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Abstract

We prove that a smooth embedded paper Moebius band must have
aspect ratio greater than

√
3. We also prove that any sequence of

smooth embedded paper Moebius bands whose aspect ratio converges
to
√

3 must converge, up to isometry, to the famous triangular Moe-
bius band. These results answer the mimimum aspect ratio question
discussed by W. Wunderlich in 1962 and prove the more specific con-
jecture of B. Halpern and C. Weaver from 1977.

1 Introduction

To make a paper Moebius band you give a strip of paper an odd number of
twists and then tape the ends together. For long strips this is easy and for
short strips it is difficult or impossible. Figure 1 shows a famous example
called the triangular Moebius band that is based on a 1×

√
3 strip.
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Figure 1: The triangular Moebius band
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The strip in Figure 1 is colored red on one side and blue on the other.
You are supposed to fold and somehow tape the thing as indicated in Figure
1. The tape runs along the dotted line in the “inside” of the little triangular
“wallet” you are making. The final rotation highlights a kind of “T -pattern”
made from the top edge and the dotted line, a pattern that is important in
this paper. You might enjoy finding other ways of making this example in
which the taping is easier to manage.

What is the smallest λ for which we can turn a 1 × λ strip into a paper
Moebius band? In order to answer this question we have to be more formal
about what we are doing. Formally speaking, a smooth paper Moebius band
of aspect ratio λ is a smooth isometric mapping I : Mλ → R3, where Mλ is
the flat Mobius band

Mλ = ([0, 1]× [0, λ])/ ∼, (x, 0) ∼ (1− x, λ) (1)

An isometric mapping is a map whose differential is an isometry. The map
is an embedding if it is injective, and an immersion in general. The im-
age Ω = I(Mλ) is an example of a developable surface (with boundary).
I learned about paper Moebius bands from the beautiful expository article
[FT, Chapter 14] by Dmitry Fuchs and Sergei Tabachnikov.

The early papers of M. Sadowsky [Sa] and W. Wunderlich [W] treat
both the existence and differential geometry of smooth paper Moebius bands.
(See [HF] and [T] respectively for modern English translations.) The paper
[CF] gives a modern differential geometric framework for smooth developable
surfaces.

Why bother with smooth maps? Well, if you just look at ways of folding
paper up to make a Moebius band you can get all kinds of weird examples.
For instance, you could take a square, fold it like an accordion into a thin
strip, twist, then tape. This monster is not approximable by smooth exam-
ples. The smooth formalism rules out pathologies like this. in contrast, the
triangular paper Moebius band can be approximated to arbitrary precision
by smooth embedded paper Moebius bands. See [Sa], [HW], and [FT].

W. Wunderlich discusses the minimum aspect ratio question in the in-
troduction of his 1962 paper [W]. He says that it is easy to make a paper
Moebius band when λ ≥ 5 and that the minimal value is not known. Since it
is a very natural question I can imagine that it had been raised even earlier,
but I don’t know where or when.

In their 1977 paper [HW], Halpern and Weaver study the minimum as-
pect ratio question in detail. They prove two things.
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• For immersed paper Moebius bands one has λ > π/2. In particular, this
bound holds for embedded paper Moebius bands. Moreover, one can
find a sequence of immersed examples with the aspect ratio converging
to π/2. These examples are not embedded.

• One can find a sequence of embedded paper Moebius bands with the
aspect ratio converging to

√
3. These examples converge to the tri-

angular Moebius band. (The triangular Moebius band itself does not
count as an embedded smooth paper Moebius band.)

The last line of [HW] states the conjecture that λ >
√

3 for an embedded
paper Moebius band.

In this paper I will prove the Halpern-Weaver Conjecture and show that
the triangular Moebius band is uniquely the best limit.

Theorem 1.1 (Main) A smooth embedded paper Moebius band has aspect
ratio greater than

√
3.

Theorem 1.2 (Triangular Limit) Let In : Mλn → Ωn be a sequence of
embedded paper Moebius bands such that λn →

√
3. Then, up to isometry,

In converges uniformly to the map giving the triangular Moebius band.

The work here supersedes my earlier paper [S] and also is independent
from it, but nonetheless it is an outgrowth of [S]. In [S] I improved the lower
bound λ > π/2 in the embedded case to a bound λ > λ1 for some complicated
number λ1 ∈ (π/2,

√
3). Let me explain this in some detail.

An embedded paper Moebius band Ω = I(Mλ) has 1 a continuously
varying decomposition into straight line segments having their endpoints in
the boundary. We call these segments the bends . They are sometimes called
the ruling lines. (We call the corresponding pre-images of these bends on
Mλ the pre-bends .) We say that a T -pattern is a pair of bends which lie in
perpendicular intersecting lines. We call the T -pattern embedded if the two
bends are disjoint. In [S] I proved the following result under the additional
hypothesis that λ < 7π/12, and in the embedded case.

Lemma 1.3 (T) A paper Moebius band has a T -pattern.

1This is a classic result. See e.g. the bottom of p. 46 in [HW]. Here they explain that
the subset of points of non-zero mean curvature on a paper Moebius band has a foliation
by such segments. One can then extend the foliation continuously to the complement.
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I deduce easily from the version of Lemma T in [S] that λ ≥ φ, the golden
ratio. (This amounts to taking t = 0 in Equation 2 below.) Then I solve an
optimization problem to get a lower bound λ1 ∈ (φ,

√
3). Embarrassingly,

I discovered recently that I made an error in setting up the optimization
problem in [S]. I mistakenly assumed that when you cut Mλ open along an
embedded line segment which joins two points in ∂Mλ you get a parallelogram
rather than a trapezoid. This idiotic mistake caused me to miscalculate λ1.
So, all I can conclude from [S] is that λ1 ≥ φ. However, I was amazed and
delighted to discover that when I did the optimization problem correctly I
got λ1 =

√
3 right on the nose! Here is the form the optimization calculation

takes in this paper.

Lemma 1.4 (G) A paper Moebius band with an embedded T -pattern has
aspect ratio greater than

√
3.

Here the paper Moebius band need not be embedded; we are only insist-
ing that the T -pattern itself be embedded. Of course, a T -pattern on an
embedded paper Moebius band is embedded. The Main Theorem follows
immediately from Lemmas G and T.

The topic of paper Moebius bands is adjacent to a number of different
subjects. The paper [GKS] considers the related question of tying a piece of
rope into a knot using as little rope as possible. See [DDS] for further results.
One could view these rope knot questions as variants of the Halpern-Weaver
Conjecture in a different category. Indeed, our Lemma T seems quite related
in spirit to the quadrisecent idea in [DDS].

Paper Moebius bands are even more closely related to folded ribbon knots ,
and the triangular Moebius band can be interpreted as a folded ribbon knot.
See [D] for a survey on this topic. More precisely, see [DL, Corollary 25]
for a result which is in some sense a special case of our two results and see
[DL, Conjecture 26] for a variant of the Halpern-Weaver Conjecture in the
category of folded ribbon knots. I will say more about this in §5.3.

Some authors have considered “optimal Moebius bands” from other per-
spectives. The papers [Sz] considers the question from an algebraic perspec-
tive and the paper [MK] consider the question from a physical perspective.
See also [SH].

This paper is organized as follows. In §2 and §3 respectively I will give
short and self-contained proofs of these results. (The side hypotheses for
Lemma T that I had in [S] are not needed for the new proof.) The proof of the
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Triangular Limit Theorem, given in §4, amounts to examining what our proof
of Lemma G says about a minimizing sequence. In §5 I will include some
remarks about the topics in this paper. Most of these remarks are inspired
by my conversations with other mathematicians who have read earlier drafts
of this paper.

Here is one more thing I’d like to mention. Some readers might find this
paper hard to read because I do not include much background information.
I have subsequently written a longer and friendlier account [S2], aimed at
university students and perhaps advanced high school students. This paper
is available on my Brown University website.

I thank Matei Coiculescu, Robert Connelly, Dan Cristofaro-Gardiner,
Elizabeth Denne, Ben Halpern, Dmitry Fuchs, Javier Gomez-Serrano, An-
ton Izosimov, Jeremy Kahn, Stephen D. Miller, Noah Montgomery, Sergei
Tabachnikov, and Charles Weaver for helpful discussions about this subject.
I especially thank Matei for suggesting that I try for a “mapping proof” of
Lemma T as opposed to the kind of proof I had previously. That suggestion
led me to find a really nice proof of Lemma T that greatly simplified this
paper.
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2 Proof of Lemma G

Let ∇ be a triangle with horizontal base. Let p(∇) be the perimeter of ∇
and let n(∇) be the sum of the lengths of the non-horizontal edges of ∇.

Lemma 2.1 If ∇ has base
√

1 + t2 and height h ≥ 1 then n(∇) ≥
√

5 + t2

and p(∇) ≥
√

1 + t2 +
√

5 + t2. Equality occurs iff ∇ is isosceles and h = 1.

Proof: This is an extremely well known kind of result. Let β =
√

1 + t2.

2h
v
3

v
2v

1

v
2
'

Figure 2.1: The diagram for Lemma 2.1.

Let v1, v2, v3 be the vertices of∇, with v3 the apex. Let v′2 be the reflection
of v2 through the horizontal line containing v3. By symmetry, the triangle
inequality, and the Pythagorean Theorem,

n(∇) = ‖v1−v3‖+‖v3−v′2‖ ≥ ‖v1−v′2‖ =
√
β2 + 4h2 ≥

√
β2 + 4 =

√
5 + t2.

The bound for p(∇) follows immediately. In the case of Equality, h = 1 and
v1, v3, v

′
2 are collinear, meaning that ∇ is isosceles. ♠

Let I : Mλ → Ω be a paper Moebius band with an embedded T -pattern.
We write S ′ = I(S) for any relevant set S and we let `(·) denote arc-length.
By definition, we have `(γ) = `(γ′) for any curve γ ⊂ Mλ. For instance,
`(∂Mλ) = `(∂Ω).

Let B′ and T ′ be the pair of disjoint bends comprising an embedded T -
pattern of Ω. Since they lie on intersecting lines, B′ and T ′ are co-planar. We
choose so that the line extending T ′ is disjoint from B′, then rotate so that
B′ and T ′ are respectively vertical and horizontal segments in the XY -plane
and B′ is strictly below the line extending T ′. Let B and T be the pre-bends
corresponding to B′ and T ′. We cut Mλ open along B to get a bilaterally
symmetric trapezoid. See Figure 2.2.
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Figure 2.2: The trapezoid (left) and the T-pattern (right).

Here −t is the slope of T . The quantity b, which is the slope of the bot-
tom choice of B, plays no role in our calculations. The picture looks a bit
different when the signs of t and b are different, but it is always true that
`(H1) + `(H2) = `(D1) + `(D2)− 2t. The yellow triangle ∇ has base

√
1 + t2

and height greater than 1.

First Bound: We have 2λ >
√

1 + t2 +
√

5 + t2. Here is the derivation:

2λ = `(∂Mλ) = `(∂Ω) ≥ p(∇) >
√

1 + t2 +
√

5 + t2. (2)

The first inequality comes from the fact that ∂Ω is a (red and magenta) loop
containing all vertices of ∇. The second inequality is Lemma 2.1.

Second Bound: We have 2λ > 2
√

5 + t2 − 2t. Here is the derivation.

2λ = `(D1) + `(D2) + `(H1) + `(H2) = 2`(D1) + 2`(D2)− 2t =

2`(D′
1) + 2`(D′

2)− 2t ≥ 2n(∇)− 2t > 2
√

5 + t2 − 2t. (3)

The first inequality comes from the fact that D′
1 ∪ D′

2 is a (red) path that
connects w′ to x′ and contains u′. The second inequality is Lemma 2.1.

Combining the Bounds: Let t0 = 1/
√

3. If t ≥ t0 then our first bound
gives λ >

√
3. If t ≤ t0 then our second bound gives λ >

√
3. Hence λ >

√
3.

This completes the proof of Lemma G.
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3 Proof of Lemma T

Let I : Mλ → Ω be a paper Moebius band. We only care about the embedded
case but the proof works in all cases. We parametrize the space of pre-bends
of Mλ with the circle R/λZ as follows: Each pre-bend corresponds to its
intersection with the centerline of Mλ, and this is a copy of R/λZ. Using I,
we simultaneously parametrize the bends of Ω by R/λZ.

The Cylinder: Let Υ be the cylinder obtained from (R/λZ)2 by delet-
ing the diagonal. A point (x, y) ∈ Υ corresponds to a pair (u, v) of bends.
We let Υ be the compactification of Υ obtained by adding 2 boundary com-
ponents. The point (x, y) lies near one boundary component if y lies just
ahead of x in the cyclic order coming from R/λZ. The point (x, y) lies near
the other boundary component if y lies just behind of x in the same cyclic
order. Let ∂Υ be the boundary of Υ.

Oriented Bends: Let (x, y) ∈ Υ be arbitrary. There is a unique minimal
path xt ∈ R/λZ such that x0 = x and x1 = y and xt is locally increasing
with respect to the cyclic order on R/λZ. This path is short when (x, y)
is near one component of ∂Υ and long near the other. Let ut be the bend
associated to xt. Given an orientation on u0 = u, we extend it continuously
to an orientation on u1 = v. Let −→u be vector parallel to our oriented u.
That is, −→u points from the tail of u to the head of u. Likewise define −→v . We
write −→u  −→v . Since we are on a Moebius band, −→v  −−→u .

The Functions: Let mu and mv be the midpoints of u and v. Define

g(x, y) = −→u · −→v , h(x, y) = (mu −mv) · (−→u ×−→v ). (4)

If we had started with the other orientation of u we would get the same value
for g and h because −−→u  −−→v . Hence g and h are well defined. Note that
g and h extend continuously to Υ. We have g ≥ 1 on one component of ∂Υ
and g ≤ −1 on the other. We have h = 0 on ∂Υ. We compute

g(y, x) = −→v · (−−→u ) = −g(x, y). (5)

h(y, x) = (mv −mu) · (−→v × (−−→u )) = (mv −mu) · (−→u ×−→v ) = −h(x, y). (6)

The map Σ(x, y) = (y, x) extends continuously to Υ and swaps the boundary
components. Equations 5 and 6 say that g ◦ Σ = −g and h ◦ Σ = −h.
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Lemma 3.1 If g(x, y) = h(x, y) = 0 then (u, v) make a T-pattern.

Proof: Since g(x, y) = 0 the vectors −→u and −→v are orthogonal. Hence
−→n = −→u × −→v is nonzero. By construction u and v and the segment mumv

all lie in planes orthogonal to −→n . But then they all lie in the same plane
orthogonal to −→n . In short, u and v are co-planar. ♠

To prove Lemma T, we just have to prove that g and h simultaneously
vanish somewhere in Υ. Suppose not. Since |g| ≥ 1 on ∂Υ, we know g and h
do not simultaneously vanish on Υ. Let S1 be the unit circle. Let A = (f, g)
and B = A/‖A‖. Then B : Υ→ S1 is well-defined and continuous. B maps
one component of ∂Υ to (1, 0) and the other to (−1, 0).

Consider any path γ which connects a point in one component of ∂Υ to
a point in the other. The image B(γ), always oriented from (1, 0) to (−1, 0),
winds some half integer w(γ) times around the origin. All choices of γ are
homotopic to each other relative to ∂Υ. Thus w(γ) is independent of γ.

Our independence result says that w(Σ(γ)) = w(γ). On the other hand,
B ◦ Σ = −B. So, as Figure 3 illustrates, when we orient B(Σ(γ)) = −B(γ)
from (1, 0) to (−1, 0), the winding number is −w(γ). This contradiction
completes the proof of Lemma T.

B( )

w=1/2

-B( )

w=-1/2

Figure 3: The effect of negation: a cartoon
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4 Proof of the Triangular Limit Theorem

We revisit Lemma G. Here is Figure 2.2 again.
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Figure 2.2: The trapezoid (left) and the T-pattern (right).

Here is Equation 2 again.

2λ = `(∂Mλ) = `(∂Ω) ≥ p(∇) ≥
√

1 + t2 +
√

5 + t2. (7)

Suppose we have a sequence {Ωn} of embedded paper Moebius bands
with λn →

√
3. We run the constructions from Lemma G for each one.

Looking at the analysis done at the end of the proof of Lemma G, we see
that tn → t0 = 1/

√
3. Also bn → 0, because otherwise the height of ∇n,

which exceeds
√

1 + b2n, does not converge to 1. The parameters b = 0 and

t = 1/
√

3 respectively describe the top/bottom bend B′ and the middle bend
T ′ shown on the red strip in Figure 1 (left). We normalize by isometries of
Mλn so that B′

n → B′ and T ′
n → T ′.

Thanks to the uniqeness in Lemma 2.1, the triangle ∇n converges up to
isometry to the equilateral triangle ∇ of perimeter 2

√
3 shown in Figure 1

(right). We normalize by isometries of R3 so that the vertices of ∇n converge
to the vertices of ∇. Inspecting Equation 7, we see that

|`(∂Ωn)− p(∇)| → 0. (8)

Since In is length perserving the convergence in Equation 8 implies that
In, when restricted to each of the 4 segmentsDn,j andHj,n in ∂Mλn , converges
uniformly to a linear isometry. Hence the restriction of In to ∂Mλn converges
uniformly to the map that comes from the triangular Moebius band. The
action of In on ∂Mλn determines the action of In on Mλn , so the convergence
on the boundary implies the convergence on the whole space. This completes
the proof of the Triangular Limit Theorem.
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5 Discussion

5.1 Lemma G

The proof of Lemma G only requires the map I : Mλ → Ω to have the
following properties.

1. I is continuous.

2. The interior of Mλ has a continuous partition by open line segments
whose endpoints lie in the boundary.

3. Given an arbitrary line segment v in the partition the image I(v) is a
line segment in R3 that is at least as long as v.

4. The restriction I : ∂Mλ → ∂Ω never increases arc-length.

5. There exist 2 segments v, w in the partition such that I(v) and I(w)
are disjoint and lie in perpendicular intersecting lines.

The Triangular Limit Theorem does not quite work in this generality,
because the restriction of I to ∂Mλ does not determine the action of I on
all of Mλ. Nevertheless, we can say that for a minimizing sequence {In}, the
maps converge uniformly on the boundary, up to isometry, to the triangular
Moebius band map. Also, up to isometries the images Ωn converge (e.g. in
the Hausdorff metric) to the triangular paper Moebius band.

5.2 Lemma T

The proof I give of Lemma T is quite reminiscent of the proof of the Borsuk-
Ulam Theorem. Indeed, Jeremy Kahn pointed out to me that the endgame
of my proof really is the Borsuk-Ulam proof in disguise. To see this, note
that we obtain the 2-sphere S2 by crushing each component of ∂Υ to a point.
Then B induces a map S2 → S1 with B ◦ Σ = −Σ. The map Σ, which is a
glide reflection on Υ, acts on S2 as the antipodal map.

In this context, it is more natural to redefine the vectors −→u and −→v to be
the unit vectors parallel to the orientations of u and v. Once this is done,
the functions g and h themselves restrict to our quotient S2 and we really
have the exact conditions for the Borsuk-Ulam Theorem.
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Anton Izosimov and Sergei Tabachnikov independently suggested to me
the following general formulation of Lemma T.

Lemma 5.1 Suppose {Lt| t ∈ [0, 1]} is a continuous family of oriented lines
in R3 such that L1 = Lopp

0 , the same line as L0 but with the opposite ori-
entation. Then there exist parameters r, s ∈ [0, 1] such that Lr and Ls are
perpendicular intersecting lines.

This result immediately implies Lemma T, and it has essentially the same
proof. In particular, Lemma 5.1 applies to maps I : Mλ → Ω which satisfy
Conditions 1-4 above. The output is a T -pattern which might or might not
be embedded. If I is an embedding then, of course, the T -pattern will also
be embedded.

Sergei also suggested to me a beautiful alternate formalism for the proof
of Lemma T. One introduces the Study numbers . These have the form x+ εy
where x, y ∈ R and ε2 = 0. Likewise, one introduces the Study vectors .

These have the form −→a + ε
−→
b , where −→a ,

−→
b ∈ R3 and again ε2 = 0. In this

context, the dot product of two Study vectors makes sense and is a Study
number.

Each oriented line ` ⊂ R3 gives rise to a Study vector ξ` = −→a +ε
−→
b where

−→a is the unit vector pointing in the direction of ` and
−→
b = `′ × −→a . Here

`′ ∈ ` is any point. All choices of `′ give rise to the same
−→
b ; this vector is

called the moment vector of `. This formalism identifies the space of oriented
lines in R3 with the so-called study sphere consisting of Study vectors ξ such
that ξ · ξ = 1. The Study dot product ξ` · ξm vanishes if and only if ` and m
are perpendicular and intersect. Thus our two functions g and h carry the
same information as the Study dot product. This makes the functions g and
h seem more canonical.

5.3 Folded Ribbon Knots

Elizabeth Denne pointed out to me the connection between paper Moebius
bands and folded ribbon knots . Her paper with Troy Larsen [DL] gives a
formal definition of a folded ribbon knot and has a wealth of interesting
constructions, results, and conjectures. See also her survey article [D].

Informally, folded ribbon knots are the objects you get when you take
a flat cylinder or Moebius band, fold it into a knot, and then press it into
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the plane. Associated to a folded ribbon knot is a polygon, which comes
from the centerline of the object. Even though the ribbon knot lies entirely
in the plane, one assigns additional combinatorial data which keeps track
of “infinitesimal” under and over crossings as in a knot diagram. So the
associated centerline is really a knot (or possibly the unknot).

[DL, Corollary 25] proves our Main Theorem in the category folded ribbon
Moebius bands whose associated polygonal knot is a triangle. This is a
finite dimensional problem. [DL, Conjecture 26] says that [DL, Corollary
25] is true without the restriction that the associated polygonal knot is a
triangle, and this is an infinite dimensional problem like the Halpern-Weaver
Conjecture.

The combination of our Main Theorem and the Triangular Limit Theorem
implies [DL, Conjecture 26]. One takes arbitrarily nearby smooth approxi-
mations, as in [HW], and then applies our results to them. Alteriatively, the
same proof that we gave of Lemmas G and T probably would work in this
category. (I did not think this through in all details.)

One might also ask about the converse. If it were possible to flatten,
through isometric embeddings, an arbitrary paper Moebius band into a knot-
ted ribbon graph, then [DL, Conjecture 26] would imply our results. (Again,
I did not think this through in all details.) While I do not think that all
twisted paper Moebius bands have this property, it might be the case that
paper Moebius bands with sufficiently small aspect ratio do have this prop-
erty. In any case, the possibility of flattening paper Moebius bands isomet-
rically into folded ribbon knots seems like an appealing topic for further
investigation.
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