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A dimer is a polymer with only two atoms. A dimer
covering of a graph G is a collection of edges that
covers all the vertices exactly once, that is, each ver-
tex is the endpoint of a unique edge. One can think
of vertices of G as univalent atoms, each bonding
to exactly one neighbor. Dimer coverings are also
called perfect matchings. The dimer model is the
study of natural measures (“Gibbs measures”) on
the set of dimer coverings of a graph, usually a pe-
riodic planar graph such as Z2. While not a very re-
alistic physical model, the dimer model has in-
trinsic interest as an exactly solvable model that
exhibits certain types of phase transitions. Since
phase transitions are quite complicated phenom-
ena in nature, any approximate model whose phase
transitions can be studied analytically is valuable.

Kasteleyn, contemporaneously with Temperley
and Fisher, showed how to count the number of
dimer coverings of an m× n square grid, and later
on any planar graph. While Kasteleyn’s result holds
for any planar graph, the statement is particularly
simple when G is a subgraph of the honeycomb
graph H (the graph of the regular tiling of the
plane by hexagons) bounded by a simple polygon
(a “simply connected” subgraph). Then the num-
ber of coverings Z is the square root of the deter-
minant of the adjacency matrix of G. That is,

Z =
√

detK where K is the matrix indexed by the
vertices of G defined by Kv,v′ = 1 or 0 according
to whether v, v′ are adjacent or not. A similar state-
ment (but with extra signs in K) holds for any pla-
nar graph. One can compute, for example, the num-
ber of dimer coverings of an m× n grid to be
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For example, the number of domino tilings of a
checkerboard (which are just dimers on an 8× 8
grid) is 12988816 = 24172532 tilings.

Dimer coverings of bipartite graphs such as the
honeycomb graph or square grid can be viewed as
(random) surfaces in R3. Concretely, dimer cover-
ings of the honeycomb or any of its simply con-
nected subgraphs can be represented as tilings of
the plane with 60◦ rhombi: in this case each atom
is a triangle, and dimers are obtained by gluing ad-
jacent triangles along an edge. See Figure 1 for an
example. Clearly any such rhombus tiling can be
viewed as the projection of a three-dimensional
piecewise-linear surface. The function on a tiling
that gives the third coordinate of this projection
is called the height function. A similar kind of
height function also exists for domino tilings, or
dimers on any bipartite planar graph, though the
definition is a little more complicated.

The tiling in Figure 1 is perfectly random, and
yet one can see that there is something regular
about its height function. In fact, as we take tilings
of a fixed region (e.g., a polygon) with smaller and
smaller rhombi, the height functions of a typical
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tiling will converge to some nonrandom surface
called the limit shape. What is this limit shape? Fig-
ure 1 shows it has some linear pieces—those occur
in the frozen regions near the corners where all tiles
there are lined up the same way. How large are the
fluctuations around the limit shape ? What is the
probability of occurrence of some fixed local pat-
tern at a given point ?

The answers to these and other questions de-
pend on the asymptotics of the inverse Kasteleyn
matrix K−1 as the size of the graph goes to infin-
ity. Since K can be viewed (using work of the first
author) as a discretization of the ∂ -operator, it is
not so surprising that complex analysis and alge-
braic geometry enter the scene. In the nonfrozen
region, the limit shape satisfies a nonlinear ellip-
tic PDE closely related to the complex Burgers equa-
tion φx +φφy = 0 . To be precise, the arguments
of φ,1− 1/φ and 1/(1−φ) are proportional to the
densities of tiles of the three orientations. These
densities extend continuously to constants on the
frozen regions. For polygonal domains like the one
in Figure 1, the solution to this free boundary prob-
lem is algebraic. In particular, it turns out that the
boundary of the frozen region in the figure is an
inscribed cardioid (a degree 4, genus 0 curve with
1 real and 2 complex cusps—the yellow curve in
the figure).

From the complex Burgers equation, the non-
frozen part of the limit shape comes equipped
with a natural complex and, hence, conformal struc-
ture, which is different from the conformal struc-
ture induced from the plane. It is expected that in
this new conformal structure the fluctuations
around the limit shape are described by a confor-
mally invariant process called the Gaussian free
field, a two-dimensional cousin of Brownian motion.
It is still an open problem (even for the honey-
comb graph) to prove this in complete generality.
Partial results are available in recent work by the
authors.

Similarly, it is expected that the limiting prob-
ability of observing any given finite local pattern
of tiles at a given point is a function that depends
only on the slope of the limit shape at that point.
That is, if two limit shapes have the same slopes
at corresponding points, then they have the same
local measures (defined by the densities of local pat-
terns) there. All these probabilities can be computed
explicitly. For example, if s is the y-slope of the
height function, then the density of horizontal
rhombi is s + 1/3, and the covariance between two
horizontal rhombi, one of which is k steps directly

above the other, equals −sin2 sπk
(πk)2

. One derives

nearly identical formulas for correlations of eigen-
values of random matrices. This is one indication
that dimers and random matrices have very much
in common. Indeed, in a certain natural sense a

random dimer covering is a discretization of the
time evolution of the eigenvalues of a random uni-
tary matrix.

Instead of the honeycomb graph, one can make
similar calculations for dimers on any periodic bi-
partite planar graph. In fact, it is natural to allow
the edges of the graph to be weighted, in which case
the weight of a dimer covering is proportional to
the product of the weights of its edges. Again the
statistics can be worked out exactly using Kaste-
leyn’s method, and one obtains more complicated
PDEs for the limit shapes. Curiously, these PDES can
all be solved, and one can find the limit shapes via
analytic data, in a way resembling Weierstrass’s pa-
rametrization of minimal surfaces in R3 via ana-
lytic data. These more general models enjoy a fur-
ther property that their limit shapes can have facets
in many other rational directions. The interplay be-
tween analyticity and facet formation makes for a
fascinating study in real algebraic geometry.
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