory
class at Brown I play with this project – I don’t have much to report. In
this very modest paper I will consider the simplest cases. The cases I have
in mind are where k = 3 and d1 = d2 = d3 = 2.

1.2 The Continued Fraction Colorings

The 6, ..., 6, 2, 2, 2 trianglulations are indexed by the nonzero Eisenstein in-
tegers. An Eisenstein integer is a number of the form

a+ bα, a, b ∈ Z, α =
1 + i

√
3

2
.

To see the connection, let E denote the ring of Eisenstein integers. The
points of E are naturally the vertices of an equilateral triangulation T of C.
Given some nonzero β ∈ E , the ideal

Eβ = {βγ| γ ∈ E}

consists of the vertices of the larger equilateral triangulation βT . We let Gβ

denote the group of symmetries generated by order 3 rotations in the vertices
of βT . The quotient

T (β) = T /Gβ

is the desired triangulation.
Since all the vertices of T (β) have even degree, T (β) always has a good

coloring. One just colors the triangles alternately black and white in a
checkerboard pattern. Indeed, this face coloring corresponds to a proper
3-coloring of the vertices.

Figure 1 shows a different good coloring for β = 2 + 3α. We call this
coloring C(2+3α). To get the triangulation of the sphere, cut out the specially
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outlined central rhombus, fold it up like a taco, and glue the edges together
in pairs. Figure 1 is really showing part of the orbifold universal cover of the
coloring. Figures 7 and 8 below show more elaborate examples.

Figure 1: The good coloring C(2 + 3α) of T (2 + 3α).

The coloring in Figure 1 is (at least experimentally) extremal in a certain
sense. Define the fold count of a good coloring to be the number of edges
which form black-white interfaces. For the alternating coloring, the fold
count is 3/2 times the number of faces. For T (2 + 3α) this comes to 57. In
contrast, C(2 + 3α) has fold count 23. It seems that C(2 + 3α) minimizes the
fold count amongst all good colorings of T (2 + 3α).

The number of good colorings of T (β) grows exponentially with |β|, for
an easy reason. In any good coloring, if we can find a vertex of degree 6 where
the colors alternate, we can switch the colors and get another good coloring.
In terms of the original vertex coloring, the neighbors of such a vertex v are
colored using just 2 colors, and so we have an option to switch the color of
v to the other available color. Starting with the alternating coloring, we can
take a large family of non-adjacent vertices and make these swaps according
to any binary sequence we like. On the other hand, these examples seem
rather similar to the alternating coloring. Their fold count is linear in the
number of the faces.
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The colorings with smaller fold counts, and in particular with minimal
fold counts, seem to be much more rigid and interesting. To use an analogy
from statistical mechanics, the colorings with large fold count are sort of like
a fluid or a gas, and the colorings with small fold count are more like solid
crystals. The example in Figure 1 is part of an infinite sequence of examples.
We call these examples C(β), where β ranges over the primitive Eisenstein
integers. (An Eisenstein integer β = a + bα primitive if it is not an integer
multiple of another one. Equivalently, a and b are relatively prime.) We
will see that C(β) is a special good coloring of T (β) which geometrically
implements the continued fraction expansion of a/b. We call these colorings
continued fraction colorings .

1.3 Properties of the Continued Fraction Colorings

The main result of this paper is that these continued fraction colorings exist,
but I will prove some additional results about them. Here is our first result.

Theorem 1.1 Each continued fraction coloring has the same total number
of black and white triangles.

Put more geometrically, the simplicial maps to the sphere defined by the
continued fraction colorings have degree 0. Looking at the pictures like Figure
1, you can see that the black and white triangles are distributed differently,
so this is not an obvious consequence of symmetry. The proof boils down
to an equality satisfied by the orbit of a rational number in (0, 1) under the
so-called slow Gauss map. (See §2.1 for a definition.) The equality is much
in the same style as the fact that the alternating sum of entries of a row of
Pascal’s triangle is 0.

The fact that the degree of the map is 0 means that the fold count is an
interesting quantity. We have an equal number of black and white triangles
and so the fold count cannot be too small.

The second result concerns the asymptotics of the fold count (and of
another quantity) for the continued fraction colorings. Let {an/bn} ∈ (0, 1)
be a sequence of rationals. Let

T n = T (an + bnα), Cn = C(an + bnα).

Let fn denote the fold count of Cn and let Fn denote the number of faces in
T n. Let Rn denote the radius of the largest monochrome disk contained in
Cn. When Rn is large, it means that Cn contains large totally solid chunks.
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Theorem 1.2 The following is true about the continued fraction colorings.

1. If {an/bn} converges to an irrational limit then limn→∞ fn/Fn = 0.

2. If {an/bn} converges to an irrational limit then limn→∞Rn =∞.

3. If {an/bn} is the sequence of continued fraction approximants of a
quadratic irrational, then sup{f 2

n/Fn} <∞.

Statement 3 of Theorem 1.2 motivates the following definition.

Definition: Given a coloring C we define

η(C) =
f 2

F
, (2)

where f is the fold count for C and F is the number of triangles in the trian-
gulation which C colors. We call η(C) the Eisenstein Isoperimetric Ratio of C.

It follows from Theorem 1.1 and the isoperimetric inequality (which for
polygons having edges in the 1-skeleton of T is stronger by a factor of π/3
than the usual isoperimetric inequality) that the continued fraction colorings
all have Eisenstein isoperimetric ratio at least 3. More generally, this would
hold for any coloring which defines a degree 0 map. The hundreds of random
examples I have computed all have this property. This leads to the following
conjecture.

Conjecture 1.3 (Zero Degree) Let Z be any triangulation of the sphere
having degree sequence 6, ..., 6, 2, 2, 2. Any good coloring of Z has the same
total number of black and white triangles. Equivalently, any simplicial map
from Z to the tetrahedron has degree 0.

The Zero Degree Conjecture makes some intuitive geometric sense. When
realized in space, the triangulation Z is just the surface of a doubled equi-
lateral triangle – a domain with zero volume. In contrast the tetrahedron
bounds a region of positive volume. The simplicial maps don’t seem to know
anything about these volumes, but maybe they do.

It would follow from the Zero Degree Conjecture and the isoperimetric
inequality that any good coloring of a 6, ..., 6, 2, 2, 2 triangulation has Eisen-
stein isoperimetric ratio at least 3. So, at least conjecturally, some of the
continued fraction colorings have the smallest fold counts in a rough sense.
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Let me sharpen these statements. Say that Fibonacci Eisenstein integer
is one where a, b are consecutive Fibonacci numbers and a/b > 1/2. Let
φ = (1 +

√
5)/2 be the golden ratio. In §3.3 we will show that

lim
n→∞

η(C(βn)) = φ6 (3)

when βn is the sequence of Fibonacci Eisenstein integers.
Amongst the continued fraction colorings, the Fibonacci examples seem

to minimize the Eisenstein Isoperimetric Ratio. Given primitive Eisenstein
integers

β = a+ bα, β′ = a′ + b′α,

we write β � β′ if b ≤ b′.

Conjecture 1.4 (Fibonacci Extremality)

η(C(β)) < η(C(β′)) (4)

whenever β � β′ and β is a Fibonacci Eisenstein integer and β′ 6= β.

I checked Equation 4 when β is any of the first 10 examples and |β′| < 500.
I think that this is very strong evidence. The proof of Equation 4 in general
should be purely a matter of number theory. I haven’t yet looked for a proof.

Based on the extremal nature of C(2 + 3α), here is a strengthening of
Conjecture 1.4.

Conjecture 1.5 (Fibonacci Isoperimetric Inequality) Suppose that β
is a Fibonacci Eisenstein integer β � β′. Let C = C(β). Let C ′ be an
arbitrary good coloring of T (β′). Then η(C) < η(C ′), with equality if and
only if β′ = β and C ′ is equivalent to C up to symmetry and color-reversing.

This conjecture would combine with Equation 4 to prove the following
general conjecture.

Conjecture 1.6 (Asymptotic Isoperimetric Inequality) Suppose that
{Gn} is any infinite sequence of distinct colorings of sphere triangulations
with degree sequence 6, ..., 6, 2, 2, 2. Then lim infn→∞ η(Gn) ≥ φ6.

Equation 3 says that this conjectured isoperimetric inequality is sharp.
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1.4 Organization

In §2, after a discussion of the slow Gauss map and its connection to con-
tinued fractions, I will launch into the construction of the C(·) family. The
building blocks are what I call capped flowers , and these in turn are made in
layers from cyclically arranged patterns of trapezoids which I call trapezoid
necklaces . (Look again at Figure 1.) I will explain how the set of trape-
zoid necklaces is naturally the vertex set of the infinite rooted binary tree
(modified to have an extra vertex at the bottom). Taking a path in this
tree defines the capped flower. In §3 I will prove Theorems 1.1 and 1.2 and
establish Equation 3.

1.5 Acknowledgements

I’d like to thank Ethan Bove, Peter Doyle, Jeremy Kahn, Rick Kenyon, Curtis
McMullen, and Peter Smillie for various conversations (sometimes going back
some years) on topics related to the material here.
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2 The Main Construction

2.1 The Slow Gauss Map

Let S denote the set of rational numbers in the interval (0, 1]. The slow
Gauss map is the following map from S − {1} into S:

γ

(
a

a+ b

)
= γ

(
b

a+ b

)
=
a

b
. (5)

The number 1/2 is the only element that γ maps to 1 = 1/1. Otherwise
each number as 2 pre-images. Given the map γ, we can think of S as the
infinite rooted binary tree (modified to have an extra bottom vertex). We
make this tree by joining each member of S − {1} to its image under γ.
Figure 2 shows the beginning of this tree.

1

1/2

1/3 2/3

1/4 3/4 2/5 3/5

1/5 4/5 3/8 5/83/7 4/7 2/7 6/7

Figure 2: The beginning of the tree of rationals.

We work entirely with the slow Gauss map, but we explain how this map
is connected to continued fractions. The traditional Gauss map is defined to
be

γ∗(p/q) = (q/p)− floor(q/p). (6)

For each p/q there is some comparison exponent k such that

γ∗(p/q) = γk(p/q).

In other words, the (suitably) iterated slow Gauss map has the same action
as the traditional Gauss map; it just works more slowly. The continued frac-
tion expansion of p/q is derived from recording the sequence of comparison
exponents we see as we iteratively apply γ and γ∗ to p/q. I will discuss this
again more geometrically at the end of §2.3.
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2.2 Trapezoid Necklaces

An isosceles trapezoid is a quadrilateral with two parallel sides such that
the other two sides are non-parallel but have the same length. We call the
longer parallel side the top, the shorter parallel side the bottom, and the other
two sides the diagonal sides . We allow the degenerate case of an isosceles
triangle. In this case the bottom has length 0. An Eisenstein trapezoid
is an isosceles trapezoid whose edges lie in the 1-skeleton of T , the planar
equilateral triangulation whose vertices are the Eisenstein integers. Figure 1
above and Figure 3 below feature some Eisenstein trapezoids.

Up to symmetries of T , an Eisenstein trapezoid X is characterized by
the pair (a, b) where a is the length of a diagonal side of X and b is the
length of the top. We call X primitive if a, b are relatively prime. When X is
primitive, we define the aspect ratio to be a/b. The aspect ratio determines
the primitive Eisenstein trapezoid up to symmetries of T . Thus, modulo
symmetry the primitive Eisenstein trapezoids are naturally in bijection with
the set S of rationals considered above. The Eisenstein trapezoids in Figure
1 are all primitive, and their aspect ratios are variously 1/1 and 1/2 and 2/3.
The Eisenstein trapezoids in Figure 3 have aspect ratio 3/5.

3+53+5-2+5

3+2
1+2

Figure 3: A trapezoid necklace of aspect ratio 3/5.
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Figure 3 illustrates what we mean by a trapezoid necklace. This is a
union of 6 primitive Eisenstein trapezoids X1, ..., X6 which has the following
properties:

• The trapezoids have pairwise disjoint interiors.

• Xi ∩Xi+1 is a single point, a common vertex, for all i.

• An order 6 rotation ρ of T has the action ρ(Xi) = Xi+1 for all i.

In this description the indices are taken mod 6. We define the center of the
necklace to be the fixed point of ρ. When the center is 0, the map ρ (or
perhaps its inverse) is multiplication by α. We define the aspect ratio of the
necklace to be the common aspect ratio of the 6 individual trapezoids.

Up to symmetry of T , there exists a unique Eisenstein necklace of aspect
ratio a/b ∈ S. If we normalize the picture so that 0 is the center, then one
of the trapezoids X1 has vertices

a+ bα, (a− b) + bα, (2a− b) + (b− a)α, a+ (b− a)α.

The intersection of X1 and X2 = ρ(X1) is the point (a− b) + bα because

α×
(
a+ (a− b)α) = (a− b) + bα.

This little calculation uses the fact that α2 = α− 1.

2.3 Empty Trapezoid Flowers

Each trapezoid necklace X defines a smaller trapezoid necklace Y = γ(X)
having the same center. The defining property is that the top side of each
trapezoid Yi in Y is a side of a trapezoid Xj of X, and one of the diagonal
sides of Yi is a side of one of the trapezoids of X adjacent to Xj. This
awkward definition is very much like a written description of how to drink a
glass of water. A demonstration says a thousand words. Figure 4 shows the
trapezoid necklaces

X → γ(X)→ γ2(X)→ γ3(X)

alternately colored black and white. Here X is as in Figure 3. The respective
aspect ratios are given by 3/5 → 2/3 → 1/2 → 1/1. We call the union of
these necklaces the empty 3/5-flower .
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Figure 4: The empty 3/5-flower.

As is suggested by our notation, the action of γ here mirrors the action
of the slow Gauss map γ from the previous section. That is, if r is the aspect
ratio of X then γ(r) is the aspect ratio of γ(X). Our construction mirrors
the action of the slow Gauss map.

We discussed above how the slow Gauss map is related to continued frac-
tions. Here we continue the discussion. As we now illustrate, our construction
also precisely implements the continued fraction expansion.
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Figure 5: The empty 3/7-flower.

Figure 5 shows the empty 3/7-flower, corresponding to the tree path
3/7 → 3/4 → 1/3 → 1/2 → 1/1. The specially-outlined trapezoids (and
their rotated images) are the maximal trapezoids in the flower. They have
respectively 2 and 3 “stripes”. For comparison, 3/7 has continued fraction
0 : 2 : 3. That is

3

7
= 0 +

1

2 + 1
3

.

In general, the empty p/q-flower starts with a p/q-necklace and then fills
in the full γ orbit, alternately coloring the necklaces black and white. The
innermost necklace always has aspect ratio 1/1. Up to symmetries of T ,
the empty p/q-flower is unique. One can read off the continued fraction
expansion of p/q by counting the stripes of the maximal trapezoids.
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2.4 Filling and Capping the Flowers

We fill an empty flower by coloring the remaining 6 triangles black and white
in an alternating pattern. Figure 6 shows this for the 3/5-flower. Up to
symmetries of T (and swapping the colors) there is a unique p/q-flower. The
empty flowers have 6-fold rotational symmetry but the (filled) flowers have
3-fold rotational symmetry. We break a symmetry to define the filling.

Figure 6: The filled and capped 3/5-flower

Figure 6 also shows what we mean by capping a flower. We take the
convex hull of the flower and color the complementary triangles the color
opposite the color of the outer necklace. The capped flowers, which are reg-
ular hexagons with Eisenstein integer vertices, are the building blocks of our
colorings. When two translation-equivalent capped flowers meet along a com-
mon boundary edge, the triangular regions merge to become an Eisenstein
parallelogram – i.e., one whose boundary lies in the 1-skeleton of T .
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2.5 Defining the Colorings

Consider the hexagonal tiling of the plane by translates of the capped a/b-
flower. Because the capped flowers have 3-fold rotational symmetry, the
resulting planar coloring is invariant under the group Gβ generated by order
3 reflections in the vertices and centers of the hexagons. The quotient of this
planar coloring by Gβ is C(β). By construction, C(β) is good.

Figure 7: The universal cover of C(3 + 5α).

Figure 7 shows the construction for β = 3 + 5α. The region bounded
by the big central rhombus is a fundamental domain for the action of Gβ.
The colorings exhibit a lot of variety. Figure 8 below shows C(a + 13b) for
a = 1, 3, 5, 7, 9, 11. It is worth noting that for parameters like 1/13 the fold
count is linear in the number of triangles.
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Figure 8: The covers of C(a+ 13α) for a = 1, 3, 5, 7, 9, 11..
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3 Properties of the Colorings

3.1 The Zero Degree Property

In this section we prove Theorem 1.1.
Let A(a/b) denote the number of equilateral triangles in the trapezoid of

aspect ratio a/b. An easy calculation shows that

A(a/b) = 2ab− a2. (7)

Let
a

b
=
an
bn
→ ...→ a0

b0
=

1

1

be some branch of the rational binary tree. After we have suitably permuted
the colors, the number of black and white triangles in C(a+ bα) respectively
are

N1(a/b) = 1 + 2A(an/bn) + 2A(an−2/bn−2) + 2A(an−4/bn−4) + ...

and

N2(a/b) = 1 + 2anbn + 2A(an−1/bn−1) + 2A(an−3/bn−3) + ...

We want to see that N1(a/b) = N2(a/b).
Before we give the general argument, let us work out the example from

Figure 1, namely
2

3
→ 1

2
→ 1

1
.

The two sums above are

N1(2/3) = 1 + 16 + 2 = 19, N2(2/3) = 1 + 12 + 6 = 19.

So in this example the two sums are equal.
In general the proof goes by induction. We want to see that

N(a/b) = N2(a/b)−N1(a/b) = 0.

Suppose we augment our path of rationals as follows:

a

a+ b
=

an
an + bn

→ an
bn
→ ...→ 1

1
,
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Suppose also that we keep the inner necklaces the same color so that the
roles of N1 and N2 switch when we are comparing the two cases. Only the
outermost layers change, so to speak, and we compute

N

(
a

a+ b

)
−N

(
a

b

)
= 2ab+ 2a(a+ b)− 2A

(
a

a+ b

)
=

2ab+ 2a2 + 2ab− 4a(a+ b) + 2a2 = 0.

If we instead augment our path by b/(a+ b) then

N

(
a

a+ b

)
−N

(
a

b

)
= 2ab+ 2b(a+ b)− 2A

(
b

a+ b

)
2ab+ 2ab+ 2b2 − 4b(a+ b) + 2b2 = 0.

This completes the induction proof.

3.2 Asymptotic Properties

In this section we prove Theorem 1.2.
Now suppose that {pn/qn} is an infinite sequence of elements of S having

an irrational limit ψ. The continued fraction expansions of these numbers
converge to the continued fraction expansion of ψ. This means that for any
D there are constants M,N such that if n > N then all but the first M
terms of pn/qn have pn > D. In terms of the flowers, all but the first M inner
trapezoid necklaces Q have the property that

p(Q)

A(Q)
<

100

D
.

Here p(Q) denotes the perimeter of Q and, as above, A(Q) denotes the
number of equilateral triangles comprising Q. We picked an unrealistically
large constant of 100 here to avoid having to think about the fine points of
trapezoids.

Our analysis shows that, within the nth flower, the average ratio of the
perimeter of a trapezoid to the area of the trapezoid tends to 0 as n → ∞.
This immediately implies that the ratio fn/Fn converges to 0. This is the
first property.

The second property is immediate. The big and fat trapezoids in our
flowers will contain big monochrome disks.
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For the third property, we observe that a quadratic irrational has a peri-
odic continued fraction approximation. The fact that the continued fraction
expansion is periodic translates ito the fact that our flowers are asymptot-
ically self-similar. There is an asymptotic scaling factor λ > 1 such that
multiplication by λ−1 preserves the flower up to a uniformly bounded dis-
crepancy.

Hence, up to a bounded error, the sequence of perimeters of the successive
necklaces looks like

c1, ..., ck, λc1, ..., λck, λ
2c1, ..., λ

2ck, ...

for some constants c1, ..., ck, up to a uniformly bounded error in each term.
Hence fn = Cnλ

n′
for some sequence {Cn} that is bounded away from both

0 and ∞. Here n′ is the length of the γ-orbit of pn/qn, divided by k. At the
same time, the corresponding sequence of areas looks like

a1, ..., ak, λ
2a1, ..., λ

2ak, λ
4a1, ..., λ

4ak, ...

up to a uniformly bounded error in each term. This means that Fn = C ′nλ
2n′

for some other sequence {C ′n} that is also bounded away from 0 and ∞.
Putting these two estimates together, we see that f 2

n/Fn = C2
n/C

′
n is uni-

formly bounded.

3.3 The Fibonacci Case

In this section we establish Equation 3.
Recall that η = f 2/F is the Eisenstein isoperimetric ratio. Let

(a1, a2, a3, a4, a5, ...) = (1, 1, 2, 3, 5...)

be the sequence of Fibonacci numbers. Let φ = (1 +
√

5)/2 be the golden
mean. We first note the well-known asymptotic

an ∼
φn√

5
. (8)

The difference tends to 0 exponentially fast in n.
Let fn be the fold count for C(an + an+1α) and let Fn be the number of

faces. Let ηn be the Eisenstein Isoperimetric Ratio of C(an +an+1α). Just as
a check for our general formula, we first record some special cases.

(f1, f2, f3, f4, f5) = (7, 13, 23, 39, 65),
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(F1, F2, F3, F4, F5) = (6, 14, 38, 98, 258).

These values yield

(η1, η2, η3, η4, η5) = (8.16..., 12.07..., 13.92..., 15.52, ..., 16.38...).

In general, we have

fn = −1 + 2
n+2∑
k=1

ak, Fn = 2 + 4
n∑
k=1

akak+1. (9)

These formulas give the same answers as the lists above for n = 1, 2, 3, 4, 5,
and the same kind of inductive proof as the one given in §3.1 establishes
them.

Using the approxiation in Equation 8, and the familiar formula for the
partial sums of a geometric series, and the fact that 1 +φ = φ2, we find that

f 2
n ≈

4

5
× φ2n+8, Fn ≈

4

5
× φ2n+2.

Here ≈ means equal up to a uniformly bounded error. Dividing the one
equation by the other gives Equation 3.
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