THE PLANAR DIMER MODEL WITH BOUNDARY: A SURVEY.

RICHARD KENYON

1. INTRODUCTION

A dimer covering of a finite graph is a perfect matching of the graph, that is, a
set of edges with the property that every vertex is contained in a unique edge. The
dimer model is the statistical model dealing with the set of all dimer coverings of
a graph.

Kasteleyn [13] and Temperley and Fisher [25] initiated the study of the dimer
model by showing how to count exactly the number of perfect matchings of an m xn
grid (when at least one of m and n is even). The number is
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Later Kasteleyn [15] showed how to efficiently count the number of perfect match-
ings of any finite planar graph: the number is the square root of the determinant
of a matrix closely related to the adjacency matrix of the graph.

Since that time a great deal of work has been done on the physical aspects of
the dimer model [8, 12]. In the early 1990’s some intriguing combinatorial results
brought a renewed mathematical interest in the model. These results touched on
the influence of the boundary on a random dimer covering of a bounded graph(7, 3,
4, 22, 6]. In this paper we would like to give a short survey of some of these new
results.

I am writing this paper from the point of view of a mathematician; in particular
I have avoided discussion of the large physics literature on the dimer model. This
is partially because physics has a certain itinerary which does not always parallel
that of mathematics, and partially due to the unsteadyness of my understanding of
the physical point of view. The reader interested in the physical aspects of dimers
should consult works of Kasteleyn [13, 14, 15], Fisher [9], Fan-Wu [8], McCoy-Wu
[21], and more modern works of Henley [12], Richard et al [23] and others.

Figure 1 shows four planar tilings. The first is a tiling with dominos, that is,
1 x 2 rectangles in two orientations. The second is a tiling with lozenges, where a
lozenge is a rhombus with a 60° angle (Losange is the French word for rhombus).
Lozenges come in three orientations. The third example is a tiling with squares
and isoceles right triangles, and the last is a tiling with “bibones” which are pairs
of hexagons joined along an edge. Bibones also come in three orientations.

In the above tilings the tiles are required to meet edge-to-edge except in the case
of the diabolo tilings, where the hypotenuse of a triangle may be across from two
squares (or another entire hypotenuse, but no other combination).

Each of these tiling models is in fact a dimer model in disguise. See Figure 2.
The reason for introducing them as tilings is simply a matter of taste. Apparently
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FIGURE 1. Four tiling problems.

mathematicians prefer to talk about tilings, physicists about dimers, and computer
scientists about perfect matchings! The square-triangle tilings were called diabolo
tilings by Jim Propp. Each tile is a union of two isosceles-right triangles in a
certain isosceles-right triangulation of the plane. The word “bibone” comes from
[16] where it was used in analogy with terminology of Thurston [27] who used the
term “tribone” to denote a line of three adjacent vertices in the triangular lattice
(dually, a line of three hexagons).
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FI1GURE 2. Matchings corresponding to the tilings of Figure 1.

Another well-known statistical model which is a planar dimer model in disguise
is the Ising model (with no external field) on the square grid Z2. This fact was
first made explicit in Fisher [9]. Recall that configurations in the Ising model are
assignments of spins {+,—} to points in Z?; each configuration has an energy
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which we may take to be proportional to the number of pairs of adjacent vertices
with differing spins. In Figure 3, we put the spins rather on the faces of the grid

F1GURE 3. The Ising model.

so that for each pair of neighboring faces with differing spins there is a boldface
edge; the set of boldface edges then forms a subgraph which has the property that
at each vertex it has even degree. Conversely, any subgraph of the grid which has
even degree at each vertex corresponds to exactly two different spin configurations
(one may choose arbitrarily the spin of the face at the origin: then the remaining
spins are determined). Figure 4 then shows the bijection between the Ising model
and the dimer model on a related graph: one replaces each vertex in the Ising model
with a butterfly graph. There is a way to assign energies to dimer configurations so
that this bijection preserves energies: see section 1.1. The resulting planar graph
is called the Fisher lattice.
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FI1GURE 4. Matchings corresponding to the Ising model.

Other well-known statistical models such as the 6-vertex and 8-vertex model
have similar planar dimer versions under certain restrictions on the vertex energies:
see [8].
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1.1. Defining the measure. For a finite planar graph G let M(G) be the set
of all its perfect matchings. We assume that the graph G comes equipped with
an energy associated to each edge, which is the energy we must furnish to put a
dimer on that edge. This energy may be positive or negative. A perfect matching
then has associated to it an energy which is the sum of the energies for each of its
matched edges.

Mathematically these energies can be thought of as simply a convenient device
used to define the measure on M (G). The measure is defined using Gibbs’ aziom
(hence it is called a Gibbs’ measure), which says that the probability of a config-
uration is proportional to the exponential of its energy, that is, if a configuration
C has energy E(C) then its probability is 2e ##(C), where Z is the constant of
proportionality necessary to make the measure a probability, and § is a constant
which in physics is equal to %, k being a physical constant and 7" being the tem-
perature. The function Z is called the partition function of the system and is by
definition the sum over all configurations C' of e #£(C),

Writing 8 = ,%T we have one measure for each value of . As T decreases
the configurations with lower energy have higher probability density. In fact in
the limit 7" = 0 only the configurations of lowest energy have nonzero probability.
These are called the ground states. On the other hand, in the limit as 7" — oo
all configurations have the same probability, so the problem just becomes one of
counting the number of configurations. (In reality the situation is not quite so
simple: we are usually interested in taking the size of the system to co at the same
time as we are taking the limit of the temperature...)

Often it is convenient to shortcut the exponentiation step and assign to an edge
of energy F an activity equal to e ?#. Then the probability of a configuration is
proportional to the product of the activities of its matched edges.

In the Ising model each spin configuration has an energy equal to the number of
neighbors of differing spins. This is the number of bold edges in Figure 3. In the
corresponding dimer model we assign the energies of the edges in the butterfly to
be zero, and the other edges energy 1. The corresponding Gibbs measures are now
mapped to one another under the bijection.

1.2. The boundary. There are some natural questions to ask right from the start
about these Gibbs’ measures on M (G). For each finite graph the measure is a sum
of a finite number of point masses (since the number of configurations is finite).
So perhaps the first question should be regarding the convergence of the measures
when the graphs become large. Put differently, if we take a large graph G how does
the measure depend on G?

In all the cases we are considering the graphs are “periodic”: they are subgraphs
of an infinite graph on which Z? acts via translations (with finite quotient). So by
“large” graph G we should mean one which contains a large neighborhood of the
origin in Z2. Then the question really becomes one about the choice of boundary of
G. Does the choice of boundary outside a large ball in G significantly affect what
the measure looks like near the origin in Z2? Remember that we are only dealing
with complete dimer coverings of G; we are not allowing the dimers to ‘hang over’
the boundary.

The answer is of course yes, the measure depends very importantly on how you
choose boundary conditions. The most well-known example of this phenomenon is
the existence of a phase transition in the Ising model. In the Ising model on a large
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ball in Z? and at low temperature, choose spins near the boundary of the ball to
all be 4+. Then the probability that a spin near the origin will be + is greater than
1/2 by an amount which does not tend to zero as the size of the ball increases.
On the other hand at high temperature this probability tends to 1/2. We will see
below examples of similar boundary influence in the tiling models as well, even in
the case of equal activities.

This paper deals with the question of how the boundary influences the Gibbs’
measure. The following sections each touch on one topic, and are ordered from
elementary considerations to more complicated. The first section deals with purely
combinatorial questions of the type: which boundary conditions allow the existence
of a tiling? Section 3 discusses Kasteleyn’s method of computing the partition
function in each of our examples. In section 4 we discuss how Kasteleyn’s method
was extended to allow computation of densities of local patterns. In section 5
we discuss how the boundary of a region influences the local entropies and local
densities in a region. In section 6 we discuss in the domino model how the boundary,
even when it does not have an influence on the local statistics, can still affect the
long-range properties of the limiting measure.

2. A LIPSCHITZ CRITERION

What regions can be tiled with dominos? There is a surprisingly clean answer
to this question [27, 10]. Figure 5 illustrates three elementary observations. The
first region cannot be tiled because it has odd area: only even-area regions can be
tiled since each tile has even area. The second region cannot be tiled despite having
even area: if you color the unit squares black and white in a checkerboard coloring
then the number of black and white squares differ, yet every domino covers exactly
one square of each color. So if a region can be tiled then in a checkerboard coloring
it has the same number of black squares as white squares. This condition is still
not sufficient for existence of a tiling, as is illustrated by the third region in Figure
5. Here the principle is that if we cut the region into two parts then the excess of
black squares over white squares in either part cannot exceed the length of the cut.
This notion was made precise by Fournier [10] in an argument based on the height
function of Thurston [27].

2.1. Height function. Given a domino tiling of a simply-connected region, the
height function is an integer-valued function on the vertices of the dominos, defined
as follows. Fix a checkerboard coloring of the whole plane. Pick some vertex v
(say on the boundary for simplicity) and define the height there to be zero. For
any other vertex v take a lattice path from vy to v which does not pass through
the middle of any domino. The height of v is defined to be the number of black
squares adjacent to and to the left of the path, minus the number of white squares
adjacent to and to the left of the path. In other words, on each step of the path
the height increases by 1 if the square to its left is black and decreases by 1 if the
square to its left is white. The value obtained at a vertex is independent of the
path taken (because the height change going around a tile is zero), so the height is
well-defined. See Figure 6. The height depends on the tiling and in fact determines
the tiling: the tiles cross exactly those edges whose vertices have height difference
3. However the height on the boundary of the region is independent of the tiling; it
depends only on the choice of starting point (a different starting point just shifts
the height by a constant additive amount). So you don’t need to know a tiling to
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FI1GURE 5. Three domino tiling problems

define the boundary height function; in fact the boundary height function gives a
necessary and sufficient condition for tilability: a simply-connected region can be
tiled if and only if between any two boundary points z, y the difference in the height
functions |h(z) — h(y)| is not too large compared to their distance in the graph.
More precisely, for z,y vertices in U define d(z,y) to be the shortest length of a
path in U from z to y which has only black squares on its left. Then (see [10]) U
is tilable if and only if for all z,y € QU we have d(z,y) > |h(z) — h(y)|-

2.2. Tiling as interface. The height function allows one to think of a tiling as a
surface in R®: indeed, the graph of the height function is a surface spanning the
graph of the boundary height function. See Figure 6. Thurston showed that the
max of two height functions and the min of two height functions is again a height
function. In particular the set of height functions under the natural partial order
is a lattice and has a unique highest and lowest element.

A similar height function exists for both lozenge tilings and diabolo tilings. In
the lozenge case use a black-and-white coloring of the underlying equilateral tri-
angulation; the height along a lattice path increases by 1 on an edge with a black
triangle to its left and otherwise decreases by 1. In the diabolo case use the black-
and-white coloring of the underlying isoceles-right-triangulation. Indeed, for dimer
coverings of any bipartite planar graph there is a height function with a similar def-
inition and properties [2, 20]. In all these cases dimer coverings can be represented
as interfaces.

2.3. Nonbipartite case. The non-bipartite case, e.g. for bibones or the Fisher
lattice, seems to be genuinely different from the bipartite case. There is no locally-
defined notion of long-range combinatorial order similar to the height function. In
fact, regarding the existence of a tiling with given boundary, it may be that in all
periodic examples any “sufficiently fat” region has a dimer covering. For example
C. Kenyon and E. Remila [16] analyzed completely the bibone tiling problem, con-
cluding that a “simply connected” subgraph of the triangular lattice with an even
number of vertices has a perfect matching if it has no isthmus or degree-1 vertex.
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FIGURE 7. ‘Natural’ edge activities. The numbers a, b, c,d, e, f are
positive reals and 7 = y/—1.

3. KASTELEYN’S DETERMINANT

Let G be one of the weighted graphs of Figure 7 and A = (A;;) be the asso-
ciated adjacency matrix, that is, the matrix indexed by vertices of G, where A;;
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is 0 if vertices j and k are not adjacent, and otherwise A;; is the weight on the
corresponding edge, multiplied by —1 in case the edge is directed from k to j.

The matrices A are called Kasteleyn matrices for the corresponding graphs;
Kasteleyn showed that the square root of the determinant of a Kasteleyn matrix is
the partition function for the corresponding dimer model whose activities are given
by the absolute values of the edge weights.

The reason for the strange choices of signs and directions is to make all the terms
in the expansion of the determinants come out with the right sign. In particular,
Kasteleyn showed that on any planar graph there is a way to direct the edges so
that the associated “adjacency matrix” is a Kasteleyn matrix, i.e. has determinant
whose square root is the partition function [15]: it suffices to direct the edges
so that around any face the number of clockwise-directed edges is odd. There
are many ways to direct the edges to make a Kasteleyn matrix, and moreover on
bipartite graphs instead of directing the edges one can get by with putting unit
complex number weights on the edges; this has a number of advantages over the
direction scheme. In either case, a choice of signs or weights on edges of G is called
Kasteleyn flat if it gives rise to a Kasteleyn matrix.

This explains (at least in a vague sense) the signs and directions in Figure 7;
what about the activites? Surprisingly enough, in the bipartite cases when one is
interested in wuniform random dimer coverings of finite regions (i.e. even when all
edge activities are 1) one is led naturally to consider the above activities. We’ll see
this below.

It turns out that in the lozenge case any two matchings have the same weight.
One way to see this is to notice that, first, with these activities, the two possible
matchings of a basic hexagon have the same weight (abc), and second, any two
matchings can be obtained from one another by local rearrangements around a
basic hexagon. This second fact follows from the lattice property of the height
function: there is a lowest possible tiling and it has the property that it is the
unique tiling whose height function has no “local maximum” in the interior. So
one can move from any tiling to the lowest tiling by “rotating” basic hexagons
downwards.

So in a sense these activities are superfluous for lozenges: if each matching has
the same weight, we may as well set all the activites to be 1. The activities are
not superfluous when the graph is not “simply connected”, for example if we have
periodic boundary conditions. For then it is not true that all matchings have the
same energy. We’'ll see the effect of this in the next section.

In a similar fashion one can show (see e.g. [27]) that if we take ab = cd in the
domino case, or ab = ¢d = 1 in the diabolo case then any two matchings of a planar
graph will have the same weight.

In the bibone case if ab = ¢d = ef then all matchings will have the same weight
(this is shown in [16]). We may as well set ab = ¢d = ef = 1 by a suitable
normalization.

The property that all matchings of a planar region have the same weight, is a
property of the measure called conditional uniformity. In probabilistic language
it means that conditioning on the exterior of a region yields a uniform measure.

3.1. Limiting partition functions. It is natural to ask one’s self what good these
determinants are. For an arbitrary planar region we cannot hope to get a closed-
form expression for the determinant of one of these huge matrices. So it is not
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a surprise that people early in this subject started out by concentrating on very
simple boundary conditions like periodic boundary conditions.

If we take a subgraph modelled on those of Figure 7 having periodic boundary
conditions, we can compute in each case, using the method of Kasteleyn, the parti-
tion function Z,,. This is more complicated than indicated in the previous section
since the underlying graph is not planar but toroidal: nonetheless Kasteleyn indi-
cated how to compute the partition function of a graph on the torus as a sum of
square-roots of four determinants of matrices derived from the Kasteleyn matrices
[13, 26]. The advantage of this approach is that with periodic boundary conditions
one can explicitly diagonalize the Kasteleyn matrices and thereby compute their de-
terminants. Another advantage of periodic boundary conditions will become clear
in section 5.2.

Let G, be the toroidal graph obtained from the infinite graph by taking the
quotient by the subgroup nZ? of Z2. Let Z, be the partition function of dimers on
Gn.

To obtain a finite limit as n — 0o we define the partition function per fun-
damental domain to be Z = Zl/n
Values for log Z in each case have the impressive-looking formulas:

1 2n pom bei?)2 dei®)2
(3.10g Zaominos = —/ / log ettt | (e AT g4,
472 et eid
2n pom
(8- Ziozenges = 5 / / log(a + be*® + ce’?) db dg,
4 0 0
1 2m 2w (2a + be'?)(a + 2be® 2¢ + de'?)(c + 2de'?
(3'3)10g Zdiabolo = 1 ) / / < )zg ) ( )zEﬁ ) dé do,
™ Ja 0 e e
1 2m p2m
(3.4) log Zpivone = o / / log(6 — 2 cos(f) — 2cos(¢) + 2cos(f — ¢)) df d¢
™ Jo 0
2n pom
(3.5) log Zising = m / / log (£ + 1)) + 2(¢ — £3)(cos(8) + cos(@))) df do
0o Jo

In all case except the last the integral can be computed using elliptic functions.

Note that in the bibone case Z is independent of the weights! This is a conse-
quence of the fact that even on the torus any two matchings can be obtained from
one another using local transformations. The reason Z;sn, depends on the tem-
perature is that for the weights we chose the Gibbs’ measure is not conditionally
uniform.

3.2. Phase transitions. If a > b+ ¢ + d, then the integral in (3.1) is easy to
evaluate and 10g Zjominos = log(a). It is independent of b, c and d! This implies that
the expected number of ‘a’-edges per fundamental domain is 1, and the expected
number of non-‘a’-edges is zero. So the system is “frozen” into a brickwork pattern
of all ‘a’-type edges. Similarly when any one of a, b, c,d is greater than the sum of
the other three, Z is frozen into a brickwork pattern. On the other hand when each
of a,b,c,d is less than the sum of the others, Z depends on all four variables and
the probability of each edge type is nonzero.

Note that for a fixed temperature 7', if a is the largest of the four activities then
as T decreases there will be a point at which a = e~?F= surpasses the sum of the
other three activities. So this temperature is a critical temperature for the system:
below this temperature the system is frozen.
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In the lozenge case the same phenomenon occurs: the system is frozen whenever
one of the three activities a,b, ¢ is greater than the sum of the other two. We'll
discuss the diabolo case in section 5.4.

The Ising model does not ‘freeze’ at any temperature except 7' = 0. However
there is a phase transition of a less obvious type at ¢t = /2 — 1. This is the phase
transition we discussed earlier. From (3.5) one can detect something interesting
at this point because Z;s;n, has discontinuous derivative there. There is a lot of
literature on the Ising model so we have chosen not to discuss this transition here:
see [21].

4. LOCAL STATISTICS

Counting tilings is nice, but we’d really like to compute densities of patterns to
understand the Gibbs’ measure. In [17] we showed how the Kasteleyn matrix (or
more precisely, its inverse) can be used to compute these densities in the planar
dimer model.

Let G be a planar graph and K a Kasteleyn matrix for G. Let E be a set of k

dimers covering 2k distinct vertices vy, ... ,v9;. The probability of all the dimers
of F occurring in a g-random matching is the square root of
A_l(’l)l,’Ul) A_l(vl,vgk)
a3, det : . :
A v, v1) .o AT (vap, vak)

where ag is the product of the activities of the dimers E. (Actually, in [17] we only
dealt with the bipartite case, but the general case follows from the same argument.)

So to compute the density of any local pattern we need “only” to compute the
inverse Kasteleyn matrix, called the coupling function. Again this can be done
explicitly only for simple regions like rectangles (for tori it can also be done using
a sum of 4 inverses). Nonetheless with the help of a computer one can experiment
on some reasonably-sized regions.

By way of example, in Figure 8 we computed for each k € [1,n] the probability
of the vertical domino {(k,n/2),(k,n/2 4+ 1)} occurring in a domino tiling of an
n X n square. The probability is close to 1/4 throughout most of the region. In fact
one can show that as n — oo the probability of any given edge e is 1/4 + O(1/d?),
where d is the combinatorial distance from e to the boundary. (On the contrary
the probability of a boundary edge being covered is asymptotic to %)

Using the coupling function (inverse Kasteleyn matrix) one can prove the fol-
lowing strong homogeneity property for uniform domino tilings of the square. If we
tile the unit square [0,1] x [0,1] with € X 2¢ dominos, where € = 5, then at every
interior point (x,y) € (0,1)2, the density of any local pattern in a uniform random
tiling converges as n — oo to a constant independent of (z,y). In particular for
large n if you zoom in to any interior point of the square then the measure that you
see (as defined by its densities of patterns) is the same. The limiting measure (on
tilings of Z?) is called the Burton-Pemantle measure ugp: they proved that ugp
is the unique translation-invariant measure of maximal entropy on domino tilings
of Z.2.

So tilings of the square are very homogeneous. The situation is not at all the
same for other kinds of regions. Figure 9 shows a random uniform domino tiling
of a tilted square region called an Aztec diamond. Random domino tilings of an
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FIGURE 8. Vertical edge probabilities across the middle horizontal

line of a square.

FIGURE 9. Random tiling of an Aztec diamond.
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Aztec diamond are quite non-homogeneous, as can be seen from the figure. For
example, Figure 10 shows the probability of a vertical domino on the horizontal
bisector of the region. Not only is the probability distinctly different from 1/4
except at the center (even when n tends to co these probabilities do not approach
1/4 except at the origin), but the probabilities at odd coordinates are completely
different from those at even coordinates. In [3] the limiting probabilites of edges
were computed. We rescale the coordinates so that the Aztec diamond is defined
by {(z,y) : |z| + |y| < 1} and we are tiling with € x 2¢ dominos. Then as € — 0 the
probability of a vertical domino near coordinate (z,0) converges to either

0 ifa:<\/i5
%+%Tan_1(\/21’”_‘7112) if—%<$<\/i5
1 if\/%<m,

or
1 ifac<\/iE
%—F%Tan_l(\;%) if—%<m<\/i§
0 if\%<m,

depending on the parity of its distance (in multiples of €) to the rightmost edge.

0.6+

FI1GURE 10. Vertical edge probabilities across the middle horizon-
tal line of an Aztec diamond.

In [3], Cohn, Elkies and Propp actually compute the limiting probabilities of
edges near any point (z,y), but were not able to compute the probabilities of other
local patterns, only those of individual edges. Recently Helfgott [11] gave a formula
for the inverse Kasteleyn matrix of the Aztec diamond, which would in principle
allow one to compute densities, but its asymptotic form has not yet been worked
out.
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Note that when |z| > \/Lg the edge probabilites tend to 0 or 1. In fact [3] showed

that outside the inscribed circle 2 + 2 = 1, with probability tending to 1 the

bRl
tiling is ‘frozen’ into one of the four brickwork patterns seen in the figure. One can

think of this phenomenon as a “spatial” phase transition.

5. BOUNDARY EFFECTS

It is clear from the previous section that the boundary has a long-range effect
on the random dimer covering—at least in the domino tiling case. Quantifying this
effect for general regions is a nontrivial problem. In the domino and lozenge case
Cohn, Kenyon and Propp [4] gave the first treatment of this problem, computing the
average height function and entropy of dominos or lozenges on large regions.
The following sections 5.1 and 5.2 are essentially a rephrasing of the introduction

of [4].

5.1. The variational principle. The starting point is the following result. If
we take a large, tilable, fat region (say an approximate square) whose boundary
is chosen in such a way that the height function on the boundary approximates
a linear function of slope (s,t), then the number of tilings of the region grows
like exp(Aent(s,t)), where A is the area of the region and ent(s,t) is a constant
depending only on the slope (s, ).

In other words the slope of the boundary height function determines the asymp-
totic number of tilings, at least when the boundary is flat. What happens when the
boundary is not approximately flat? Suppose we have a large tilable region U and
we select a random tiling. This is like selecting a random height function with fixed
boundary values. As we just noted, the number of tilings whose height function
lies near a given one depends roughly on the average slope of the height function:
there are many more ways to vary a tiling near a place where the height function is
horizontal (slope (0,0)) than near places where the slope is nonzero. The steeper
the slope, the fewer tilings there are lying close to that slope (indeed there is a
maximal slope beyond which there are no tilings: one must have |s| + |t| < 2). So
the idea is that the height function of the random tiling tries to be as horizontal
as possible while maintaining its fixed boundary values. Let us make this more
precise.

Since we are discussing limiting behavior, we need a growing sequence of tilable
regions. Alternatively we can take a fixed domain and tile it with dominos on finer
and finer lattices, as we did in the previous section. So, let U C R? be a simply-
connected domain and let b: OU — R. For each € > 0 let U, be a tilable region
in €Z? approximating U in the Hausdorff topology, such that the scaled boundary
height function eb, of U, approximates b after adding a constant (this presupposes
that b has a nice Lipschitz extension to U). Note that we rescale b, at the same
rate as the lattice. We are interested in the behavior of a uniform random tiling of
U..

The idea that the number of tilings lying close to a given one depends on the
slope of the height function is quantified in the following way. The set of possible
rescaled height functions of tilings of U, is converging to the set L = L(U,b) of
Lipschitz functions h on U with boundary values b, whose slope (h;, h,) satisfies
|hz| + |hy| < 2. For each limiting height function h € L we can approximate the
logarithm of the number of tilings of U, whose rescaled height lies close to h by an
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integral
(5.1) 12 ent(hg, hy)dz dy.
& Ju
(Recall that a Lipschitz function is differentiable almost everywhere so this integral
makes sense.)

Because L is compact and the “entropy” function ent(s,t) is strictly concave one
can show that there is a unique function h,,,, € L maximizing the integral (5.1).
When € — 0 the number of tilings whose height lies close to hmq, overwhelmingly
dominates all the other tilings. So we may conclude two things: First, the logarithm
of the number of tilings of U, is given, up to lower order corrections, by the value
of the integral (5.1) evaluated for h.,,,. Secondly, the average height function of a
tiling of U, converges to hy,qz-

The function ent(s,t) can be explicitly computed (see the next section) and the
maximization property of h,.: can be turned into an elliptic PDE: the function
h = hpqq is the unique function with boundary values b satisfying

The whi

) sin(Tp2 ey (201 = ) = sin* (T52) ) oy =0,

The

(2(1 — R?) —sin®( 5

)) Bz +2sin(

where R = %(cos ”g” —cos %) The function h may be only C!, not C?, in which

case this equation holds in a distributional sense.

5.2. The entropy as a function of slope. The function ent(s,t) for domino
tilings is by definition the per-unit-area logarithm of the number of tilings of a big
tilable region whose boundary height function has approximate slope (s, t).

It can be computed in a roundabout fashion using a graph on a torus. We use the
activities of Figure 7, and the partition function for tilings with periodic boundary
conditions (3.1). For this choice of weights, the average slope of a tiling of the
torus is (s,t) = (2(pa — D), 2(pe — pg)) where p,, py, P, Pq are the edge probabilites
of edges weighted a, b, ¢, d respectively (by average slope we mean simply the total
height change as you go horizontally or vertically around the torus, divided by the
length of the corresponding curves). These probabilities can be computed using
derivatives of (3.1), e.g. p, = %%—f. When none of a, b, ¢,d is greater than the sum

of the others, the probability p, turns out to be
(5.2)

— lgip!
Pe= o Sin (ab + cd)(ac + bd)(ad + be)

1 (a\/(a-l-b-l-c—d)(a-l-b—c-i-d)(a—b+c+d)(—a+b+c+d)>

and the other edge probabilities are symmetric. The average weight of a tiling is
directly related to its average slope, since if a tiling has N, edges of type a then
Po = No/N where N is the total number of edges, and similarly for b, ¢, d.

Furthermore, and this is the key, almost all tilings for this Gibbs’ measure have
average slope close to this constant value (s,t). In fact there are so many with this
average slope that we can ignore the remaining tilings and make the approximation
that all tilings have the same weight. In particular after dividing by this weight
factor, the corresponding measure is the same as the measure on the unweighted
tilings whose average slope is restricted to be (s, t).

There is an amusing geometric interpretation of the above formula (5.2). Take a
quadrilateral with edge lengths a, ¢, b, d in cyclic order, and which is cyclic, that is,
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inscribed in a circle. There is a unique such quadrilateral up to congruence. Then
Pa = g—;‘r where 6, is angle of arc cut off by the ‘a’ edge of the quadrilateral. There
is an even more amusing geometric interpretation of the corresponding entropy
ent(a, b, c,d). In the upper half-space model of 3-dimensional hyperbolic space, take
an ideal pyramid with a vertex at oo and remaining vertices on the four vertices of
the above cyclic quadrilateral on the bounding plane. Then 1/7 times the volume
of this pyramid is the entropy ent(s,t). So far we have no explanation for this fact

except that the formulas agree.

5.3. Conditional uniformity. One may ask, since there is a two-parameter fam-
ily of slopes, but a three-parameter family of activities (we are free to choose a
normalization factor, so only the ratios a : b : ¢ : d count), which choices of activi-
ties give the same slope? This is an important question since it is not clear (and in
fact not true) that activities which give the same average slope also give the same
entropy. The answer is that for each given slope, the activities which maximize
the entropy are those which satisfy ab = cd, that is, those which are conditionally
uniform. Furthermore for each allowed slope (s,t) there is a unique (up to scale)
choice of a,b,c,d whose Gibbs’ measure satisfies ab = ¢d and has average slope
(s, ).

So we see that, when one considers the problem of understanding uniform tilings
of general regions, that is the partition function with constant activities, one is
naturally led to consider tilings with non-constant activities, but only those which
satisfy conditional uniformity.

In [4] we conjectured that a complete desciption of the (asymptotic) local sta-
tistics on a tiling of a general region is obtained from the average height function
hmaz- That is, at a point where hy,q, has slope (s,t) the local statistics should
be those of the unique conditionally uniform measure pi, 4. q of the same average
slope.

Very similar results hold for lozenge tilings. There is a similar PDE describing
the asymptotic average height function. The edge probabilities satisfy p, = 6,/m,
where 6, is the angle opposite the edge of length a in a triangle of sides a, b, c. (When
one of a,b,c is greater than the sum of the other two then the edge probabilities
are all 1 or 0). Here all Gibbs’ measures defined using the weights in Figure 7 are
conditionally uniform. (The entropy is similarly the volume of an ideal hyperbolic
tetrahedron whose vertices are co and the above triangle.)

For diabolo tilings there is an additional surprise.

5.4. Diabolo tilings. In the diabolo model, when the four activities a, b, ¢,d are
nearly equal the edge probabilities are constant! In fact this system three phases,
which we have denoted solid, liquid, and gaseous. (Actually the solid phases come
in 4 types like the four brickwork patterns of dominos.) See Figure 11. We will
restrict ourselves to the conditionally uniform measures: i.e. those which satisfy
ab = cd = 1. We can then parametrize the phase space using positive reals a, c. The
phase boundary between the ‘gaseous’ and ‘liquid’ phase is given by the equation

a?+a 2+ +c2=5,

with a? + a=2? + ¢? + ¢™? < 5 in the gaseous region. The boundary between the
‘liquid’ and ‘solid’ phases is given by

a?+a?—2—c?=45.
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FIGURE 11. Phase boundaries in diabolo tilings.

We have not worked out all the details of this model as the computations are
cumbersome. However there are some heuristic results: In the gaseous phase the
height function has average slope zero. The measures p, . in this phase are all
identical. They appear to have exponential decay of correlations, that is, the prob-
ability of local patterns appearing at different points decays exponentially with the
distance between the events. In the liquid phase, on the other hand, the measures
o, are all distinct, the height function has non-zero slope and the correlations
decay polynomially (probably quadratically). In each of the four solid phases the
system is frozen, the entropy is zero and the correlations are infinite (distant events
are not independent).

Figure 12 shows a uniform random diabolo tiling of a region called a fortress.
All three phases can be seen to be present: near the corners the system is frozen;
near the center the system is in a gaseous phase; in between is a liquid phase.
Cohn, Pemantle and Propp [5] computed the asymptotic boundary curve between
the three phases in the fortress; there is a single degree 8 algebraic equation (too
long to give here) describing both boundaries simultaneously. At the centers of the
sides of the diamond all three phases meet.

The existence of this gaseous phase in the center of Figure 12 is apparently due to
the non-concavity of the function ent(s,t) near s =t = 0. There seems to be a set
of disallowed slopes in the model: any slope sufficiently close to zero but nonzero
cannot occur naturally, due to entropy considerations. Put another way, if one
attempted to tile an approximate square with boundary conditions approximating
a linear function of small slope, the typical tiling would not be flat but rather have
regions of average slope (0,0) and regions of higher slope.
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FIGURE 12. A random tiling of a “fortress” with diabolo tiles
(courtesy Tilings Research Group, MIT).

6. TEMPERLEYAN BOUNDARY CONDITIONS

Finally we would like to return to take a closer look at a domino system with
‘horizontal’ boundary conditions, that is, boundary conditions in which the height
function stays bounded as the system size grows. Again we concentrate on asymp-
totic properties, i.e. those which hold in a limiting sense as the lattice spacing e
tends to 0.

Unfortunately here again we do not have a complete picture for general boundary
conditions. If we restrict ourselves to regions with sufficiently ‘nice’ horizontal
boundary conditions, however, then we can say quite a lot. These special boundary
conditions are those which arise from the uniform spanning tree model with
free boundary conditions via Temperley’s bijection (Temperley’s bijection is a
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bijection between the dimer model on the square grid and the uniform spanning
model on an index-4 square grid: see [24]). These boundary conditions are therefore
called Temperleyan boundary conditions. Rather than define precisely here what
the bijection is, let us only mention that these boundary conditions are sufficiently
rich to be able to approximate any planar domain.

One beautiful property of Temperleyan regions is that they exhibit conformal
invariance, which for example implies that understanding (limiting properties of)
dominos on a region allows one to understand (limiting properties of) dominos on
any conformally equivalent region (two domains are conformally equivalent if there
is a conformal bijection from one to the other). For example understanding domino
tilings on a square allows one to understand dominos on any other simply connected
domain.

For a Temperleyan region the boundary does not have a long-range effect on the
local densities: the local statistics converge to the Burton-Pemantle measure ppp
which we discussed earlier for the square. However the boundary does still have
an effect on certain long-range properties of the measure, among them the height
function. The boundary height function on a square is bounded and the average
height function in the interior is as well (in fact the average height function is the
harmonic function whose boundary values are the smoothing of the boundary height
function). The average height function is not so important for our purposes since
the fluctuations of the height function for a random tiling are unbounded. Indeed,
in [19] it is shown that the random variable giving the height function at the center
(or any other ‘interior’ point) of an n x n square is converging to a Gaussian with
variance -z logn + O(1). It is tempting to think of the height as a random interface
as we did in section 5.1, but this would be incorrect. In section 5.1 we rescaled
the height by €, and the interface converged to a fixed surface. Here however the
heights at distinct points in the square are essentially independent: the covariance
E(h(v1)h(v2)) remains bounded as n — co. So the fluctuations are too wild to
define a continuous (but nonzero) interface, even if one tries to rescale.

It might nonetheless be possible to average the height over small balls so as to
make a smooth interface, and then try to understand what happens when the size of
the balls shrinks. In fact one of the current challenges in this theory is to develop a
“scaling limit”, that is, a continuous object with an intrinsic, conformally invariant
description, which has the properties of the limiting random tiling. Another chal-
lenge is to prove some kind of universality, that is, independence of the scaling
limit from the local structure of the lattice. For example it would seem that both
dominos and lozenges, when taken with Temperleyan boundary conditions, have
the same limiting structure.
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