Powers of Algebraic Disjointness Preserving Operators

Sam Watson
Gerard Buskes, Advisor

University of Mississippi
Department of Mathematics
Master's Thesis Defense

April 30, 2009
Disjoint vectors

These two vectors in \mathbb{R}^{10} have the property that in every position, at least one of them has a zero entry.

\[
\begin{pmatrix}
0 \\
1 \\
0 \\
9 \\
4 \\
0 \\
5 \\
0 \\
0 \\
1
\end{pmatrix}
\quad
\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
3 \\
0 \\
4 \\
2 \\
0
\end{pmatrix}
\]
These two vectors in \mathbb{R}^{10} have the property that in every position, at least one of them has a zero entry.

$$
\begin{pmatrix}
0 \\
1 \\
0 \\
9 \\
4 \\
0 \\
5 \\
0 \\
0 \\
1
\end{pmatrix} \quad \begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
3 \\
0 \\
4 \\
2 \\
0
\end{pmatrix}
$$

This property is called \textit{disjointness}, and if u and v are disjoint, we write $u \perp v$.
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$
T =
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix \textit{disjointness preserving}, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

\[
T^2 = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$
T^3 =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^4 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

\[
T^5 = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^6 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^7 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix \textit{disjointness preserving}, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^8 = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$
T^9 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}
$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^{10} = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix \textit{disjointness preserving}, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^{11} = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix}$$

A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^{12} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perpTv$. Observe what happens when we compute powers of T.

$$T^2 = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$
The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^3 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^4 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^5 = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^6 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \implies Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^7 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

\[
T^8 = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^9 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$T^{10} = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{pmatrix}$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

$$
T^{11} =
\begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
$$
A Disjointness Preserving Matrix

The following matrix T has a most one nonzero entry in each row. We call such a matrix *disjointness preserving*, since $u \perp v \Rightarrow Tu \perp Tv$. Observe what happens when we compute powers of T.

\[
T^{12} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]
Let us visualize the movement of the nonzero entries in the previous matrix using a directed graph. For $1 \leq i \leq 10$ and $1 \leq j \leq 10$, we connect i to j if the (i,j)th entry of the matrix is nonzero.
Let us visualize the movement of the nonzero entries in the previous matrix using a directed graph. For $1 \leq i \leq 10$ and $1 \leq j \leq 10$, we connect i to j if the (i, j)th entry of the matrix is nonzero.

![Diagram of directed graph]
Let us visualize the movement of the nonzero entries in the previous matrix using a directed graph. For $1 \leq i \leq 10$ and $1 \leq j \leq 10$, we connect i to j if the (i,j)th entry of the matrix is nonzero.

T^{12} is diagonal on the matrix obtained by dropping the second, third, and fifth rows and columns because 12 is a common multiple of the cycle lengths of the graph.
Let us visualize the movement of the nonzero entries in the previous matrix using a directed graph. For $1 \leq i \leq 10$ and $1 \leq j \leq 10$, we connect i to j if the (i,j)th entry of the matrix is nonzero.

T^{12} is diagonal on the matrix obtained by dropping the second, third, and fifth rows and columns because 12 is a common multiple of the cycle lengths of the graph. Also, 2, 3, and 5 are not in a cycle.
The graph gives a complete description of T as an operator from \mathbb{R}^d to \mathbb{R}^d.

...
The graph gives a complete description of T as an operator from \mathbb{R}^d to \mathbb{R}^d.

Let $\tau(k)$ be the vertex to which k is connected. The kth entry of Tv is $\tau(k)$th entry of v.
Digraph Representation

- The graph gives a complete description of T as an operator from \mathbb{R}^d to \mathbb{R}^d.
- Let $\tau(k)$ be the vertex to which k is connected. The kth entry of Tv is $\tau(k)$th entry of v.
- Similarly, the kth entry of T^rv is $v_{\tau^r(k)}$.

If T has entries other than 0 and 1 (but still has at most one nonzero entry in each row), then a weighted digraph describes the action of T. Simply associate with each edge $(k, \tau(k))$ a weight: the $(k, \tau(k))$th entry of T. The kth entry of T^rv is $v_{\tau^r(k)}$ times the product of the weights in the path from k to $\tau^r(k)$.

Sam Watson

Powers of Algebraic Disjointness Preserving Operators
Digraph Representation

- The graph gives a complete description of T as an operator from \mathbb{R}^d to \mathbb{R}^d.
- Let $\tau(k)$ be the vertex to which k is connected. The kth entry of Tv is $\tau(k)$th entry of v.
- Similarly, the kth entry of $T^r v$ is $v_{\tau^r(k)}$.
- If T has entries other than 0 and 1 (but still has at most one nonzero entry in each row), then a weighted digraph describes the action of T.
The graph gives a complete description of T as an operator from \mathbb{R}^d to \mathbb{R}^d.

Let $\tau(k)$ be the vertex to which k is connected. The kth entry of Tv is $\tau(k)$th entry of v.

Similarly, the kth entry of $T^r v$ is $v_{\tau^r(k)}$.

If T has entries other than 0 and 1 (but still has at most one nonzero entry in each row), then a weighted digraph describes the action of T.

Simply associate with each edge $(k, \tau(k))$ a weight: the $(k, \tau(k))$th entry of T.
Digraph Representation

- The graph gives a complete description of T as an operator from \mathbb{R}^d to \mathbb{R}^d.
- Let $\tau(k)$ be the vertex to which k is connected. The kth entry of Tv is $\tau(k)$th entry of v.
- Similarly, the kth entry of $T^r v$ is $v_{\tau^r(k)}$.
- If T has entries other than 0 and 1 (but still has at most one nonzero entry in each row), then a weighted digraph describes the action of T.
- Simply associate with each edge $(k, \tau(k))$ a weight: the $(k, \tau(k))$th entry of T.
- The kth entry of $T^r v$ is $v_{\tau^r(k)}$ times the product of the weights in the path from k to $\tau^r(k)$.
Digraph Representation: An Example

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
3 \\
6 \\
4 \\
0 \\
1 \\
5 \\
2 \\
5 \\
6 \\
0 \\
5
\end{pmatrix}
=
\begin{pmatrix}
6 \\
1 \\
6 \\
3 \\
6 \\
2 \\
5 \\
0 \\
0 \\
5
\end{pmatrix}
\]
The Theorem Statement for Matrices

Theorem 1

Let $T \in \mathbb{R}^{d \times d}$ be a disjointness preserving matrix, let G be the digraph associated with T. Let $C := \{1 \leq k \leq n : k \text{ is in a cycle in } G\}$. If M is divisible by all the cycle lengths in G, then T^M is the identity matrix on the subspace of \mathbb{R}^d generated by $\{e_k\}_{k \in C}$.

- Instead of proving this theorem directly, we look to generalize.
The Theorem Statement for Matrices

Theorem 1

Let \(T \in \mathbb{R}^{d \times d} \) be a disjointness preserving matrix, let \(G \) be the digraph associated with \(T \). Let \(C := \{1 \leq k \leq n : k \) is in a cycle in \(G \}\). If \(M \) is divisible by all the cycle lengths in \(G \), then \(T^M \) is the identity matrix on the subspace of \(\mathbb{R}^d \) generated by \(\{e_k\}_{k \in C} \).

- Instead of proving this theorem directly, we look to generalize.
- Since \(T \) represents a linear operator from \(\mathbb{R}^d \) to \(\mathbb{R}^d \), we first consider an arbitrary linear operator \(T : L \rightarrow L \), where \(L \) is any vector space.
Theorem 1

Let $T \in \mathbb{R}^{d \times d}$ be a disjointness preserving matrix, let G be the digraph associated with T. Let $C := \{1 \leq k \leq n : k \text{ is in a cycle in } G\}$. If M is divisible by all the cycle lengths in G, then T^M is the identity matrix on the subspace of \mathbb{R}^d generated by $\{e_k\}_{k \in C}$.

Instead of proving this theorem directly, we look to generalize.

Since T represents a linear operator from \mathbb{R}^d to \mathbb{R}^d, we first consider an arbitrary linear operator $T : L \rightarrow L$, where L is any vector space.

We need to abstract the condition of disjointness.
Vector Lattices

- We define a partial order on \mathbb{R}^d coordinate-wise. We say $u \leq v$ in \mathbb{R}^d if and only if $u_k \leq v_k$ for $k = 1, 2, \ldots, d$.

...
We define a partial order on \mathbb{R}^d coordinate-wise. We say $u \leq v$ in \mathbb{R}^d if and only if $u_k \leq v_k$ for $k = 1, 2, \ldots, d$.

This partial order respects addition and scalar multiplication.
We define a partial order on \mathbb{R}^d coordinate-wise. We say $u \leq v$ in \mathbb{R}^d if and only if $u_k \leq v_k$ for $k = 1, 2, \ldots, d$.

This partial order respects addition and scalar multiplication:

- $u \leq v \Rightarrow u + w \leq v + w$ for all $w \in \mathbb{R}^d$, and
Vector Lattices

- We define a partial order on \mathbb{R}^d coordinate-wise. We say $u \leq v$ in \mathbb{R}^d if and only if $u_k \leq v_k$ for $k = 1, 2, \ldots, d$.
- This partial order respects addition and scalar multiplication:
 - $u \leq v \Rightarrow u + w \leq v + w$ for all $w \in \mathbb{R}^d$, and
 - $0 \leq v$ and $0 \leq \lambda \Rightarrow 0 \leq \lambda v$.
Vector Lattices

- We define a partial order on \mathbb{R}^d coordinate-wise. We say $u \leq v$ in \mathbb{R}^d if and only if $u_k \leq v_k$ for $k = 1, 2, \ldots, d$.
- This partial order respects addition and scalar multiplication:
 - $u \leq v \Rightarrow u + w \leq v + w$ for all $w \in \mathbb{R}^d$, and
 - $0 \leq v$ and $0 \leq \lambda \Rightarrow 0 \leq \lambda v$.
- In addition, \mathbb{R}^d with coordinate-wise order is a lattice, i.e. every pair of elements v and w has a least upper bound (denoted $v \vee w$) and a greatest lower bound (denoted $v \wedge w$).
We define a partial order on \mathbb{R}^d coordinate-wise. We say $u \leq v$ in \mathbb{R}^d if and only if $u_k \leq v_k$ for $k = 1, 2, \ldots, d$.

This partial order respects addition and scalar multiplication:
- $u \leq v \Rightarrow u + w \leq v + w$ for all $w \in \mathbb{R}^d$, and
- $0 \leq v$ and $0 \leq \lambda \Rightarrow 0 \leq \lambda v$.

In addition, \mathbb{R}^d with coordinate-wise order is a lattice, i.e. every pair of elements v and w has a least upper bound (denoted $v \lor w$) and a greatest lower bound (denoted $v \land w$).

A partially ordered vector space (L, \leq) whose order structure is a lattice is called a vector lattice, or Riesz space.
Example

For any topological space X, the set $C(X)$ of continuous functions from X to \mathbb{R} is a Riesz space under pointwise addition, scalar multiplication and order.

- If X is equipped with the discrete topology, then $C(X)$ is denoted \mathbb{R}^X.
Vector Lattices

Example

For any topological space X, the set $C(X)$ of continuous functions from X to \mathbb{R} is a Riesz space under pointwise addition, scalar multiplication and order.

- If X is equipped with the discrete topology, then $C(X)$ is denoted \mathbb{R}^X.
- In particular, \mathbb{R}^d is $C(\{1, 2, 3 \ldots, d\})$.
Example

For any topological space X, the set $C(X)$ of continuous functions from X to \mathbb{R} is a Riesz space under pointwise addition, scalar multiplication and order.

- If X is equipped with the discrete topology, then $C(X)$ is denoted \mathbb{R}^X.
- In particular, \mathbb{R}^d is $C(\{1, 2, 3 \ldots, d\})$.
- In $C(X)$, $0 \leq nu \leq v$ for all $n \in \mathbb{N} \Rightarrow u = 0$. Any Riesz space satisfying this condition is called Archimedean.
In $C(X)$, $u \perp v$ if and only if $|u| \wedge |v| = 0$.
In $C(X)$, $u \perp v$ if and only if $|u| \wedge |v| = 0$.
We take $|u| \wedge |v| = 0$ as the definition of disjointness in an Riesz space L.
In $\mathcal{C}(X)$, $u \perp v$ if and only if $|u| \wedge |v| = 0$.

We take $|u| \wedge |v| = 0$ as the definition of disjointness in an Riesz space L.

Can we prove a generalization of Theorem 1 for disjointness preserving operators on vector lattices?
In $C(X)$, $u \perp v$ if and only if $|u| \wedge |v| = 0$.

We take $|u| \wedge |v| = 0$ as the definition of disjointness in an Riesz space L.

Can we prove a generalization of Theorem 1 for disjointness preserving operators on vector lattices?

Answer:
In $C(X)$, $u \perp v$ if and only if $|u| \wedge |v| = 0$.

We take $|u| \wedge |v| = 0$ as the definition of disjointness in an Riesz space L.

Can we prove a generalization of Theorem 1 for disjointness preserving operators on vector lattices?

Answer: no
In $C(X)$, $u \perp \nu$ if and only if $|u| \wedge |\nu| = 0$.

We take $|u| \wedge |\nu| = 0$ as the definition of disjointness in an Riesz space L.

Can we prove a generalization of Theorem 1 for disjointness preserving operators on vector lattices?

Answer: no

Setting up the graph requires more conditions on the operator T.
Algebraic Operators

The Cayley-Hamilton theorem in linear algebra implies that every (finite-dimensional) matrix satisfies a polynomial equation, in other words there exist real numbers a_0, a_1, \ldots, a_n for which

$$T^n + a_{n-1}T^{n-1} + \cdots + a_1T + a_0$$

is the zero matrix.
The Cayley-Hamilton theorem in linear algebra implies that every (finite-dimensional) matrix satisfies a polynomial equation, in other words there exist real numbers a_0, a_1, \ldots, a_n for which

$$T^n + a_{n-1}T^{n-1} + \cdots + a_1T + a_0$$

is the zero matrix.

If L is a vector space, an operator $T : L \rightarrow L$ is said to be algebraic if it satisfies a polynomial equation.
The Cayley-Hamilton theorem in linear algebra implies that every (finite-dimensional) matrix satisfies a polynomial equation, in other words there exist real numbers a_0, a_1, \ldots, a_n for which

$$T^n + a_{n-1} T^{n-1} + \cdots + a_1 T + a_0$$

is the zero matrix.

If L is a vector space, an operator $T : L \rightarrow L$ is said to be **algebraic** if it satisfies a polynomial equation.

For any algebraic operator $T : L \rightarrow L$, there is a unique monic polynomial p of minimum degree for which $p(T)$ is the zero operator.
Algebraic Operators

- The Cayley-Hamilton theorem in linear algebra implies that every (finite-dimensional) matrix satisfies a polynomial equation, in other words there exist real numbers a_0, a_1, \ldots, a_n for which

$$T^n + a_{n-1}T^{n-1} + \cdots + a_1 T + a_0$$

is the zero matrix.

- If L is a vector space, an operator $T : L \to L$ is said to be algebraic if it satisfies a polynomial equation.

- For any algebraic operator $T : L \to L$, there is a unique monic polynomial p of minimum degree for which $p(T)$ is the zero operator.

- This polynomial is called the minimal polynomial of T.
Example

Let $L = \mathbb{R}^\infty$, the set of sequences of real numbers with pointwise order. Define $T(a_1, a_2, a_3 \ldots) := (0, a_1, a_2, \ldots)$. T is not an algebraic operator.
Algebraic Operators

Example

Let $L = \mathbb{R}^\mathbb{N}$, the set of sequences of real numbers with pointwise order. Define $T(a_1, a_2, a_3 \ldots) := (0, a_1, a_2, \ldots)$. T is not an algebraic operator.

To see that T is not an algebraic, let

$$p(T) = T^n + a_{n-1} T^{n-1} + \cdots + a_1 T + a_0$$

be a polynomial. Let m be the least index for which $a_m \neq 0$, and let $u = (1, 0, 0, 0, \ldots)$. For all $m < r \leq n$, we have $(a_r T^r u)_m = 0$. Since $(a_m T^m u)_m \neq 0$, the vector $p(T)u$ is not zero in the mth position and hence $p(T)$ cannot be the zero operator.
A subset A of a Riesz space L is said to be order bounded if there exist $u, v \in L$ with $u \leq x \leq v$ for all $x \in A$.
Order Bounded Operators

- A subset A of a Riesz space L is said to be *order bounded* if there exist $u, v \in L$ with $u \leq x \leq v$ for all $x \in A$.
- An operator T from L to another Riesz space M is called an *order bounded operator* if it maps order bounded sets to order bounded sets.
A subset A of a Riesz space L is said to be *order bounded* if there exist $u, v \in L$ with $u \leq x \leq v$ for all $x \in A$.

An operator T from L to another Riesz space M is called an *order bounded operator* if it maps order bounded sets to order bounded sets.

In other words, T is order bounded if $T[A]$ is order bounded in M for every order bounded $A \subset L$.

Example: If (X, μ) is a measure space, then the operator from $L^1(\mu)$ to \mathbb{R} defined by $f \mapsto \int f \, d\mu$ is order bounded, since a function g which is bounded above by $h \in L^1(\mu)$ and below by $f \in L^1(\mu)$ has $\int f \, d\mu \leq \int g \, d\mu \leq \int h \, d\mu$.

Sam Watson

Powers of Algebraic Disjointness Preserving Operators
Order Bounded Operators

- A subset A of a Riesz space L is said to be order bounded if there exist $u, v \in L$ with $u \leq x \leq v$ for all $x \in A$.
- An operator T from L to another Riesz space M is called an order bounded operator if it maps order bounded sets to order bounded sets.
- In other words, T is order bounded if $T[A]$ is order bounded in M for every order bounded $A \subset L$.

Example

If (X, μ) is a measure space, then the operator from $L^1(\mu)$ to \mathbb{R} defined by $f \mapsto \int f \, d\mu$ is order bounded, since a function g which is bounded above by $h \in L^1(\mu)$ and below by $f \in L^1(\mu)$ has $\int f \, d\mu \leq \int g \, d\mu \leq \int h \, d\mu$.
Order Bounded Operators

Example

A function $f : [0, \infty) \to \mathbb{R}$ is *essentially polynomial* if there is a positive real number x_f and a polynomial p_f so that for all $x > x_f$, $p_f(x) = f(x)$. The set L of all essentially polynomial functions on $[0, \infty)$ is an Riesz space (under pointwise order). The function $f \mapsto p_f(0)$ is a disjointness-preserving operator on L which is not order bounded.
Example

A function $f : [0, \infty) \to \mathbb{R}$ is *essentially polynomial* if there is a positive real number x_f and a polynomial p_f so that for all $x > x_f$, $p_f(x) = f(x)$. The set L of all essentially polynomial functions on $[0, \infty)$ is an Riesz space (under pointwise order). The function $f \mapsto p_f(0)$ is a disjointness-preserving operator on L which is not order bounded.

To see that $f \mapsto p_f(0)$ is not order bounded, define

$$f_n(x) = \begin{cases} 0 & \text{if } 0 \leq x \leq n \\ -4n(x - n) & \text{if } n < x. \end{cases}$$
Example

A function $f : [0, \infty) \to \mathbb{R}$ is *essentially polynomial* if there is a positive real number x_f and a polynomial p_f so that for all $x > x_f$, $p_f(x) = f(x)$. The set L of all essentially polynomial functions on $[0, \infty)$ is an Riesz space (under pointwise order). The function $f \mapsto p_f(0)$ is a disjointness-preserving operator on L which is not order bounded.

To see that $f \mapsto p_f(0)$ is not order bounded, define

$$f_n(x) = \begin{cases}
0 & \text{if } 0 \leq x \leq n \\
-4n(x - n) & \text{if } n < x.
\end{cases}$$

The set $\{f_n\}_{n \in \mathbb{N}}$ is order bounded, since $-x^2 \leq f_n \leq 0$. However, $p_{f_n}(0) = 4n^2$, so the set $\{p_{f_n}(0)\}_{n \in \mathbb{N}}$ of images of $\{f_n\}_{n \in \mathbb{N}}$ under $f \mapsto p_f(0)$ is not an order bounded subset of \mathbb{R}.
Orthomorphisms

- We introduce the property of operators on Riesz spaces which generalizes the concept of a diagonal operator on \mathbb{R}^d.

We introduce the property of operators on Riesz spaces which generalizes the concept of a diagonal operator on \mathbb{R}^d.

If $T : L \to L$ is an order bounded operator for which $u \perp v \implies Tu \perp v$ for all $u, v \in L$, then T is called an orthomorphism.
We introduce the property of operators on Riesz spaces which generalizes the concept of a diagonal operator on \mathbb{R}^d.

If $T : L \to L$ is an order bounded operator for which $u \perp v \implies Tu \perp v$ for all $u, v \in L$, then T is called an orthomorphism.

If A is a subspace of T for which $Tu \in A$ for all $u \in A$, then A is said to be T-invariant. $T|_A$ may be viewed as an operator from A to A.
Orthomorphisms

- We introduce the property of operators on Riesz spaces which generalizes the concept of a diagonal operator on \mathbb{R}^d.

- If $T : L \to L$ is an order bounded operator for which $u \perp v \implies Tu \perp v$ for all $u, v \in L$, then T is called an orthomorphism.

- If A is a subspace of T for which $Tu \in A$ for all $u \in A$, then A is said to be T-invariant. $T|_A$ may be viewed as an operator from A to A.

- Let L be a Riesz space, let T be an order bounded operator $T : L \to L$ and let A be a T-invariant space of L. If $u \perp v \implies Tu \perp v$ for all $u, v \in A$, then T is called an orthomorphism on A.
We use the following theorem to set up the digraph associated with T. We restrict our attention to \textit{realcompact} topological spaces, which includes “most” topological spaces typically encountered.
Setting up the graph

We use the following theorem to set up the digraph associated with T. We restrict our attention to *realcompact* topological spaces, which includes “most” topological spaces typically encountered.

Theorem 2

If X is a realcompact topological space and T is an order bounded disjointness preserving operator on $C(X)$, then for all $x \in X$, there either $\delta_x \circ T$ is the zero functional or there exists a unique $y \in X$ so that

$$\delta_x \circ T = ((\delta_x \circ T)(1)) \delta_y.$$
Setting up the graph

We use the following theorem to set up the digraph associated with T. We restrict our attention to \textit{realcompact} topological spaces, which includes “most” topological spaces typically encountered.

Theorem 2

If X is a realcompact topological space and T is an order bounded disjointness preserving operator on $C(X)$, then for all $x \in X$, there either $\delta_x \circ T$ is the zero functional or there exists a unique $y \in X$ so that

$$
\delta_x \circ T = ((\delta_x \circ T)(1)) \delta_y.
$$

Call the unique y described in the theorem $\tau(x)$ (if $\delta_x \circ T$ is nonzero) and define the digraph associated with T to have vertex set X and weighted edge set

$$
\left\{ \left((x, \tau(x)), (\delta_x \circ T)(1) \right) : \delta_x \circ T \neq 0 \right\}.
$$
Setting up the graph

We get a representation of powers of T from the graph as we did for operators on \mathbb{R}^d. Define $\lambda(x)$ to be the maximum r for which $\tau^r(x)$ is defined, and define the product-of-weights function

$$w_r(x) = \begin{cases}
\prod_{i=1}^{r}(T1)(\tau^i(x)) & \text{if } r \leq \lambda(x) \\
0 & \text{if } r > \lambda(x)
\end{cases}$$

Proposition

If T is an order bounded disjointness preserving operator on $C(X)$, and $r \geq 0$ is an integer, then for all $x \in X$,

$$(T^rf)(x) = \begin{cases}
f(\tau^r(x))w_r(x) & \text{if } r \leq \lambda(x) \\
0 & \text{if } r > \lambda(x) \end{cases}.$$
Preliminary Remarks

We generalize Theorem 1 to operators on spaces of the form $C(X)$ before generalizing to Archimedean Riesz spaces. Three remarks:
Preliminary Remarks

We generalize Theorem 1 to operators on spaces of the form $C(X)$ before generalizing to Archimedean Riesz spaces. Three remarks:

- We state the theorem for X realcompact. If X is not realcompact, we may apply the following theorem to the realcompactification νX of X.

Sam Watson
Preliminary Remarks

We generalize Theorem 1 to operators on spaces of the form $C(X)$ before generalizing to Archimedean Riesz spaces. Three remarks:

- We state the theorem for X realcompact. If X is not realcompact, we may apply the following theorem to the realcompactification νX of X.

- We will get a larger subspace on which T^M is a diagonal operator, namely the range of T^m, where m is the smallest index for which the coefficient of T^m in the minimal polynomial of T is nonzero.
Preliminary Remarks

We generalize Theorem 1 to operators on spaces of the form $C(X)$ before generalizing to Archimedean Riesz spaces. Three remarks:

- We state the theorem for X realcompact. If X is not realcompact, we may apply the following theorem to the realcompactification νX of X.

- We will get a larger subspace on which T^M is a diagonal operator, namely the range of T^m, where m is the smallest index for which the coefficient of T^m in the minimal polynomial of T is nonzero.

- We have to ensure that $M \geq m$ so that all the paths are long enough that $\tau^M(x)$ is in a cycle.
Theorem 3
Let X be a realcompact topological space, and let T be an algebraic order bounded disjointness preserving operator on $C(X)$. Let m denote the multiplicity of zero as a root of the minimal polynomial of T. If $M \geq m$ is any positive integer divisible by each of the cycle lengths of the graph associated with T, then the restriction of T^M to the range of T^m is an orthomorphism.
Corollaries

Corollary

If T is a bijective algebraic order bounded disjointness preserving operator on $C(\mathbb{R})$ for which $T(1) = 1$, then the minimal polynomial of T is of the form $x^{2p} - 1$ for some nonnegative integer p.
Corollary

Let X be a completely regular extremally disconnected compact Hausdorff space, and let T be an algebraic bijective order bounded disjointness preserving operator on $C(X)$ whose minimal polynomial has degree n. Then each set $X_k = c^{-}[\{k\}]$ (for $k = 1, 2, \cdots, n$) is both open and closed, and for each k, $B_k = \{f \in C(X) : f = 0 \text{ on } X \setminus X_k\}$ is a band in $C(X)$. Let $K \subset \{1, 2, \ldots, n\}$ consist of the indices for which X_k is nonempty. Then $C(X) = \bigoplus_{k \in K} B_k$. Moreover, T is invariant on each band B_k, T^k is an orthomorphism on B_k, and for all $f \in C(X)$ we have

$$Tf = \sum_{k \in K} \left(T\big|_{B_k} \right) f_k = \bigvee_{k \in K} \left(T\big|_{B_k} \right) f_k,$$
Theorem 3

If T is an algebraic order bounded disjointness preserving operator on an Archimedean Riesz space L with minimal polynomial $p(T) = T^n + \cdots + a_m T^m$ and $M \geq m$ is a multiple of $1, 2, \ldots, n - m$, then T^M restricted to the range of T^m is an orthomorphism.

The proof uses Kakutani’s representation theorem to find $C(X)$ which represents L locally.
Thank you!