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1 Bump Functions

Define g : R — R by g(z) = e /% if 2 > 0 and f(x) = 0 if < 0. Let us see that this is smooth.
The only question is about the behavior at « = 0. Note that where x > 0 the function is smooth
and its nth derivative has the form f(™(z) = R,(z)e~"/* with R, a rational function. To show
by induction that the nth derivative at 0 exists and is zero, it suffices to show that the right-hand
derivative of f(»=1) at 0 exists and is zero. But this is the limit of R,_;(x)e™ /%,

The support of a continuous function f : X — R is the closure of the set of all points x € X such
that f(x) # 0. In other words a point belongs to the support of f if there is no neighborhood in
which the function is identically zero. Denote it by supp f.

Using g above we can make a smooth nonnegative function A on R”, positive at 0, and supported
in any given neighborhood of 0, by writing h(x) = g(r? — |z|?) for some small r > 0.

Now we can do the same thing in a smooth m-manifold M. For any point p € M and open
neighborhood U of p, we make a smooth function f : M — R such that f > 0, f(p) > 0, and
supp f C U. To do so, first note that without loss of generality U is the domain of a smooth chart
x:U — R"™ and z(p) = 0. Now let h be as above, supported in the neighborhood z(U) of 0. Define

f(q) = h(z(q)) if g€ U and f(q) =0ifq ¢ U.

2 Definitions

A collection (S,) of subsets of the space X is called locally finite if every point in X has a neigh-
borhood N such that there are only finitely many « for which N N S, # 0.



Recall that a space X is called locally compact if every point has arbitrarily small compact neigh-
borhoods: for every z € X, for every open set U C X such that x € U, there exist an open set V'
and a compact set K such that z € V C K C U. (Some authors use a weaker condition: a space is
locally compact if and only if every point has a compact neighborhood. For Hausdorff spaces the
two definitions are equivalent.) Of course, manifolds are locally compact because R" is.

A collection (f;) of continuous functions on X is called locally finite if the collection of sets (supp f;)
is locally finite. If this is the case, then the (pointwise) sum ¥, f; is well-defined and continuous,
since every point has a neighborhood in which the sum is really a finite sum.

A continuous partition of unity on a space X is a locally finite collection of continuous real-valued
functions f; > 0 such that ¥, f; = 1. If X is a smooth manifold and the functions are smooth then
the partition of unity is said to be smooth.

A partition of unity (f;) is subordinate to an open cover Q if for every i the support of f; is contained
in some element of O.

3 Existence of partitions of unity

Theorem 1 If O is any open cover of the smooth manifold X, then X has a smooth partition of
unity subordinate to O.

The proof uses the following lemma.

Lemma 1 If the space X is locally compact, second countable, and Hausdorff, then there exist a
sequence (Kj) of compact sets in X and a sequence (€2;) of open sets in X such that K; C Q;, and
such that every point of X belongs to K; for at least one j, and such that the collection (§;) is
locally finite.

Proof of Lemma: By assumption the topology of X has a countable basis. That is, there is a
countable set B of open sets such that for every neighborhood N of every point x in X there exists
U € B with x € U C N. Because every point has a compact neighborhood, it follows that every
point belongs to a precompact element of B. (A subset of a topological space is precompact if its
closure is compact.) Thus X is covered by some infinite sequence Uy, Us, ... of precompact open
sets.

Let V; be Uy U...UU;. This gives a nested sequence of precompact open sets Vi3 C Vo C ... which
again covers X.

Next we find a sequence W7 C Wy C ... of open subsets covering X such that VT/J C Wiy for all
j- This can be constructed as a subsequence (V;;), because for each i there is some i’ > i such that
the compact set V; is contained in V.



For convenience, extend the sequence to the left by writing W; = 0 for j < 0.

Now define K; = Wj — Wj_1 and Q; = W1 — I/T/j,g. Note that eacll point belongs to at most
three of the sets 2;; in fact, if k — j > 3 then Q; N Q C W11 N (X — Wy_2) = 0.

QED
Proof of Theorem: Let K; and €); be as in the Lemma.

First fix j. For every x € Kj there is a smooth function f;; > 0 on X such that f; ;j(z) > 0 and
such that the support of f; ; is contained in €2; and also contained in some element of . Because
K; is compact, we may choose a finite set F); of points in K in such a way that the sum of the
functions f; ; over x € Fj is positive at every point of K.

Now let j vary. Consider the functions f; ;, where j is arbitrary and x € F;. They form a locally
finite family, so we may add them up and get a continuous function f. This is positive at every
point of X. The functions f; ;/f form a smooth partition of unity. Each f, ;j/f has its support in
some element of O, so the partition of unity is subordinate to O.

QED

Remark: A similar argument shows that if X is any locally compact second countable Hausdorff
space then there is a continuous partition of unity subordinate to any given open cover. This
requires being able to make continuous functions to play the role of the functions f, ; in the proof
above. For any x € X there is a continuous f > 0 that is positive at x and is supported in any
given neighborhood of x, by the Tietze Extension Theorem.

Remark: The Lemma above also implies that every locally compact second countable Hausdorff
space is paracompact: every open cover has a locally finite refinement. (An open cover O is a
refinement of O if for every U € O’ there exists V € O such that U C V.)



