
Spring 2015

MA 2110, Introduction to Manifolds

Supplement #1

Smooth Maps Between Open Subsets of Euclidean Spaces

January 29, 2015

Let U ⊂ Rn be open. A mapping F : U → Rm is said to be differentiable at the point p ∈ U if
there is a linear map L : Rn → Rm such that for x ∈ U

F (x) = F (p) + L(x− p) + E(x− p)

with the error term E satisfying E(x−p)
|x−p| → 0 as x 7→ p. In other words, for every ε > 0 there exists

δ > 0 such that whenever |x− p| < δ then |E(x− p)| < ε|x− p|.

Remark 1: One can just as well make this definition for any two finite-dimensional vector spaces
instead of Rn and Rm. (One could even allow the vector spaces to be infinite-dimensional, as long
as they are both provided with norms. But that need not concern us here.)

Note that in particular this implies that, for any nonzero vector v ∈ Rn, as the real number t
approaches 0 then E(tv)

t|v| approaches 0. It follows that

L(v) = limt→0
F (p+ tv)− F (p)

t
.

Thus L is unique if it exists. We call L the derivative of F at p and denote it by DpF .

Remark 2: One can make examples where the limit exists for all v but is not a linear function of
v. Thus the existence of the derivative is stronger than the existence of all directional derivatives.

As a special case of the last equation, letting ej denote the jth standard basis vector Rn we have

(DpF )(ej) = limt→0
F (x1, . . . , xj + t, . . . , xn)− F (x1, . . . , xj , . . . , xn)

t
.

In other words, writing F (x) = (F1(x), . . . , Fm(x)), the ith coordinate of the vector (DpF )(ej) is
the partial derivative

∂Fi(x)

xj
|x=p.
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That is, the matrix corresponding to the linear map DpF is the Jacobian matrix of partial deriva-

tives ∂Fi(X)
∂xj

at the point p.

Remark 3: One can make examples in which the limit above exists when v is a standard basis
vector but not for all v.

We say that F is differentiable if it is differentiable at every point in its domain, that is, if DpF
exists for all p ∈ U . We say that F is a C1 map if F is differentiable and the map DF : p 7→ DpF
is continuous. (Here DF maps U to the (mn-dimensional) vector space of all linear maps from
Rn to Rm.) We say that F is twice differentiable if DF exists and is differentiable, and that F is
C2 if DF is C1, and so on: recursively F is k + 1 times differentiable if DF exists and is k times
differentiable, and F is Ck+1 if DF exists and is Ck. We will say that F is smooth if it is C∞, that
is, if it is Ck for all k.

Lemma: F is C1 if and only if for each i and j the partial derivative ∂Fi(x)
xj

exists at each point

p ∈ U and depends continuously on p

By Remark 2 above, the Lemma is not entirely trivial.

Proof: One direction is clear. For the converse, we suppose for simplicity that m = 1. (Certainly
F will be C1 if each Fi is C1.) So let f be a real-valued function on U and suppose that the
functions ∂f

∂xj
are defined and continuous. We have to prove that f is differentiable at p. If it is,

then the linear function Dpf will certainly depend continuously on p because the corresponding
1×n matrix consists of the partial derivatives, which we have assumed to be continuous. To prove
that Dpf exists we may as well replace f by x 7→ f(x) − f(p) − L(x − p), where L is the linear
map given by the partial derivatives at p. That is, without loss of generality the first-order partial
derivatives vanish at p. Since these are continuous, for any ε > 0 there is a neighborhood of p in
which | ∂f∂xj

| < ε for all j. We may take the neighborhood to be given by |xj − pj | < δ for some

δ > 0. Now suppose that x is in that neighborhood. There is a path from p to x given by moving
along n straight-line paths in turn, each one parallel to one of the n coordinate axes. The change in
f along the jth path has absolute value bounded by ε|xj − pj |. Therefore |f(x)− f(p)| ≤ nε|x− p|,
and |f(x)−f(p)||x−p| ≤ nε. This proves that the derivative of f at p exists (and is zero).

Theorem (Chain Rule): When F : U → V and G : V → W are differentiable (U , V , and W being
open subsets of vector spaces), then G ◦F is also differentiable, and the derivative of the composed
map is given by the following version of the chain rule: Dp(G ◦ F ) = DF (p)G ◦DpF .

The proof is an exercise.

It is clear that if F and G are smooth then so is G ◦ F .

A map F : U → V between open sets in vector spaces is a diffeomorphism if it is smooth and has
a smooth inverse V → U . By the Chain Rule the derivative of a diffeomorphism is an invertible
linear map. The following converse of this is a standard result, which will not be proved here:

Theorem (Inverse Function Theorem): Suppose that F : U → Rn is smooth, p ∈ U ⊂ Rn open.
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Suppose that DpF is invertible. Then there is a possibly smaller open neighborhood V ⊂ U of p
such that F (V ) is open and F |V : V → F (V ) is a diffeomorphism.

In other words, a smooth map is locally invertible if and only if it is infinitesimally invertible. This
is a key tool in this subject.
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