February 2015
 MA 2110, Introduction to Manifolds
 Third Assignment
 Due 2/19/15

March 1, 2015
6. Verify that at any point $(x, y, z) \in S^{2}$ the vectors $(-y, x, 0)$ and $\left(x z, y z, z^{2}-1\right)$ are tangent to S^{2}. Write these same tangent vectors down in terms of the (stereographic) coordinates $u=\frac{x}{1+z}$, $v=\frac{y}{1+z}$ defined in $S^{2}-\{(0,0,-1)\}$. The answers should have the form $a \frac{\partial}{\partial u}+b \frac{\partial}{\partial v}$ with a and b being functions of u and v.
7. Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $F(x, y)=\left(x, y^{2}, y^{3}-x y\right)$. Find all points in \mathbb{R}^{2} at which F fails to be an immersion. Find all points $p \in \mathbb{R}^{3}$ such that there is more than one point $q \in \mathbb{R}^{2}$ for which $F(q)=p$. For each such p, determine all of the "tangent planes of $F\left(\mathbb{R}^{2}\right)$ at p " (the images of the linear maps $D_{q} F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$).
8. Show that there is a smooth embedding of $\mathbb{R} P^{n}$ in the space of real $(n+1) \times(n+1)$ real matrices, defined by $e\left(x_{0}: \ldots: x_{n}\right)=\frac{1}{|x|^{2}} x^{t} x$. Here $x=\left(x_{0}, \ldots, x_{n}\right)$ is a nonzero vector in \mathbb{R}^{n+1}, considered also as a $1 \times(n+1)$ matrix, and x^{t} is the transpose.

