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Abstract

There are two main conjectures about paper Moebius bands. First,
a smooth embedded paper Moebius band must have aspect ratio at
least

√
3. Second, any sequence of smooth embedded paper Moebius

bands having aspect ratio converging to
√

3 converges, in the Haus-
dorff topology and up to isometries, to an equilateral triangle of semi-
perimeter

√
3. We will reduce these conjectures to a finite number

of statements that certain explicit piecewise-algebraic expressions are
non-negative on the unit cubes of dimension 10 and 14. The inequal-
ities involve the geometry of finite tensegrities. I have tested these
inequalities extensively though not exhaustively.

1 Introduction

A paper Moebius band of aspect ratio λ is a smooth isometric embedding
I : Mλ → R3, where Mλ is the flat Mobius band

Mλ = ([0, 1]× [0, λ])/ ∼, (x, 0) ∼ (1− x, λ) (1)

An early work [Sa] establishes the existence of paper Mobius bands. The
main question about these objects is the value of the smallest λ0 such that
a paper Moebius band of aspect ratio λ exists iff λ > λ0. The paper [HW]
shows that λ0 ∈ [π/2,

√
3]. The book [FT, §14] gives an excellent exposition
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of these bounds. The paper [CF] gives a general framework for understanding
objects like smooth paper Moebius bands. See [AHLM], [CKS], [HF],
[MK], [S1] for work that is more or less related.

The paper [HW] makes the following conjecture about λ0.

Conjecture 1.1 (Optimality) A smooth embedded paper Moebius band has
aspect ratio greater than

√
3. Hence λ0 =

√
3.

The upper bound λ0 ≤
√

3 is explained by an example. Figure 1.1 shows
an immersed polygonal paper Mobius band of aspect ratio exactly

√
3.

rotate

Figure 1.1: The conjectured optimizer

The final image is not embedded. It is an equilateral triangle of semi-
perimeter

√
3. However, for any ε > 0, one can approximate this map by

smooth embeddings of Mλ+ε. See [FT] for a discussion about this.
Here is an elaboration on the Optimality Conjecture:

Conjecture 1.2 (Rigidity) A sequence of smooth embedded paper Mobius
bands having aspect ratio converging to

√
3 converges, in the Hausdorff metric

and up to isometries, to an equilateral triangle of semi-perimeter
√

3.

In [S3] we show that λ0 >
√

3 − (1/26). The actual bound involves
a complicated algebraic number that is just slightly larger than this. For
comparison, π/2 <

√
3− (4/26), so our bound gets more than 3/4 of the way

to the conjectured optimal bound. We also proved a result 1 which contains
Theorem 3.1 as a subset.

In these notes, which are a sequel to [S3], we will reduce the Optimality
and Rigidity Conjectures to a finite number of statements that certain explicit

1The result in Theorem 3.1 has a constant
√

3− (1/24), which differs slightly from the
bound

√
3− (1/26). This is not a typo. The new constant refers to different objects.
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piecewise-algebraic expressions are non-negative on the unit cube [0, 1]N , and
also statements about where the zeros can occur. Sometimes N = 10 and
sometimes N = 14.

The functions are not all that complicated; mostly they express distances
between various pairs of points in space. It seems plausible that a computer-
assisted method like the one I used in [S2] to solve Thomson’s 5-electron
problem could work here. However, I am somewhat daunted by the high-
dimensionality of the calculations. I will present clear and (in my opinion)
strong numerical evidence for all the calculations, but the method I use here
(a stochastic hill-climbing algorithm) does not furnish a proof. It merely
shows that it is not so easy to find any counterexamples.

In [FT] it is pointed out that the main difficulty in proving the conjec-
ture is figuring out how to use the topological hypothesis that the paper
Moebius band is embedded. Indeed, in [FT], the authors give an example of
a sequence of immersed examples with aspect ratio converging to π/2. So,
something more is needed. The advantage of our approach here and in [S3]
is that it reduces all the topological concerns to finite dimensional geometric
inequalities which work equally well for immersed examples.

These notes are organized as follows.
In §2 I prove the Optimality Theorem and the Rigidity Theorem modulo

two main results, the Geometry Lemma and the Topology Lemma. The
Geometry Lemma also works in the immersed case and the Topology Lemma
requires an embedding. The rest of the paper is devoted to reducing these
two results to tensegrity calculations.

In §3 I recall some geometric estimates from [S3] and also prove a new one
along similar lines. The precise constants in these results are not important.
They mainly serve to give us some a priori bounds which help us set up the
limits and targets of our calculations.

In §4 I introduce the tensegrities of interest. I then explain the 3 main
tensegrity calculations needed for the Geometry Lemma, and also 2 more
tensegrity calculations of a similar nature which I use for the Topology
Lemma. These calculations involve showing that certain piecewise algebraic
functions are non-negative on the unit cube [0, 1]14. I call these calculations
the Main Calculations.

In §5 I reduce the Topology Lemma to the last 2 calculations from §4
from some additional calculations, which I call Confiner Calculations. These
calculations involve showing that certain piecewise algebraic functions are
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non-negative on the unit cube [0, 1]10. The Topology Lemma (Lemma 2.3)
a very natural statement which ought to have a traditional proof. A tradi-
tional proof of the Topology Lemma would remove the need for the Main
Calculations 4,5 and all the Confiner Calculations. On the other hand, Main
Calculations 1,2,3 seem essential to the whole approach.

In §6 I will describe my experiments so far with the calculations. In brief,
I parametrize the relevant tensegrity families by unit cubes of dimension 10
and 14 and then use a hill climbing algorithm – a sort of random Newton’s
method – to optimize the relevant quantity. For the Main Calculations I have
currently only worked in a simplified 10-dimensional slice of the 14-cube, the
slice corresponding to planar configurations. As I will explain, my experience
with the Confiner Calculations tells me that if the calculation works on the
slice it also works in the whole space. Nonetheless, I will eventually code
up the full 14-dimensional calculation. I hope to do all the calculations
rigorously eventually.

I view these notes as a kind of time capsule. If the main conjectures are
not proved in many years, it might be possible that some future computer
will make short work of these tensegrity calculations, and then the conjec-
tures will be proved. I think of it like this. Someone at the I.A.S. in 1950
might have a calculation that takes one second on a Macbook Pro, but while
they were picking the dead crickets out of the vacuum tubes of the primitive
computer there, they might think the calculation impossible. The calculation
would not have been impossible but just premature.

I would like to thank Dan Cristofaro-Gardiner, Dmitry Fuchs, Steve
Miller, and Sergei Tabachnikov for helpful discussions about this problem. I
would especially like to thank Sergei for telling me about the problem and
pointing me to his book with Dmitry. I would also like to acknowledge the
support of the Simons Foundation, in the form of a 2020-21 Simons Sabbat-
ical Fellowship, and also the support of the Institute for Advanced Study, in
the form of a 2020-21 membership.
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2 The Proof modulo Two Lemmas

2.1 Polygonal Moebius Bands

Basic Definition: Say that a polygonal Moebius band is a pair M = (λ, I)
where I : Mλ → R3 is an isometric embedding that is affine on each triangle
of a triangulation of Mλ. We insist that the vertices of these triangles all lie
on ∂Mλ, as in Figure 1.1. Any smooth isometric embedding I ′ : Mλ → R3

can be approximated arbitrarily closely by this kind of map, so it suffices to
work entirely with polygonal Moebius bands.

Associated Objects: Let δ1, ..., δn be the successive triangles of M.

• The ridge of δi is edge of δi that is contained in ∂Mλ.

• The apex of δi to be the vertex of δi opposite the ridge.

• A bend is a line segment of δi connecting the apex to a ridge point.

• A bend image is the image of a bend under I.

• A facet is the image of some δi under I.

We always represent Mλ as a parallelogram with top and bottom sides iden-
tified. We do this by cutting Mλ open at a bend.

2.2 T Patterns

Say that a T -pattern is a pair of perpendicular coplanar disjoint bend images.
Here is one of the central results from [S3].

Lemma 2.1 A polygonal Moebius band of aspect ratio less than 7π/12 has
a T -pattern.

Sketch of the Proof: A pair of perpendicular bend images is contained
in a pair of parallel planes. The small aspect ratio allows us to rotate the
image so that the bend images all make an angle of less than π/4 with the
XY -plane. This property guarantees that the parallel planes just mentioned
never contain vertical line segments. We consider the space P of perpendic-
ular pairs of bend images. Generically this space is a topological 1-manifold.
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We show that P contains a connected component K that is invariant under
the involution which swaps the pair of bend images. Starting with a pair
(α, β) of bend images in K we consider a path to (β, α). The corresponding
pairs of perpendicular planes exchange their position and never contain ver-
tical line segments. Hence, at some instant along the path, they coincide. ♠

The T -pattern in our polygonal Moebius band may not be unique, but
we fix a T -pattern once and for all. Let β1 and β2 be two bends whose
corresponding images β∗1 = I(β1) and β∗2 = I(β2) form a T -pattern. Since
these segments do not intersect, we can label so that the line extending β∗2
does not intersect β∗1 . We cut Mλ open along β1 and treat β1 as the bottom
edge. We now set βb = β1 and βt = β2 and (re)normalize as in §2.1. So, β∗b
connects (−B, 0, 0) to (0, 0, 0), and β∗t is a translate of the segment connecting
(0, 0, 0) to (0, T, 0). This translate still lies in the XY -plane. Here B and T
are the lengths of these segments.

R1

R2

L 1

L2

L1I( )

R1I( )

R2I( )

b

Figure 2.1: The standard normalization

The left side of Figure 2.1 shows Mλ. Reflecting in a vertical line, we
normalize so that L1 ≥ R1. This means that L2 ≥ R2. We set

Sj = Lj +Rj. (2)

We call this the standard normalization. Henceforth, we refer to (τ1, τ2) as
a standard pair , and we let λ(τ1, τ2) be the aspect ratio of the polygonal
Moebius band from whence these trapezoids came.

The right side of Figure 2.1 shows the T pattern, and the corresponding
images of the sets on the left under the isometry I. The wiggly curves we
have drawn do not necessarily lie in the XY -plane but their endpoints do.
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We normalize so that (0, 0, 0) is the right endpoint of the B-bend image.
In the figure (x, y) denotes the vector which points from the white to the
pink vertex on the right side. We have blown this part of the figure up to
make it more visible.

Remark: Actually, there are two such standard normalizations. We can
make the replacements Mλ → ρ1(Mλ) and I → ρ2 ◦ I ◦ ρ1, where ρ1 is reflec-
tion in the midpoint of Mλ and ρ2 is reflection in the X-axis. This change
preserves all our normalizations, and gives us the pair (τ2, τ1). Aside from
swapping the names of the variables, the only thing that happens to Figure
2.1 is that the vector (x, y) changes to (x,−y).

We call (τ1, τ2) tame if λ(τ1, τ2) <
√

3+10−100. We add this tiny constant
because, for the Rigidity Theorem, we will need to consider examples having
aspect ratio slightly larger than

√
3.

2.3 Special Bends

We did a lot of numerical experiments and these led to the definitions we
give here. Without these experiments, the definitions would seem very un-
motivated.

Pitch: Given a polygonal Moebius band with a T -pattern, we use the stan-
dard normalization. For each bend β we let β∗ = π ◦ I(β), the projection of
the bend image I(β) into the XY -plane. Each bend β of τ1 has associated
to it an angle θ ∈ [0, π] such that when we rotate the positive X-axis coun-
terclockwise by θ we arrive at a ray parallel to β∗. We call θ the bend pitch.

Four Special Bends: Let (k)1 stand for a bend β of τ1 whose bend pitch
is +kπ/12. Let (k)2 stand for a bend β of τ2 whose bend pitch is −kπ/12.
We insist that (0)1 = (0)2 = (0) is the bottom bend and (6)1 = (6)2 = (6) is
the top. We are interested in bends (0), (1)j, (4)j, (6) for j = 1, 2. We pick
(1)j and (4)j to be the bends nearest (0) and (6), respectively, which satisfy
the conditions. Let π be projection into the XY -plane. We illustrate our
notation with an example:

(4)∗1 = π ◦ I((4)1) (3)
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Figure 2.2: The 4 special bends and the yellow tips.

Tips and Bumps: We define the 1-tip of τ ∗j to be the right endpoint of
(1)∗j . We define the 4-tip of τj to be the left endpoint of (4)∗j . These are the
yellow vertices in Figure 2.2. Let ∆ be the convex hull of the T -pattern. We
say τ ∗j has a k-bump if the k-tip lies outside ∆. We make 2 more definitions:

• When i 6= j we write τi →k τj if some bend X of τi is such that X∗

contains the k-tip of τ ∗j .

• We write τk →1 τk if some bend X ∈ [4, 6]k is such that X∗ contains
the 1-tip of τk.

2.4 The Two Main Lemmas

Suppose we have a polygonal Mobius band of aspect ratio less than
√

3 + 10−100.

In the first result we assume that M has a T pattern but we do not assume
that M is embedded. In the second result we require that M is embedded.

In either case, M has a T patterm. Let (τ1, τ2) be the associated tame
pair. For the sake of working with closed subsets of objects, we allow the
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limiting case when the horizontal and vertical segments (0)∗ and (6)∗ touch.
That is, we allow (0, 0, 0), the right endpoint of (0)∗, to lie in (6)∗.

Lemma 2.2 (Geometry) Suppose that (τ1, τ2) is a tame pair with at least
one of the following properties:

• τ1 →1 τ1.

• τ2 →1 τ1.

• τ2 →4 τ1.

Then λ(τ1, τ2) ≥ 2
√

3. Moreover, for any ε > 0 there is a δ > 0 such that if
λ(τ1, τ2) < 2

√
3 + δ then (0)∗ ∪ (6)∗ is within ε of an equilateral triangle of

perimeter 2
√

3 in the Hausdorff metric.

There is a symmetric result. Switching the roles of the indices, we get
the same result when τ2 →1 τ2, etc. Thus, any of 6 hypotheses lead to the
conclusion in the Geometry Lemma.

Our next result has the main topological component of the proof. In this
result we insist that M is embedded.

Lemma 2.3 (Topology) Suppose that (τ1, τ2) is a tame pair corresponding
to an embedded polygonal Moebius band. Then at least one of 4 things is true.

τ1 →1 τ1, τ2 →1 τ1, τ1 →4 τ2, τ2 →4 τ1.

2.5 Proofs of the Main Results

Given an immersed polygonal Moebius band with a T -pattern, we get a tame
pair (τ1, τ2) provided that the aspect ratio satisfies λ <

√
3 + 10−100. Most

of this chapter is devoted to proving the following result.

Proof of the Optimality Theorem: If we have an embedded polygo-
nal Moebius band of aspect ratio less than

√
3 then we cut it open along the

bends corresponding to a T -pattern. This gives rise to a tame pair (τ1, τ2)
with λ(τ1, τ2) < 2

√
3. But then both the Topology Lemma and the Topology

Lemma hold, and these results contradict each other. ♠
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Proof of the Rigidity Theorem: Suppose we have a sequence of Paper
Moebius bands whose aspect ratios converge to

√
3. The Topology Lemma

applies for all examples sufficiently far along the sequence and thus we get a
sequence {(τn,1, τn,2}) of tame pairs. By the Geometry Lemma, the convex
hull ∆ of the T pattern converges (modulo global isometries of R3) to the
equilateral triangle ∆0 of perimeter 2

√
3. Since the length of the boundary

I(∂Mλ) is at least as long as the perimeter of ∆, we see that this boundary
must in fact converge in the Hausdorff Topology (modulo global isometries)
to this same triangle ∆0. This proves the Rigidity Theorem. ♠
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3 A Priori Bounds

Theorem 3.1 and Lemma 3.2 are the main results in this chapter. The reader
anxious to get to the main points should skip the proofs in this chapter and
just use these results as black boxes. The precise statements of these results
are not that important. We just need some a priori bounds to frame our
calculations.

3.1 Geometric Bounds

Let ∆ be the convex hull of the T -pattern I(T ) ∪ I(B). Let b denote the
slope of the B-bend and let t denote the slope of the T -bend. Figure 2.1
shows b but not t. Let Ω denote the set of pairs (b, t) which can arise in a
standard pair with λ <

√
3. Figure 4.1 shows a plot of Ω in blue, as well as

a quadrilateral Ω̂ which we showed contains Ω.

,-  

t

b= 27 -  11

4

Figure 3.1: The range of slopes.

The following results are a subset of the main result in [S3, §4].

11



Theorem 3.1 For any immersed paper Moebius with a T -pattern and aspect
ratio less than

√
3, the following is true.

1. Sj ≥
√

3− (1/24) for j = 1, 2.

2. x < 1/18 and |y| < 1/30.

3. Ω ⊂ Ω̂.

Sketch of the Proof: The distances relations in Figure 2.1 give rise to 3
constraints:

1. R1 ≥
√
x2 + (T/2− y)2 and R2 ≥

√
x2 + (T/2 + y)2.

2. L1 ≥
√

(B + x)2 + (T/2 + y)2 and L2 ≥
√

(B + x)2 + (T/2− y)2.

3. B2 − L2
j + (T −Rj)

2 ≤ 0 for j = 1, 2.

Constraints 1 and 2 follow directly from the Pythagorean Theorem. Con-
straint 3 comes from a more subtle argument involving the Ridge Curve,
which we define later in this chapter. We give the argument in [S3].

We also have the following relations:

L =
S + b− t

2
, R =

S − b+ t

2
, B =

√
1 + b2, T =

√
1 + t2. (4)

Plugging these relations into our various constaints and doing some calculus,
we arrive at the statements in Theorem 3.1. ♠

3.2 Angle Range Bounds

Now we prove a new result, similar in spirit to Theorem 3.1. This new result
also helps frame our calculations by giving a priori bounds.

Let the interval [0, 1]1 denote all the bends in the trapezoid τ1 that inter-
polate between 0 and 11. Let Θ([0, 1]1) denote the range of bend pitches for
bend images in [0, 1]1. (We make similar definitions for the other intervals.)
The initial bend image (0)∗ has bend pitch 0. The final bend image (11)

∗ has
bend pitch π/12. It is tempting to guess that Θ([0, 1]1) = [0, π/12] but, since
the bend pitches need not vary monotonically, we cannot conclude this. In
this section we establish the following bounds.
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Lemma 3.2 Let θ0 = π/30. For any tame pair (τ1, τ2) of trapezoids,

1. Θ([0, 1]1) ⊂ [−θ0, π/12].

2. Θ([0, 4]1) ⊂ [−θ0, 4π/12 + θ0].

3. Θ([4, 6]1) ⊂ [4π/12, π/2 + θ0].

Remark: One consequence Lemma 3.2 is that any bend in τ1 has pitch in
[−θ0, π/2 + θ0]. This is a more precise version of the statement above that
the pitches essentially lie in [0, π/2] except for a bit of slope at either end.

The rest of the chapter is devoted to proving this result. The technique
used here is not used anywhere else in this paper, though we used it exten-
sively in [S3]. At this point, the reader can use Theorem 3.1 and Lemma
3.2 as black boxes. Again, they only serve to place a priori bounds on our
tensegrity calculations.

3.3 The Ridge Curve

Here we recall some more notions from [S3].

The Sign Sequence: Let δ1, ..., δn be the triangles of the triangulation
associated to M, going from bottom to top in Pλ. We define µi = −1 if δi
has its ridge on the left edge of Pλ and +1 if the ridge is on the right. The
sequence for the example in Figure 1.1 is +1,−1,+1,−1.

The Core Curve: There is a circle γ in Mλ which stays parallel to the
boundary and exactly 1/2 units away. In Equation 1, this circle is the image
of {1/2} × [0, λ] under the quotient map. We call I(γ) the core curve.

The left side of Figure 3.2 shows Mλ and the pattern of bends. The
vertical white segment is the bottom half of γ. The right side of Figure
3.2 (which has been magnified to show it better) shows I(τ) where τ is the
colored half of Mλ. All bend angles are π and the whole picture is planar.
The colored curve on the right is the corresponding half of the core curve.
Incidentally, for τ we have L+R = 1.72121... <

√
3.
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Figure 3.2: The bend pattern and the bottom half of the image

The Ridge Curve: We show the picture first, then explain.

Figure 3.3: Half of the core curve (red/blue) and half of the ridge curve
(black). The core curve is scaled up by a factor of 2.
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Let βb be the bottom edge of the parallelogram representing Mλ. We
normalize so that I maps the right vertex of βb to (0, 0, 0) and the left vertex
to (−B, 0, 0), where B is the length of βb. Let E1, ..., En be the successive
edges of the core curve, treated as vectors. Let

Γ′i = 2µiEi, i = 1, ..., n. (5)

Let Γ be the curve whose initial vertex is (B, 0, 0) and whose edges are
Γ′1, ...,Γ

′
n. Here µ1, ..., µn is the sign sequence.

Γ has length 2λ, connects (B, 0, 0) to (−B, 0, 0), and is disjoint from the
open unit ball. The lines extending the sides of Γ are tangent to the unit
sphere. We rotate so that Γ contains (0, T, 0) for some T > 1. If we cone Γ to
the origin, we get a collection ∆1, ...,∆n of triangles, and ∆i is the translate
of µiI(δi) whose apex is at the origin. In particular, the vectors pointing to
the vertices of Γ are parallel to the corresponding bend images. Figure 3.3
shows the portion of the ridge curve (in black) associated to the example in
Figure 2.1. We have also scaled the core curve by 2 and translated it to show
the relationships between the two curves.

3.4 Proof of Lemma 3.2

Let us dispense with a representative case first. The reason why Θ([0, 1]1)
ends at π/12 rather than π/12 + θ for some positive θ is that we take (1)1 be
the first bend after (0)1 with pitch π/12. Similar remarks apply to the other
cases where we have no slop over the endpoint in the bound.

Now we consider the other cases. Let Γ1 be the portion of the ridge curve
associated to τ1. The curve Γ1 connects (B, 0, 0) to (0, T, 0). This curve
perhaps does not stay entirely in the positive sector consisting of points
(x, y, z) with x, y ≥ 0, but it certainly does not “go around the back”. For
instance, the projection π(Γ1) avoids the ray of slope 1 which starts at (0, 0)
and goes through (−1,−1). Here π is projection into the XY -plane.

Let Π1 and Π2 be two planes in R2 which contain the Z-axis. Suppose
that the dihedral angle between Π1 and Π2 is θ. Suppose these planes are
ordered so that Γ1 must hit Π1 before hitting Π2. We give a lower bound on
the length if Γ1 goes from (B, 0, 0) to a point p ∈ Π2, to a point q ∈ Π1 to
(0, T, 0). Figure 3.4 shows what Π(Γ1) would look like in several cases.

It is worth pointing out that Γ1 lies outside the open unit ball, but π(Γ1)
does not necessarily lie outside the open unit disk. The shaded region in
Figure 3.4 is one quarter of the unit disk.
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q=(0,T)

B,0) B,0)

2
1 R R (0,T)1

Figure 3.4: Projection of the ridge curve.

Let `1 denote the length of Γ1. Let Rj denote reflection in Πj. We write
Γ1 = Γ11 ∪ Γ12 ∪ Γ13, where Γ11 goes from (B, 0, 0) to p and Γ12 goes from p
to q and Γ13 goes from q to (0, T, 0).

The continuous path

Γ∗1 = Γ11 ∪R2(Γ12) ∪R2R1(Γ13)

has the same length as Γ1 and connects (B, 0) to R2R1(0, T, 0). This latter
point lies in the XY plane and makes an angle 2θ with the Y -axis, as shown
(projected into the XY -plane) on the right side of Figure 7.2. But then

`1 = |Γ∗1| ≥ (π/2) + 2θ. (6)

Let `2 denote the length of Γ2, the portion of the ridge curve associated
to τ2. From Theorem 3.1 we have `1 <

√
3 + (1/24). Combining this with

Equation 6, we have

2θ <
√

3 + (1/24)− (π/2) < π/15. (7)

Hence θ < π/30. If one of our estimates failed, Γ1 would make exactly the
kind of path just studied, where the angle θ between Π1 and Π2 would be
θ = π/30. This is a contradiction. ♠
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4 Proof of the Geometry Lemma

4.1 Trapezoids and Capacities

We first mention a general property of our notation. For any object X in the
plane X ′ will be the image of X under some kind of piecewise linear map to
R3. Suppose that

Q = (Q0, Q1, Q2, Q3), Q′ = (Q′0, Q
′
1, Q

′
2, Q

′
3)

are as follows: Q is a trapezoid in the plane having vertical sides and width
1 and Q′ is a quadrilateral in R3. Figure 4.1 shows Q. The numbers indicate
the labeling of the vertices of Q.

2

3

1

Figure 4.1: The quadrilateral tensegrity.

Let dij = ‖Qi − Qj‖. Let d′ij = ‖Q′i − Q′j‖. We define the height of Q
to be the sum of the vertical edge lengths of Q, namely d02 + d13. We call
the pairs (Q0, Q1) and (Q2, Q3) the bends and we call the pairs (Q′0, Q

′
1) and

(Q′2, Q
′
3) the bend images . This lines up our discussion here with Figure 2.3.

We say that (Q,Q′) is a plain tensegrity pair if dij ≥ d′ij for all the edges
of Q, with equality for the pairs (0, 1) and (2, 3). So, we have 2 equalities
and 6 inequalities. We define the capacity of Q′ to be the minimum height
of Q where (Q,Q′) is a tensegrity pair. We denote this by κ(Q′).
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4.2 Compound Tensegrities

This time let Ψ′ = (Q′0, ..., Q
′
k−1) be a collection of k quadrilaterals in space.

We call k the complexity . We have

Q′j = (Q′j,0, Q
′
j,1, Q

′
j,2, Q

′
j,3), j = 0, ..., (k − 1).

We insist that these quads abut, in the sense that

Qj,2 = Qj+1,0, Qj,3 = Qj+1,1, j = 1, ..., (k − 2).

When these conditions are satisfied, we call Ψ′ a compound tensegrity . We
will always take k = 2 here.

We call Ψ′ cyclic if, additionally,

Qk−1,0 = Q0,1, Qk−1,1 = Q0,0. (8)

The mismatch of the indices is deliberate, and is designed to reflect the
structure of a Moebius band. When Ψ′ we will take k = 4.

In either case, we define

κ(Ψ′) =
k−1∑
i=0

κ(Q′i). (9)

Suppose now that (τ1, τ2) is a tame pair (or indeed any pair) of trapezoids
coming from the process of cutting a polygonal Moebius band open along the
bends corresponding to a T -pattern. Suppose we choose a finite number of
additional bends β1,1, ..., β1,k1−1 in the interior of τ1 and β2,1, ..., β1,k2−1 in the
interior of τ2. Then we can get a compound tensegrities in 3 ways:

• We set β1,0 = b and β1,k1 = t and then let Qj be the quadrilateral whose
vertices are the endpoints of I(β1, j) and I(β1, j + 1) with the vertices
labeled as in Figure 4.1. Then Q0, ..., Qk1−1 is a compound tensegity.
Here b and t are the bottom and top bend of τ1. Call this Ψ′1.

• We set β2,0 = t and β2,k2 = b′ and then repeat the same construction.
Here b′ is the top of τ2 which is parallel to b. Call this Ψ′2.

• We can take the concatenation Ψ′ = Ψ′1,Ψ
′
2 of the previous two tenseg-

rities. This gives us a cyclic compound tensegrity.

Here is the key inequality:

S1 ≥ κ(Ψ′1), S2 ≥ κ(Ψ′2), λ(τ1, τ2) ≥ κ(Ψ′). (10)
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4.3 Main Calculations

Now we describe 2 families of cyclic tensegrities of complexity 4. The input
for both families is a pair Θ1,Θ2 of angle intervals. We have 2 middle bend
images

β′j = Q′j,0Q
′
j,1, j = 1, 2.

We call the bend images β′j for j = 0, 1, 2, 3. Let π be projection into the
XY -plane. Recall that the pitch of β′ is the angle that π(β′) makes with the
X-axis.

The family F(h,Θ1,Θ2) is the set of tensegrities with these properties.

• β′0 ∪ β′3 is a T -pattern, with π(β′0) horizontal and π(β′3) vertical.

• β′j has pitch in the interval Θj for j = 1, 2.

• π(β′2) contains the point π(Q1,j).

The family G(j,Θ1,Θ3) is the set of tensegrities with these properties.

• β′0 ∪ β′2 is a T -pattern, with π(β′0) horizontal and π(β′2) vertical.

• β′j has pitch in the interval Θj for j = 1, 3.

• π(β′3) contains the point π(Q1,j).

Referring to polygonal Moebius bands, the family F encodes the situation
where we focus on two bends contained in τ1 and the family G encodes the
situation where we focus on two bends, one contained in τ1 and the other
contained in τ2.

We define the capacity of one of these families to be the infimal capacity
of members of the family. Let ∆0 denote the equilateral triangle of perimeter
2
√

3 coming from the equilateral triangle shown on the right side of Figure
1.1. Here are our main calculations.

1. F(0, [π/12, π/12], [4π/12, 6π/12+θ0] has capacity 2
√

3. The only mem-
ber of this family achieving 2

√
3 has the property that θ0 is the convex

hull of β′0 ∪ β′3.

2. G(0, [π/12, π/12], [6π/12−θ0, 8π/12] has capacity 2
√

3. The only mem-
ber of this family achieving 2

√
3 has the property that θ0 is the convex

hull of β′0 ∪ β′2.
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3. G(1, [4π/12, 4π/12], [−π/2, 3π/2] has capacity 2
√

3. The only member
of this family achieving 2

√
3 has the property that θ0 is the convex hull

of β′0 ∪ β′2.

4. F(0, [4π/12, 4π/12], [−θ0, π/12]) has capacity greater than 2
√

3.

5. G(0, [4π/12, 4π/12], [−θ0, π/12]) has capacity greater than 2
√

3.

Here θ0 = π/30.
Calculations 1,2,3 immediately imply the truth of the Geometry Lemma.

Calculations 4,5 will be used in the proof of the Topology Lemma. Figures
4.2-4.6 show one member from each of the 5 families. The figure on the left
emphasizes the bends and the figure on the right emphasizes the complemen-
tary edges. These complementary edges correspond to the boundary of our
polygonal Moebius band.

Figure 4.2: The constraints for Main Calculation 1

Figure 4.3: The Constraints for Main Calculation 2
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Figure 4.4: The Constraints for Main Calculation 3

Figure 4.5: The Constraints for Main Calculation 4

Figure 4.6: The Constraints for Main Calculation 5
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5 Proof of the Topology Lemma

The rest of the chapter is devoted to proving the Topology Lemma. We
first prove the Topology Lemma under a condition we call topological good-
ness . Following this, we reduce topological goodness to various geometric
properties that can be established by tensegrity calculations.

5.1 Topological Goodness

Given 2 bends β1 and β2 we write β1|β2 if β∗1 and β∗2 intersect in a point that
is interior to both. Assuming that β1|β2, we write β1 ↑ β2 if the vertical line
through β∗1 ∩ β∗2 intersects I(β1) above where it intersects I(β2). Otherwise
we write β1 ↓ β2. We must have one or the other when we have an embedded
Mobius band. We will encode the information below in a picture reminiscent
of a knot diagram.

We call (β1, β2, β3) a topologically bad triple triple if the crossings are
inconsistent in one of two ways:

• β1 ↑ β2 and β1 ↓ β3.

• β1 ↓ β2 and β1 ↑ β3.
Otherwise we call the triple topologically good .

Good Pairs: We say that the pair (τ1, τ2) is topologically good if:

1. (0)|(4)j and (1)1|(4)j and (4)1|(4)2.

2. (4j, 11, 0) is topologically good.

3. (11, 4j, 6) is topologically good unless τj →1 τi.

4. (43−j, 4j, 0) is topologically good unless τj →4 τ3−j.

Here j = 1, 2 in all statements.

Lemma 5.1 The Topology Lemma holds for topologically good pairs.

Proof: Suppose first that (1)∗1 and 6∗ do not cross. Since (1)1|(4), there is
by continuity some β ∈ [4, 6]1 such that β∗ contains the 1-tip of (1)∗1. This
means that τ1 → τ1.

Henceforth we assume (1)1|(6). We normalize by an ambient isometry so
that (1)1 ↓ (6). Figure 5.1 shows the 4 possibilities.
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Figure 5.1: Four possibilities

Case 1 has the topologically bad triple (41, 11, 0), so this case cannot
happen. Cases 2 and 3 have the topologically bad triple (11, 41, 6). Hence
τ1 →1 τ1 in these cases. This leaves Case 4.

Let us explore Case 4 in more detail. Figure 5.2 shows the situation.
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Figure 5.2: Four possibilities

In Case 1 we have left 2 crossings undetermined and we place an x by
the crossing we study. If the crossing is as appears, then (41, 42, 0) is a
topologically bad triple. But then τ2 →4 τ1.

In Case 2 we are working on the next crossing, and we still leave one
undetermined. This has the same structure as Case 1 but with the indices 1
and 2 reversed. Hence τ1 →4 τ2 here.

In Case 3, the situation is impossible because (42, 11, 0) is a topologically
bad triple.

In Case 4, the triple (11, 42, 6) is topologically bad. Hence τ2 →1 τ1. ♠
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5.2 Geometrical Goodness

Here we give conditions under which the pair (τ1, τ2) is topologically good.
We call the triple (β1, β2, β3) of bends geometrically good if β1|β for all bends
β that interpolate between β2 and β3. Since the space of bends is topologically
a circle, we we have to be careful about what we mean here. We never allow
our bends in an interpolating family to cross the bend labeled T on the left
side of Figure 2.1. In the next result, we have our standard normalization.
We call (τ1, τ2) geometrically good if the various conditions on the triples
in the definition of topological goodness hold with the word geometrically
replacing the word topologically in every instance.

Lemma 5.2 (τ1, τ2) is topologically good if (τ1, τ2) is geometrically good.

Proof: For a given triple, the implication “geometric implies topological”
works the same way in all cases. We just consider two representative cases.

Figure 5.3: A topological contradiction.

First look at the left half of Figure 5.3. Consider the triple (41, 11, 0). In R3,
as we sweep the blue I(I1) over to the blue I(0) we end up on the wrong side
of the red I(41). The geometrical goodness prevents the crossing type from
changing.

Now look at the right half of Figure 5.3. As we sweep the blue I(41)
over to the blue I(6), we get the same contradiction as in the previous case,
except that now the crossing can change if the projection of one of the blue
segments in our sweepout contains the right endpoint of (1)∗1. In other words,
(11, 41, 6) is topologically good unless τ1 →1 τ1. ♠
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5.3 Confiner Pairs

We now set up the tensegrity calculations needed to establish Geometrical
Goodness for (τ1, τ2).

A prism is a set of the form P × R, where P ⊂ R2 is an open convex
polygon. The prism is the intersection of finitely many halfspaces whose
boundaries project to lines in the XY -plane. We call these halfspaces the
defining halfspaces . In general, we say that a halfspace whose boundary
projects to a line in the XY -plane is a prism halfspace.

Our calculations all involve compound tensegrities with 2 quadrilaterals.
Given such a tensegrity Υ′, we let θ(Υ′) denote the pitch of the middle bend
image Q′10Q

′
11. Here are the constraints.

1. The horizontal and vertical bends make a T -pattern.

2. θ(Υ′) ∈ Θ ⊂ [−θ0, π/2 + θ0], for some interval Θ.

3. A selected endpoint of the middle bend lies in the prism halfspace H.

Again, θ0 = π/30 as in Lemma 3.2.
For various choices of (Θ, H) the calculations, if valid, show

κ(Υ′) >
√

3 +
1

24
+ 10−100.

We call (j,Θ, H) an excluder . Suppose that (j,Θ, H) is an excluder. Sup-
pose (τ1, τ2) is a tame pair and I(β) is a bend image associated to τ1 having
pitch in Θ. Then the relevant endpoint of I(β) cannot lie in H. Here is the
argument. The calculation above, applied to Υ′ = Ψ′1, shows that if this
fails then S1 >

√
3 + 1

24
+ 10−100. On the other hand, Theorem 3.1 gives us

that S2 >
√

3− 1
24

. But then λ(τ1, τ2) >
√

3+10−100, contradicting tameness.

Confining Pairs: We say that a prism pair is a pair (P1, P2) of disjoint
prisms. We say that this pair confines a line segment if one endpoint of the
line segment lies in P1 and the other lies in P2. Let Hj,1, ..., Hj,kj be the
closed complements of the defining halfspaces for Pj. For fixed Θ we set up
calculations which would show that (j,Θ, Hj,i) is an excluder for all relevant
indices. This shows that (P1, P2) confines the middle bend image I(β) as-
sociated to (τ1, τ2) provided that and pitch θ of the middle bend lines in Θ.
We abbreviate this by saying that (P1, P2) is a Θ confiner .
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5.4 The Confiner Calculations

Now we describe the Confiner Calculations we need in order to establish
Geometrical Goodness.

Figure 5.4 shows 6 regions in the plane. These regions are projections of
prism pairs. The red and green regions are interchanged by reflection in the
X-axis. As always, we show the projection to the XY -plane. The circle in
the picture denotes a place where the pieces are actually disjoint but look
tangent. The green piece is entirely below the line extending the bottom
edges of the blue piece.

(0,1,1,1)

, ,- ,

Figure 5.4: Confining prisms

Figure 5.5 shows some new regions. The blue regions in Figure 5.5 are
the same as in Figure 5.4. The magenta regions are reflections of the blue
regions in the X-axis.
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(0,1,-1,1)

Figure 5.5: Confining prisms

The red regions in Figure 5.6 are the same as in Figure 5.4.

Figure 5.6: Confining prisms

Motivated by Lemma 3.2, we define

Θ01 = [−θ0, π/12], Θ44 = [4π/12, 4π/12],

Θ46 = [4π/12, 6π/12 + θ0], Θ04 = [−θ0, 4π/12 + θ0]. (11)

Here are the calculations.
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1. The green prisms are a Θ44 confining pair.

2. The blue prisms are a Θ01 confining pair.

3. The cyan prisms are a Θ46 confining pair.

4. The orange prisms are a Θ04 confining pair.

5.5 Establishing Geometrical Goodness

Now we deduce Geometrical Goodness from the confiner tensegrity calcula-
tions we discussed in the previous chapter.

Lemma 5.3 The triples (4i, 1j, 0) are geometrically good for all , i, j ∈ {1, 2}.

Proof: If symmetry it suffices to take j = 1. Our argument refers to Figure
5.7. Call a segment red if it has one endpoint in the interior of one red region
and the other endpoint in the interior of the other. Likewise define green
segments and blue segments . Looking at Figure 5.7, we see that a green
segment fails to cross a blue segment only if the line extending the green
segment lies to the right of the entire blue segment.

At the same time, the conclusions from Main Calculation 4 say that the
right endpoint of a blue segment cannot lie in the line extending a green
segment. The green segment is always (4)∗1 and the blue segment can be
any β∗ with β ∈ [0, 1]1. But β∗ varies continuously. Hence, from what we
have already said, either β∗ crosses (4)∗1 for all choices of β or for none of
them. But (0)∗, which is just the horizontal bend, definitely crosses the green
segment. Hence all the blue segments cross the green segment. This shows
that (41, 11, 0) is geometrically good.

The same argument works with red in place of green, and shows that
(41, 11, 0) is geometrically good. ♠

Lemma 5.4 (1i, 4j, 6) is geometrically good unless τj →1 τi. Again, i, j ∈
{1, 2}.

Proof: By symmetry, it suffices to take j = 1. This time our argument refers
to Figure 5.4. Looking at Figure 5.4, we see that a blue segment crosses a
green segment unless the line extending the green segment lies to the right of
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the blue segment. We have already shown that (1)∗1 and (4)∗1 cross. Consider
the continuous family of segments of the form β∗, where β sweeps through
[4, 6]1. The first segment crosses (1)∗1. Therefore, from what we have observed
about blue and green segments, either every β∗ crosses (1)∗1, or one of them
contains the right endpoint of (1)∗1. In this latter case, we have τ1 →1 τ1 by
definition. Hence (11, 41, 6) is geometrically good unless τ1 →1 τ1.

By symmetry, any segment of the form β∗ with β ∈ [0, 1]2 is magenta.
The same argument as above, with magenta replacing blue, impliage that
(12, 41, 61) is good unless τ1 → τ2. ♠

Lemma 5.5 The triple (42, 41, 0) is geometrically good unless τ1 →4 τ2.
Likewise, (41, 42, 0) is geometrically good unless τ2 →4 τ1.

Proof: We prove the first result. The second one follows from interchanging
the roles played by the indices. Our argument refers to Figure 5.5. Note that
an orange segment always crosses a red segment unless that line extending
the orange segment lies above the red segment. We have already seen that
41|42. The same argument as in Round 2 now shows that (42, 41, 0) is geo-
metrically good unless τ1 →4 τ2. ♠

This covers all triples we need to consider in order to establish Geoemtri-
cal Goodness for a tame pair (τ1, τ2) of trapezoids. This completes our re-
duction of the Topology Lemma to tensegrity calculations.
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6 Numerical Computations

6.1 Parametrizing Tensegrities

For all our calculations we have a compound tensegrity satisfying certain con-
straints. The trensegrity consists of either 2 or 4 quadrilaterals and it satisfies
certain constraints. We want to parametrize all the tensegrities which sat-
isfy the given constraints. There is a tradeoff between the simplicity of the
parametrization and the efficiency of the calculation. We first describe a very
simple but inefficient parametrization, and then we describe the parametriza-
tion we actually use.

The Simple Approach: All the compound tensegrities of interest to us cer-
tainly have all their points in the interval [−2, 2]3. Thus we can parametrize
a compound tensegrity having k quadrilaterals as a point in cube X =
[−2, 2]6k+6. We then have some constraint set Y ⊂ X and a function
f : X → R+. We want to bound f |Y from below. This approach is not
very efficient because it is hard to directly sample points in Y . It is better
to parametrize just Y .

The Interpolation Function: We define

ι(a, b, r) = (1− r)a+ rb. (12)

We can think of ι(a, b, ∗) as being a map from [0, 1] to the interval [a, b]. We
will use this map repeatedly.

The Bends: Now we start on a more subtle approach that works better.
The tensegrities we consider have either 3 or 4 bend images Let us say that
there are ` + 1 bend images, β0, ..., β`. So, we have ` = 2 or ` = 3. We
arrange the indices so that j = 0 and j = ` correspond to the horizontal and
vertical bend images.

We make one remark about notation. We let k stand for the complexity.
When the complexity equals 2 we have ` = 2. When the complexity equals
4 have ` = 3. The reason is that in the complexity 4 case we are considering
cyclic tensegrities. This drops the bend image count by 1. This is why we
are using ` here in place of k.

Given a point (r0, ..., r`) ∈ [0, 1]`+1 we set

s0 = ι(0, 1/2, r0), sj = ι(−1, 1, rj), j = 1, ..., `,
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s` = ι(a(s0), b(s0), r`). (13)

Here a(s0) and b(s0) are obtained as follows. We intersect the vertical line

x = s0 with the quadrilateral Ω̂ from Theorem 3.1 and take the upper and
lower limits. The precise formulas are

a(s0) = (2/3)s0 − (1/
√

3), b(s0) = min(b1(s0), b2(s0)),

b1(s0) = min((2/3)s0 − (1/2), b2(s0) = (4/3)s0 − (1/
√

3)). (14)

In our definition of s0 we could take s0 ∈ [0, 1
4
(
√

27−
√

11)], but it is simpler
just to take s0 ∈ [0, 1/2]. In terms of Figure 2.3, we are setting b = s0 and
t = sk.

This approach allows (s0, s`) to sample all of Ω̂. The other bend slopes
s1, ..., sk−1 are each allowed to lie in [−1, 1], which certainly covers all the
possibilities.

The Offsets: Given (r1, r2) ∈ [0, 1]2 we define

x = ι(0, 1/18, r1), y = ι(−1/30, 1/30, r2). (15)

These are the coordinates of the vector shown in Figure 2.3.
The coordinates (b, t, x, y) determine the placement of the horizontal and

vertical bend images. The horizontal bend image is the segment with end-
points (0, 0) and (−

√
1 + b2, 0, 0). The vertical bend image is centered at

(x, y) and has length
√

1 + t2.

Complexity Two Case: For the prototypical calculation and the con-
finer calculations we are working with a tensegrity having 2 quadrilater-
als. In this case it only remains to describe how we parametrize the middle
bend. The parameter s1 determines the length of this bend. Given a point
(r1, r2, r3, r4, r5) ∈ [0, 1]5 we set

mj = ι(−1, 1, rj), j = 1, 2, 3, θ = ι(θ1, θ2, r4), φ = ι(−π/4, π/4.r5).
(16)

Here (m1,m2,m3) is the center of the middle bend. Looking at the figures in
the previous chapter (and looking at our computer program) the constraints
we have placed cover all the reasonable cases.

The interval [θ1, θ2] is the angle range for the middle bound. For instance,
in the prototypical calculation we have θ1 = θ2 = 2π/12. The angle φ is the
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angle that the middle bend makes with the XY -plane. We call φ the spatial
angle Our coordinates specify the center, length, pitch, and spatial angle,
and thus we can specify the middle bend exactly. (In a rigorous calculation
we perhaps would want to avoid the trig functions needed to specify the
middle bend.)

So a point in [0, 1]3 × [0, 1]2 × [0, 1]5 = [0, 1]10 completely specifies any
tensegrity of this type we need to consider.

Complexity Four Case: In this case we have two middle bend images
to worry about, β′1 and β′2. We parametrize β′1 just as the middle bend image
above. We specify β′2 using a point (r1, r2, r3, r4) ∈ [0, 1]4. We already know
the length of β′2: It is

√
1 + s22.

The parameter r1 determines a point p ∈ β′2 as follows:

p = ι(∂0β
′
2, ∂1β

′
2, r1). (17)

Here ∂jβ
′
2 for j = 0, 1 are the endpoints of β′2. What we are doing here is

interpolating between the two endpoints of β′2. (We are also abusing the
notation, because ι is a scalar valued function and we are taking the obvious
vector-valued extension.)

We set h = ι(−1, 1, r2). This determines the distance that p lies above
the corresponding point q ∈ β′1. What we mean here is that p and q project
to the same point in the XY plane.

We then define the angles θ and φ as above. We use the following intervals
[θ1, θ2]:

1. In Main Calculation 1 we take θ ∈ [5π/12, 7π/12].

2. In Main Calculation 2 we take θ ∈ [5π/12, 7π/12].

3. In Main Calculation 2 we take θ ∈ [1π/12, 3π/12].

We will not rigorously justify why these intervals cover all relevant cases, but
we note that the midpoints of the intervals correspond to the pitches we get
when we take the equilateral example from Figure 1.1. If one does not agree
with these choices, one can take wider intervals.

We need a point in [0, 1]4 to specify β′2, so all in all a point in [0, 1]14

specifies a tensegrity of complexity 4 that we use for the Main Calculations.
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The Distinguished Slice: We notice that our Confinng calculations con-
verge much more quickly to the presumed minimum when we work with
planar examples. For the middle bend in a complexity 2 case, the parame-
ters (m3, φ) determine the extent to which this segment does not lie in the
XY -plane. To get a planar example, we set m3 = φ = 0. This drops us down
to [0, 1]8 ⊂ [0, 1]10. We call this copy of [0, 1]8 the distinguished slice.

In the complexity 4 case, the parameters (h, φ) determine the extend
to which β′2 sticks out of the XY -plane. So, we set these parameters to
0. This (when combined with the steps taken for β1) drops us down to
[0, 1]10 ⊂ [0, 1]14. We call this copy of [0, 1]10 the distinguished slice.

So far I have only experimented with the Main Calculations on the dis-
tinguished slice. Guided by what happens with the Confining Calculations I
think that very likely that if the Main Calculations work on the distinguished
slice then they will also work on the total space. My impression of what is
going on, in all cases, is that the minimum capacity configuration lies in the
distinguished slice, so it is faster just to move within this slice. Of course, a
rigorous proof will require a consideration of the whole space. I plan to code
up the Main Calculations for the whole space soon.

6.2 Hill Climbing Algorithms

For all our calculations we have our capacity function κ : [0, 1]N → R+.
More specifically...

• For the Prototypical Calculation we have N = 9 rather than N = 10
because we have θ1 = θ2 = 2π/12 .

• For the Confiner Calculations we have N = 10. In the cases involving
Θ44 we can take N = 9.

• For the Main Calculations we have N = 14.

We have some lower bound λ and we are trying to show that

min
[0,1]N

κ ≥ λ. (18)

More precisely, with our numerical calculations we are searching for possible
counter-examples to this inequality and we want the most efficient way of
finding them. If we don’t find any counter-examples after running an efficient
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optimizing algorithm for a reasonably long time, we guess that there are no
counter-examples – i.e., the inequality is true.

The optimization algorithm we use is similar to gradient flow, except that
we do not actually compute a gradient. It would not really be a good idea
to compute the gradient here because the function κ is not differentiable. It
is piecewise algebraic. One could perhaps do gradient flow on the pieces, so
to speak, and then assemble the results, but this is not what we do.

We first describe the simplest possible thing. We evaluate κ on random
points of [0, 1]N and simply keep track of the minimum value attained. If this
value always exceeds λ then we have some evidence for Equation 18. This
approach does not work so well in high dimensions. Even if we sample 10N

points are are really only searching on a scale of about 1/10.
One way to do much better is to use gradient flow (or some version of

Newton’s method) to locate minima. One problem is that our function κ
is only piecewise smooth. Another problem is that we are lazy and do not
want to work out the very complicated formulas for the gradient where it
is defined. The optimization algorithm we use is similar to gradient flow,
except that we do not actually compute a gradient.

We start with some initial point r0 ∈ [0, 1]N . We then pick a small random
step size s and a random point r1 ∈ [−1, 1]N . We then replace r0 by r0 + sr1.
If some coordinate of r1 is negative, we set that coordinate equal to 0. If
some coordinate of rj exceeds 1, we set it equal to 1. In other words, we take
a small step in a random direction and then retract to [0, 1]N if necessary. If
f(r1) < f(r0) we replace r0 with r1 and repeat. This produces a sequence of
points r0, r1, r2, ... on which κ is decreasing. The hope is that this sequence
converges to a global minimum.

This algorithm is a reasonable approximation to gradient flow. At least
at points where κ is smooth, a small step in a random direction has a 50
percent change of moving in the direction of the gradient. and a somewhat
lower but still decent chance of making a small angle with the gradient. The
concentration of measure phenomenon – randomly chosen vectors in high
dimensions are usually almost orthogonal – does not really kick in when N is
reasonable small. So, the algorithm we use is not so different from gradient
flow, at least when s is small.

The art to the algorithm comes from choosing s appropriately. If we
choose s too large, then we are essentially bouncing around [0, 1]N randomly,
and we are not doing much better than random sampling. If we choose s
too large, then we are decently approximating gradient flow but the process
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takes a long time and also can get stuck in local minima. The best approach
(I think) is to choose s randomly in [0, 1] but with a bias towards small
values. This way the process is typically doing something like gradient flow
and occasionally makes big jumps to possibly escape local minima.

Here is a concrete example: I find that setting

s =
1

10
(f0 − 2

√
3)ρ

works pretty well for the Main Calculations. Here κ0 is the current value of
κ and ρ is some random number in [0, 1].

6.3 The Confiner Calculations

There are two main troubles with the kind of calculations we run. The first
trouble is that the calculation could get stuck in a local minimum. The second
trouble is that the calculation could have a very shallow global minimum
which is lower than the bound we seek. So, even if the process finds the
global minimum, it might happen that it takes a long time to get very close.

There is one other simplification I often made when running the Con-
finer Calculations. I noticed that when I constrain the endpoint of a seg-
ment in each of the subspace, the minimum capacity configuration occurs
at the boundary. The subspaces are all chosen so that the tensegrity has
to stretch, so to speak, in order to meet the constraint. The object is the
least stretched for boundary points. Anyway, the process seems to find the
minimum much more quickly with the stronger constraint. Most of my ex-
periments involved the stronger constraint, after I checked that the stretching
phenomenon seemed to be in place.

The idea behind the Confiner Calculations is quite simple. In order for the
given point to lie outside the given prism halfplane, the tensegrity has to be
“stretched” a lot. The stretching bumps up the capacity beyond

√
3+(1/24).

Figure 6.1 illustrates this with two examples. The first example shows a
tensegrity near the minimum for the given constraint. The capacity here is
about

√
3 + 0.14. The second example shows a much more radical stretch,

where the capacity is about
√

3 + 1.5. The red edges correspond to the
vertical sides of the associated planar quadrilaterals.
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Figure 6.1: Calculation Records

Figures 6.2-6.3, which correspond to Figures 5.4-5.6 (with redundant
pieces removed) give some idea of what the calculations are like. An edge la-
beled by, say, 0.1, indicates that after running the algorithm for a while with
respect to the line extending the edge we conclude that the minimum of the
capacity function is at least

√
3+0.1. Our target is

√
3+(1/24) <

√
3+0.05,

so even in this case we have a healthy margin for success. The red lines in-
dicate the most delicate calculations, and the orange lines indicate the next
more delicate calculations. Everything else is pretty crudely true. I ran each
of the calculations associated to the red edges at least 2 hours, and I ran the
ones associated to the small red edge labeled 0.09 for about 8 hours.

There is something I want to say about the calculation where the bound
is 0.09. When I run this calculation I notice that when κ tends towards
0.09 the corresponding b value (the slope of the bottom bend) tends to the
upper bound (

√
27 −

√
11)/4. This accounts for the elongated appearance

of the grey triangle on the left side of Figure 6.1. If we wanted, we could do
additional calculations to strengthen Statement 3 of Theorem 3.1 to say that
we must have b < 1/3 whenever we have a tame pair (τ1, τ2). This would give
us a more robust calculation result in this case. What I am saying is that
there are tricks available to make these calculations true by wider margins.
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Figure 6.2: Calculation Records

Figure 6.3: Calculation Records
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6.4 The Main Calculations

Now we say something about the Main Calculations 1,2,3. These calculations
also assert that the unique minimum occurs when the union of the horizontal
and vertical bends has convex hull ∆0. Here ∆0 is the equilateral triangle
of semi-perimeter

√
3, which appears on the right side of Figure 1.1. When

I run Calculations 1 and 2 for a long time, the picture seems to converge to
this situation. Thus strongly suggests that the calculation is really finding
the global minimum.

Calculation 3 is a bit wonky. If I run it in an unrestricted way, the point
falls into a local minimum having capacity about 2

√
3 + 2, which is vastly

larger than the supposed true minimum. The easiest way to coerce the points
toward the presumed true minimum is to constrain the slope of the bottom
bend to be less than 1/3. In a more polished version of this draft I will say
more about this.
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