In [1]:
using IntroLinearAlgebra
In [2]:
M = [1 2 3 4; 5 6 7 8; 9//2 10//2 11//2 12//2]
Out[2]:
$\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ \frac{9}{2} & 5 & \frac{11}{2} & 6 \\ \end{array}\right]$
In [3]:
rref(M)
Out[3]:
$\left[\begin{array}{cccc}1 & 0 & -1 & -2 \\ 0 & 1 & \hphantom{-}2 & \hphantom{-}3 \\ 0 & 0 & \hphantom{-}0 & \hphantom{-}0 \\ \end{array}\right]$
In [4]:
using SymPy
@vars x y z
WARNING: using SymPy.rref in module Main conflicts with an existing identifier.
Out[4]:
(x,y,z)
In [5]:
M = [1 2 3 x; 4 5 6 y]
Out[5]:
\begin{bmatrix}1&2&3&x\\4&5&6&y\end{bmatrix}
In [6]:
rref(M)
Out[6]:
\begin{bmatrix}1&0&-1&- \frac{5 x}{3} + \frac{2 y}{3}\\0&1&2&\frac{4 x}{3} - \frac{y}{3}\end{bmatrix}
In [8]:
using Interact
movie = transformation_movie([0 1; -2 0]);
@manipulate for i=1:length(movie)
    movie[i]
end
Out[8]: